

11 Crown Street Meriden, Connecticut

Phase III Environmental Site Assessment

Prepared For:

City of Meriden

April 2014

22-0817 April 4, 2014

Juliet Burdelski Director of Economic Development City of Meriden 142 East Main Street Meriden, CT 06450

Re: Phase III Environmental Site Assessment Record Journal

11 Crown Street, Meriden, Connecticut

Dear Mrs Burdelski:

Please find enclosed the Phase III Environmental Site Assessment (ESA) report for the property located at 11 Crown Street in Meriden, Connecticut.

We appreciate the opportunity to provide our services. If you have any questions or comments, please contact us.

Very truly yours,

TIGHE & BOND, INC.

Jill L. Libby

Environmental Scientist

James T. Olsen, LEP

Senior Project Manager, Associate

Cover Lett	ter
Section 1	Introduction
Section 2	Objective
Section 3	Site Description
3.1 3.2 3.3	Location
Section 4	Hydrogeology
4.1 4.2	Geology
Section 5	Previous Investigations
Section 6	Field Investigations
6.1 6.2	Well Installation and Soil Sampling
Section 7	Remediation Criteria
7.1	Soil Remediation Criteria7-17.1.1 Direct Exposure Criteria7-17.1.2 Pollutant Mobility Criteria7-2Groundwater Remediation Criteria7-27.2.1 Surface Water Protection Criteria7-37.2.2 Volatilization Criteria7-3
Section 8	Results of Investigation
8.1	Soil Analytical Results
8.2	Groundwater Analytical Results

8.2.4 Metals...... 8-2

Section 9 Quality Assurance / Quality Control

Section 10 Conceptual Site Model

Table of Contents

Tighe&Bond

10.1	Description of Site, Environments, and AOCs
10.2	Nature and Extent of Contamination
10.3	Potential Release Mechanisms
10.4	Migration Pathways10-2
10.5	Phase III ESA Findings
Section 11	. Summary and Recommendations
11.1	Summary
11.2	Recommendations
Appendice	es
Appendix A	Figures
•	1 Site Location Map
9	2 Areas of Concern Map
	3 Sample Locations Map
•	4 Soil Exceedance Map
Appendix B	
• •	Field Data Sheets
	Laboratory Reports
Appendix E	
Table	· · · · · · · · · · · · · · · · · · ·
Table :	
Table :	
Table 4	
Annendix F	Data Quality Assessment/Data Usahility Evaluation

Table of Contents

Tighe & Bond

List of Acronyms and Definitions

AOC Area of Concern

bgs Below Ground Surface

CTDEEP Department of Energy and Environmental Protection

COC Contaminant of Concern
CSM Conceptual Site Model
DEC Direct Exposure Criteria

DQA/DUE Data Quality Assessment/Data Usability Evaluation

ELUR Environmental Land Use Restriction
ESA Environmental Site Assessment

ETPH Extractable Total Petroleum Hydrocarbons

ft Feet

GIS Geographic Information System

GWPC Groundwater Protection Criteria

GWVC Groundwater Volatilization Criteria

Licensed Environmental Professional

mg/Kg Milligrams per Kilogram

µg/Kg Micrograms per Kilogram

NRCS National Resources Conservation Service

PAHs Polycyclic Aromatic Hydrocarbons

PCB Polychlorinated Biphenyls
PID Photoionization Detector
PMC Pollutant Mobility Criteria

ppm Parts Per Million

RCP Reasonable Confidence Protocol
RSR Remediation Standard Regulations

Sanborns Sanborn Fire Insurance Maps

SCGD Site Characterization Guidance Document SPLP Synthetic Precipitation Leaching Procedure

SWPC Surface Water Protection Criteria

TCLP Toxicity Characteristic Leaching Procedure

USGS United States Geological Survey VOCs Volatile Organic Compounds

Section 1 Introduction

Tighe & Bond has prepared this Phase III Environmental Site Assessment (ESA) for the City of Meriden (City) for the property located at 11 Crown Street in Meriden, Connecticut (the site) as shown in Figure 1 (Appendix A). It is our understanding that the City is contemplating acquisition of the site for demolition and redevelopment or an adaptive re-use of the existing building. The purpose of this Phase III ESA was to delineate environmental impacts associated with on-site Areas of Concern (AOCs) and to identify the nature and extent of contaminated media that will require remediation or management as part of site redevelopment/reuse.

This Phase III ESA was completed in general accordance with the Connecticut Department of Energy and Environmental Protection (CTDEEP) Site Characterization Guidance Document (SCGD February 2007, revised December 2010).

Section 2 Objective

As stated in Tighe & Bond's proposal dated January 28, 2014, the primary objective of the Phase III investigation is to define the nature and extent of soil and groundwater contamination at the subject site and in the vicinity of identified AOCs. Secondary objectives include closing data gaps identified in the Phase II ESA:

- Assess soil conditions beneath the central and southern portions of the building.
- Determine the horizontal and vertical extent of fill across the site.
- Evaluate bedrock groundwater conditions.

Section 3 Site Description

3.1 Location

The site, depicted on Figure 1, consists of 1.67 acres of land at the intersection of Perkins Street and Crown Street. The site is located in close proximity to the downtown area and Meriden Railroad Station. The area surrounding the site consists of mixed uses including residential and commercial properties.

3.2 Site Operations and History

Current Use: The site currently consist of a multi-story building, occupied by The Record-Journal Publishing Company (Record-Journal), and associated parking areas. The current aerial photograph of the site is included as Figure 2.

Previous Uses: Historically, the site has been occupied by several printing companies including Record-Journal, The Meriden Record Company, Kelsey Printing, and Republican Publishing. Prior to the 1960's, portions of the site were developed as a foundry and machine shop that manufactured printing presses, an automotive repair garage, a blacksmith, a wallpaper and paint store, and various commercial businesses and residential properties.

3.3 Areas of Concern

An AOC is defined as locations or areas at a site where hazardous waste and/or hazardous substances (including petroleum products) have been or may have been used, stored, treated, handled, disposed, spilled, and/or released to the environment. The AOCs are depicted on Figure 2. AOCs were identified at the site by Lenard Engineering Inc during a Phase I ESA completed in July 2013. Tighe & Bond completed a Phase II report in November, 2013 to determine if releases of constituents of concern (COCs) had occurred at the AOCs. A description of the AOCs and results of the Phase II ESA are listed below.

AOC-1 Northern Portion of the building

The former graphics departments and photographic development lab were located on the second floor of this portion of the building. The basement in this area consisted of a garage, boiler room with floor drain, and was reportedly the location of the former printing department which stored inks, solvents, and oils. A paint and wall paper store reportedly existed in this area of the site prior to 1900.

COCs include volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), and metals.

AOC-2 Central and Southern Portion of the building

This portion of the building is currently used for storage of unused chemicals and oils. Formerly, this area contained the paper storage room, pressroom, 3,000-gallon ink tank, and likely stored hazardous chemical wastes including waste ink mixture that may have contained methylene chloride, benzene, and xylene.

COCs include VOCs, PAHs, and metals.

AOC-3 Loading Dock A

This loading dock is located along the southern wall of the building and it was reported that hazardous chemicals were likely delivered to and/or removed from this area.

COCs include extractable petroleum hydrocarbons (ETPH), VOCs, PAHs, and metals.

AOC-4 Loading Dock B

This loading dock is located along the western side of the former paper storage room and it was reported that hazardous chemicals were likely delivered to and/or removed from this area.

COCs include ETPH, VOCs, PAHs, and metals.

AOC-5 Former Automotive Repair Garage

Historic Sanborn Fire Insurance Maps (Sanborns) identify this area as the former location of an automotive repair shop.

COCs include ETPH, VOCs, PAHs, and metals.

AOC-6 Former Press Manufacturing Company

Sanborns identify this area as the location of a former press manufacturing company. Historic operations in this area include a foundry, machine shop, and blacksmith.

COCs include VOCs, PAHs, and metals.

AOC-7 Transformer Pads

There are two transformer pads and five transformers currently exist on site, in the southwest corner and south of loading dock B.

COCs include Polychlorinated biphenyls (PCBs).

AOC-8 Southwestern Parking Log

Site records indicate that a release of 150 gallons of diesel fuel occurred on Crown Street and affected the Record-Journal parking lot and a nearby catch basin.

COCs include ETPH, VOCs, and PAHs.

Section 4 Hydrogeology

4.1 Geology

According to the Natural Resources Conservation Service (NRCS) Web Soil Survey (WSS) data for the State of Connecticut (NRCS Webpage, 2009), the site is identified as containing Udorthents-Urban land soils. Urban land soils is defined by NRCS as land mostly covered by streets, parking lots, buildings, and other structures of urban areas. Udorthents soils are defined as land that has had the original cover removed and replaced with fill material.

According to the *Surficial Materials Map of Connecticut* (United States Geological Survey/Department of Environmental Protection, Connecticut Geological and Natural History Survey, 1992), and CTDEEP Geographic Information Systems (GIS) surficial materials data, soils beneath the site are classified as sands and gravel in individual or alternating beds. Layers are well to poorly sorted; bedding may be distorted and faulted due to post-depositional collapse.

These descriptions are consistent with observations made during the conduct of the Phase II investigation. In addition, fill material, consisting of primarily sand with some asphalt, and brick was identified across the site to depths of 0-6 feet below ground surface (bgs). The brick and asphalt are likely remnants of the former on-site buildings that were historically demolished.

According to the *Bedrock Geologic Map of Connecticut* (U.S. Geological Survey, 1985), and CTDEEP Geology GIS data, the site is located within the New Haven Arkose formation. Specifically, the site is underlain by a reddish, poorly sorted arkose. Refusal was encountered between 2 and 12 feet across the site, rock fragments encountered during refusal were inferred to be bedrock. Rock fragments encountered were observed to be Arkose.

4.2 Groundwater

According to the 1984 USGS Meriden Quadrangle Topographic Map, the elevation of the site is approximately 130 to 150 feet above sea level. The contours found on the topographic map indicate the elevation slopes in a north-northwesterly direction. Groundwater flow direction is also inferred to be in a north-northwesterly direction. Harbor Brook runs through an underground culvert approximately 200 feet west of the site which could have an impact on groundwater flow at the site.

Groundwater at the site is classified as GB by the CTDEEP. Designated uses include industrial process water and cooling waters and baseflow for hydraulically connected surface water bodies. GB classified groundwater is presumed not suitable for human consumption without treatment.

Groundwater was not encountered in the overburden during the previous Phase II ESA drilling activities. During the Phase III drilling activities groundwater was encountered between 8 feet and 14 feet below ground surface and in the bedrock in the two western bedrock wells. Groundwater was not encountered in MW-3 in the southeastern parking lot.

Section 5 Previous Investigations

Tighe & Bond completed a phase II ESA at the site as detailed in a report dated November 2013. As part of the Phase II ESA, Tighe & Bond reviewed information presented in Phase I Environmental Site Assessment report provided by Lenard Engineering Inc dated June 2013. Information from the Phase I and II ESAs have been incorporated into the Conceptual Site Model presented in Section 11.

The following is a summary of the Phase II ESA findings:

- Significant releases of COCs to the environment as a result of former chemical storage and the printing press located in the northern portion of the building (AOC-1) were not identified. Fill material was identified beneath the building slab in these areas and is likely the reason for elevated concentrations of lead.
- The condition of soils beneath the southern and central portions of the building (AOC-2) were not able to be evaluated during the Phase II ESA due to thickness of the concrete slab.
- Significant releases related to chemical or petroleum releases were not identified at loading dock A or B (AOC-3 & AOC-4). However, fill material at least 1 to 2 feet thick was identified at these locations.
- Significant releases related to the former automotive repair shop (AOC-5) were not identified during site activities. However, fill material was identified up to 9 feet below the surface, resulting in elevated COCs.
- Significant releases related to the former Press Manufacturing Company (AOC-6) were not identified. However, fill material, with elevated concentrations of lead, was identified in one boring above RSR criteria.
- No significant releases were identified due to possible leaking transformers (AOC-7).
- Elevated concentrations of COCs above RSR criteria were reported in the southeastern parking lot (AOC-8) in an area where a documented release occurred. Based on reanalysis and observation of the sample by the laboratory and field observations it is likely that the elevated concentrations of COCs are due to fill material and not related to a release.

Based on these findings of the Phase II ESA Tighe & Bond recommended that a Phase III ESA be completed to delineate the vertical and horizontal extent of impacted soil and to close data gaps.

Section 6 Field Investigations

The following sections describe the field investigations completed by Tighe & Bond for the Phase III ESA. Field work and laboratory analysis performed by Tighe & Bond was conducted in accordance with the proposal dated January 28, 2014.

6.1 Well Installation and Soil Sampling

On February 20 and 21, 2014 Tighe & Bond observed the advancement of nine soil borings (B-100 through B-108) using direct push equipment operated by Martin Geo-Environmental (Martin) of Palmer, Massachusetts. The soil borings were advanced in the two western and one southeastern parking lots to depths ranging from two to nine feet below ground surface (bgs). Soils from each boring were field-evaluated in two-foot intervals for the presence of volatile contamination using a photo-ionization detector (PID) calibrated to manufacturers specifications. Visual and olfactory observations were also used to evaluate soils for the presence of fill material and other contaminants. No obvious signs of contamination (i.e. staining or odors) were observed in soils collected from any boring. Boring locations are depicted in Figure 3.

Material encountered consisted of sand, silt and weathered bedrock. Fill material consisting of asphalt and brick fragments was observed at boring B-101 (0-4') and crushed gravel fill was found in borings B-103 (0.3-1.5') and B-106 (0.3-6'). PID readings for the soil samples ranged from 0 parts per million (ppm) to 1.7 ppm (B-100).

Select soil samples were collected for laboratory analysis by Phoenix Environmental Laboratories, Inc. (Phoenix) of Manchester, Connecticut, a Connecticut-certified analytical laboratory using CTDEEP Reasonable Confidence Protocol (RCP) approved methods. Samples were selected from soil borings with a bias towards soils exhibiting evidence of environmental impact (e.g. staining and PID readings) or suspected fill material. Soil samples were analyzed for extractable total petroleum hydrocarbons (ETPH), total and synthetic precipitation leaching procedure (SPLP) polycyclic aromatic hydrocarbons (PAHs), and total and SPLP lead or polychlorinated biphenyls (PCBs).

Additionally, two cores (SS-101 and SS-102) were advanced through the southern and central portions of the building slab. The slab at SS-101 was 12 inches thick and was at least 16 inches thick at SS-102. A soil sample was collected from beneath the slab at SS-101; however, a soil sample could not be collected from SS-102 because the slab was greater than 16 inches and could not be cored through in a reasonable amount of time.

Three bedrock monitoring wells (MW-1 through MW-3) were installed using hollow-stem augers and air-hammer methodology on February 20, 2014. Bedrock was encountered at depths ranging from 4.5 feet bgs in monitoring well MW-3, 10 ft bgs in MW-1, and 14 ft bgs in MW-2. Monitoring wells MW-1 and MW-2 were advanced to 24 and 25 feet bgs, respectively, while MW-3 was completed at 76 ft bgs.

Boring logs and monitoring well completion logs are included in Appendix B. Refer to Figure 3 for the soil boring and monitoring well locations.

6.2 Groundwater Development and Sampling

On February 25, 2014, Tighe & Bond developed the three newly installed monitoring wells. Development was conducted using a surge block and whale pump to remove sediment from the well deposited during drilling activities. Approximately 5 gallons and 55 gallons were purged from MW-1 and MW-2, respectively. During an attempt to develop MW-3, it was discovered that the PVC riser pipe in MW-3 had been broken or dislodged at approximately 20 feet below the ground surface (bgs). Despite multiple attempts to salvage the well, it was determined that the well was damaged beyond repair.

On March 1, 2014, Tighe & Bond sampled bedrock wells MW-1 and MW-2 in general accordance with EPA low-flow sampling methodology. The purged volumes were based on the stabilization of field-measured water quality parameters including dissolved oxygen, specific conductance, temperature, pH, turbidity, and oxidation/reduction potential. These water quality parameters were generally measured at five-minute intervals along with purging rate and depth-to-water. Groundwater samples were collected upon stabilization of the field parameters as indicated by three consecutive readings within acceptable limits. Field data sheets for the groundwater sampling events are provided in Appendix C.

Groundwater samples were collected using appropriate sample containers as specified by the laboratory, immediately stored in an ice filled cooler and delivered to Phoenix Environmental Laboratories, Inc., of Manchester Connecticut (Phoenix) a Connecticut-certified analytical laboratory for analysis of ETPH, PAHs, VOCs, and RCP metals. Laboratory analytical reports are provided in Appendix D.

Section 7 Remediation Criteria

Analytical results reported in this investigation are compared to remediation criteria listed in the CTDEEP RSRs. CTDEEP's intent in developing the RSRs was to define the following:

- Minimum remediation performance standards
- Specific numeric clean-up criteria
- A process for establishing alternative site-specific standards, if warranted

In general, RSR criteria are used to remediate contaminated environmental media (i.e., soils, groundwater, and soil vapor). RSR criteria are not specifically applicable to building interiors and sediment.

The RSRs apply to efforts to remediate contaminated soil, surface water, soil vapors, or a groundwater plume at or emanating from a release area or AOC, provided that the remedial action is required by the following:

- CGS Chapter 445 (Hazardous Waste) or Chapter 446K (Water Pollution Control);
 or
- Relevant subsections of CGS 22a-133 (Voluntary Clean-up) or 22a-134 (Property Transfer) including but not limited, any such action required to be taken or verified by a Licensed Environmental Professional, except as otherwise provided in the regulations.

7.1 Soil Remediation Criteria

The CTDEEP soil remediation criteria integrate two risk-based goals: (1) Direct Exposure Criteria (DEC) to protect human health and the environment from risks associated with direct exposure (ingestion) to contaminated soil; and (2) Pollutant Mobility Criteria (PMC) to protect groundwater quality from contaminants that migrate or leach from the soil to groundwater. Soils to which both criteria apply must be remediated to a level, which is equal to the more stringent criteria.

7.1.1 Direct Exposure Criteria

Specific numeric exposure criteria for a broad range of contaminants in soil have been established by the CTDEEP, based on exposure assumptions relative to incidental ingestion of contaminants in soils. The DEC applies to accessible soil to a depth of 15′. The DEC for substances other than PCBs does not apply to inaccessible soil at a release area provided that, if such inaccessible soil is less than 15′ below the ground surface, an environmental land-use restriction (ELUR) is in effect with respect to the subject release area. Inaccessible soil generally means polluted soil, which is the following:

- More than 4' below the ground surface
- More than 2' below a paved surface comprised of a minimum of three inches of bituminous pavement or concrete
- Beneath 3" of a paved surface if it is fill polluted with semi-volatile organic compounds or ETPH; or metals not in excess of twice the applicable DEC
- Beneath an existing building

Beneath another permanent structure(s) approved by the CTDEEP Commissioner.
 Buildings can be constructed and/or clean fill can be placed over contaminated soils rendering them inaccessible

The CTDEEP has established two sets of DEC using exposure assumptions appropriate for residential land use (RES DEC) or for industrial and certain commercial land use (I/C DEC). In general, all sites are required to be remediated to the residential criteria. If the I/C land use criteria are applicable and used, an ELUR notification is required in accordance with the RSRs.

7.1.2 Pollutant Mobility Criteria

The PMC that will apply to remediation of a site depends on the groundwater classification of the site. The purpose of these criteria is to prevent any contamination to groundwater in GA classified areas, and to prevent unacceptable further degradation to groundwater in GB classified areas. The applicable PMC for the site is the PMC for a GB classified area. The PMC generally apply to all soil in the unsaturated zone, from the ground surface to the seasonal high water table in GB classified areas. The criteria do not apply to environmentally isolated soils that are polluted with substances other than VOCs provided that an ELUR is recorded for the release area which ensures that such soils will not be exposed (unless approved in writing by the CTDEEP Commissioner). Environmentally isolated soils are defined as certain contaminated soils, which are above the seasonal low water table, beneath an existing building and not a source of ongoing contamination. An ELUR must be recorded for the site, which ensures that such soils will not be exposed as a result of building demolition or other activities. Buildings can be constructed over contaminated soils rendering them environmentally isolated.

The site is located in a GB classified area. Remediation based upon the listed PMC requires that a substance, other than an inorganic substance or PCB, in soil be remediated to at least that concentration at which the results of a mass analysis of soil for such substances does not exceed the PMC applicable to the groundwater classification (i.e., GA or GB) of the area in which the soil is located. An inorganic substance (metals) or PCBs in soil must be remediated to at least that concentration at which the analytical results of leachate produced from either the Toxicity Characteristic Leaching Procedure (TCLP) or the Synthetic Precipitation Leaching Procedure (SPLP) does not exceed the PMC applicable to the groundwater classification of the area in which the soil is located.

According to CGS 22a-133k-2(c)(2)(D), impacted soils above the seasonal high water table in a GB area may alternatively be remediated to a level at which the results of a SPLP analysis do not exceed the groundwater protection criterion (GWPC) for any such substance 1) multiplied by 10, 2) multiplied by the ratio of the areas downgradient and upgradient of the release area to the release area, provided that the ratio does not exceed 500, or 3) multiplied by an alternative factor approved by the Commissioner of the CTDEEP.

Based on site specific conditions, certain impacted soils will be compared to ten times the appropriate GWPC using SPLP analysis.

7.2 Groundwater Remediation Criteria

Groundwater remediation requirements are dependent upon the groundwater classification of the site. The objectives of these standards are the following:

• Protect and preserve groundwater in GA areas as a natural resource

- Protect existing use of groundwater regardless of the area's groundwater classification
- Prevent further degradation of groundwater quality
- Prevent degradation of surface water from discharges of contaminated groundwater
- Protect human health

Portions of the RSRs governing groundwater regulate remediation of groundwater based on each substance present in plume and by each distinct plume of contamination. Several factors influence the remediation goal at a given site, including background water quality, groundwater classification, proximity of nearby surface water, existing groundwater uses, and existing buildings and their use. When assessing general groundwater remediation requirements, all of these factors must be considered in conjunction with the major numeric components of the RSRs.

The site is situated within a GB classified area by the CTDEEP. Therefore, Surface Water Protection Criteria (SWPC) and Volatilization Criteria (VC) would apply to the site

7.2.1 Surface Water Protection Criteria

The SWPC applies to all groundwater, which discharges to surface water, therefore the SWPC will apply to the site. The SWPC ensure the groundwater contamination resulting from on-site sources, which exceed background, is remediated to levels that adequately protect surface water quality. In general, compliance with the SWPC is achieved when the average concentration of a compound in groundwater emanating from a site is equal to or less than the SWPC established by the CTDEEP or an alternative SWPC established in accordance with the RSRs.

7.2.2 Volatilization Criteria

The GWVC apply to all groundwater contaminated with a VOC within 15 feet of the ground surface or a building. According to the regulations, the VOC of concern will be remediated to a concentration that is equal to or less than the applicable residential volatilization criterion for groundwater. If groundwater contaminated with a VOC is below a building used solely for industrial or commercial activity, groundwater may be remediated such that the concentration of the substance is equal to or less than the applicable I/C GWVC in lieu of the RES GWVC for groundwater, provided that an ELUR is in effect with respect to the parcel (or portion of the parcel covered by the building). The ELUR must also ensure that the parcel (or portion thereof beneath the building) will not be used for any residential purpose in the future and that future use is limited to industrial or commercial activity.

Section 8 Results of Investigation

8.1 Soil Analytical Results

Tighe & Bond observed the advancement of 9 soil borings and two sub-slab cores during the Phase III ESA investigations. The borings were advanced at AOCs 2, 4, 6 and 8. A total of 9 soil samples were collected for laboratory analysis of one or more of the following COCs: ETPH, total and SPLP PAHs, and total and SPLP lead. Soil analytical results compared to applicable RSR criteria are summarized in Table 2 (Appendix E) and are discussed below.

Soil sample locations with reported concentrations of COCs above applicable RSR criteria are shown on Figure 4 (Appendix A).

8.1.1 AOC-2 Southern and Central Portion of Building

Two sub-slab cores were advanced through the floor in the central and southern portion of the building. A soil sample was collected from beneath the slab at SS-101, located in the former paper storage room and was submitted for laboratory analysis of ETPH. Laboratory analytical results indicated that ETPH was not detected above laboratory reporting limits.

A soil sample was not collected from SS-102 because it was advanced into the slab 14 inches without reaching soil or bedrock. Bedrock was encountered at SS-101 approximately 2 inches below the bottom of the slab; therefore, It is assumed that the former pressroom was constructed directly on top of bedrock and the slab is thicker than 14 inches.

8.1.2 AOC-5 Former Automotive Repair Shop

Three borings (B-100, B-101, and B-106) advanced within AOC-5 during the Phase III ESA investigation. A soil sample was collected from each boring and were submitted for laboratory analysis of total and SPLP PAHs and total and SPLP lead.

Laboratory analytical results indicated that total PAHs were not detected above laboratory reporting limits in B-100 (0-2') and B-101(0-2'). Total PAHs were, however, detected in B-106 (6-7.5') at concentrations ranging from 0.37 milligrams per kilogram (mg/Kg) to 9.6 mg/Kg. Benz(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, and Benzo(k)fluoranthene were detected above at least one applicable RSR criteria.

SPLP PAHs were detected in all three samples from 0.02 micrograms per liter (μ g/L) to 0.68 μ g/L. No detections of SPLP PAHs were above 10 times the groundwater protection criteria (GWPC). As mentioned in Section 7.1.2, impacted soils in a GB area may remediated to a level at which the results of SPLP analysis do not exceed the GWPC for any such substance multiplied by 10.

Total lead was detected in all three soil samples collected from this area , while the concentrations detected at B-106 and B-101 were below the direct exposure criteria (DEC), total lead was reported in B-100 (0-2') at a concentration of 7,070 mg/Kg, which is above the residential and industrial/commercial DEC.

SPLP lead was detected in B-106 (6-7.5') at 0.036 μ g/L, which is below the GB pollutant mobility criteria (GB PMC). SPLP lead was not detected above laboratory reporting limits in the other two samples collected from this AOC.

8.1.3 AOC-6 Former Press Manufacturing Company

During the Phase III ESA investigation, two soil borings (B-104 and B-105) were advanced in this AOC. Two soil samples (B-104 (0-2.5') and B-105 (0-2')) were collected and submitted to the laboratory for analysis of total and SPLP lead. Both samples had detections of total lead that were well below the DEC, while neither had detections of SPLP lead above laboratory reporting limits.

8.1.4 AOC-8 Southeastern Parking Lot

Four soil borings were advanced in this AOC and one soil sample was collected from each of the boring (B-102 (0-2'), B-103 (0-1.5), B-107 (0-2'), and B-108 (0-2')). Soil sample B-108 (0-2') was broken during courier transport to the lab and could not be salvaged for analysis. The three remaining soil samples were submitted to the laboratory for analysis of ETPH and total and SPLP PAHs.

It was reported that ETPH and total PAHs were not detected above laboratory reporting limits, except fluoranthene was detected at 0.28 mg/Kg in B-103 (0-1.5'). SPLP PAHs were detected in all three samples ranging from 0.02 to 0.68 μ g/I, which is below 10 times the GWPC.

8.2 Groundwater Analytical Results

Groundwater samples were collected from MW-1 and MW-2 for laboratory analysis of the following constituents: volatile organic compounds (VOCs), PAHs, ETPH, and reasonable confidence protocol (RCP) metals. Groundwater analytical results are summarized below and in Table 3 by constituent of concern and compared to:

- RES GWVC
- I/C GWVC
- SWPC

8.2.1 VOCs

Concentrations of VOCs were not reported at concentrations above laboratory reporting limits in groundwater samples.

8.2.2 PAHs

Concentrations of PAHs were not reported at concentrations above laboratory reporting limits in groundwater samples.

8.2.3 ETPH

Concentrations of ETPH were not reported at concentrations above laboratory reporting limits in groundwater samples.

8.2.4 Metals

Barium was detected in MW-1 and MW-2 at concentrations ranging from 450 μ g/L to 539 μ g/L. It is noted that there is no applicable RSR criterion established for barium. Nickel and zinc were detected in MW-1 at concentrations well below SWPC.

Section 9 Quality Assurance / Quality Control

The Quality Assurance/Quality Control (QA/QC) procedures for field work and laboratory analyses during the Phase III ESA were evaluated as part a Data Quality Assessment/Data Usability Evaluation (DQA/DUE) that was conducted during the preparation of this Phase III ESA report. The following CTDEEP Guidance Documents were used in this evaluation:

- Laboratory Quality Assurance and Quality Control, Reasonable Confidence Protocols Guidance Document, November 2007
- Laboratory Quality Assurance and Quality Control, Data Quality Assessment and Data Usability Evaluation Guidance Document (May 2009, Revised December 2010)
- Quality Assurance and Quality Control Requirements for various analytical methods

Based on the review of soil and groundwater analytical results, and on the review of the laboratory QA/QC results, the data was determined to be analytically usable for the purpose of the report. A detailed summary of the results of the QA/QC evaluation and DQA/DUE for field work and laboratory analyses are provided in Appendix F.

Section 10 Conceptual Site Model

A conceptual site model (CSM) is a representation of an environmental system at a site that is used as a tool to identify releases, pathways of migrations, potential receptors, and ultimately risk. The CSM is used to develop work plans and provide a framework to address issues that arise during the investigation of a site. The CSM is refined throughout the site characterization process as new data are acquired. The final CSM will fully define the environmental system at a site and validate the hypotheses regarding the environmental fate of released contaminants. A summary of the CSM is included as Table 4.

The CSM includes the following:

- Description of the site, environments, and AOCs
- Nature and extent of contaminants
- Potential release mechanisms for such contaminants
- Evaluation of migration pathways and locations at which environmental media are most likely to have been impacted by a release
- Identification of AOCs at which releases have occurred as well as AOCs at which
 no releases have occurred
- Data and rationale to support the conclusion

10.1 Description of Site, Environments, and AOCs

A description of the site, history, and operations as derived from previous reports is provided in Section 3. A description of site hydrogeology is provided in Section 4.

10.2 Nature and Extent of Contamination

The following summarizes the COCs reported above applicable RSR criteria during the previous Phase II ESA.

- AOC-5 Former Automotive Repair Shop— Elevated concentrations of PAHs were identified in this AOC between four and six feet bgs.
- AOC-6 Former Print Manufacturing Area An elevated concentration of lead were identified in this AOC between zero to two feet bgs.
- AOC-8 Southeastern Parking Lot Elevated concentrations of PAHs and ETPH were identified in this AOC between zero and two feet bgs.

A Phase III ESA was performed to determine the extent of fill materials identified during the Phase II ESA and determine if a release had occurred in AOC 2, the central and southern portion of the building. The extent of impacted soils have been delineated horizontally and vertically within the property lines of the site in accordance with the CTDEEP SCGD. Results of the Phase III ESA soil sampling are discussed in Section 8 and presented in Tables 1 and 2.

Results of groundwater monitoring conducted during the Phase III ESAs indicate that concentrations of VOCs, PAHs, ETPH and RCP metals are below applicable RSR criteria. Groundwater impacts have not been detected at concentrations above applicable RSRs. Results of the Phase III ESA groundwater sampling are discussed in Section 8 and presented in Table 3.

10.3 Potential Release Mechanisms

The potential release mechanisms for each AOC are identified below. Potential release mechanisms fall into two general types depending on the source. The first potential release mechanism is a release directly onto the ground, asphalt or building slab. Releases onto asphalt or building slabs can migrate through cracks over time. The second potential release mechanism is current or historical deposition of polluted fill material directly onto the surface. Polluted fill material could currently be underneath buildings, parking lots, or other areas of the site.

10.4 Migration Pathways

Potential migration pathways for each AOC are identified below. The migration pathway or transport mechanisms fall into two general types depending upon the sources. The first migration pathway consists of spills, leaks or deposition at or below the ground surface with vertical migration to the water table within the bedrock, then horizontally with groundwater. The second migration pathway is contaminant transport through overland flow at the ground surface.

10.5 Phase III ESA Findings

The findings of the Phase III ESA are provided below by AOC along with a discussion of the data relative to the final CSM. A summary of well completion data is provided in the boring logs included as Appendix B. A summary of soil data collected during the Phase II and Phase III ESAs is provided in Table 1 and Table 2, respectively. A summary of groundwater analytical data from the Phase III ESA is provided in Table 3.

AOC-1 Northern Portion of the building

A small parking garage and boiler room are located in the northern portion of the building. During the Phase II ESA two sub-slab soil samples (SS-1 and SS-2) were collected in AOC-1. Visual/olfactory evidence of a release of COCs in the form of soil staining and/or odors was not observed and there were no PID readings above background (0.0 parts per million (ppm)) in the soil samples screened. Samples were taken directly beneath the slab and submitted for laboratory analysis for ETPH, PAHs, and RCP Metals.

The two samples did not have detections above applicable RSR criteria. Low levels of PAHs were detected beneath the boiler room. Lead detected in these borings is elevated above naturally occurring conditions, but not in exceedance of RSR criteria. The sub-slab material consisted of fine sand with what appeared to be small pieces of brick and concrete. It is likely that fill material beneath the building is the source of elevated PAHs and lead.

Based upon this information, it does not appear that a release to soil has occurred within this AOC and no further investigation or remediation is warranted.

AOC-2 Central and Southern Portion of the Building

The central and southern portions of the building are currently used for storage of unused chemicals and oils. Formerly, these areas contained the paper storage room, the pressroom, a 3,000-gallon ink tank, and likely stored hazardous chemical wastes. Wastes identified include waste ink mixture that may have contained methylene chloride, benzene, and xylene. No investigations were conducted at this AOC during the Phase II ESA due to the concrete slab being greater than 8 inches thick. The lack of investigation was considered a data gap.

During the Phase III ESA a 12 inch core was drilled through the central portion of the building and a sample SS-101 was submitted to the laboratory for analysis of ETPH. A second core (SS-102) was attempted in the former pressroom; however, the slab was greater than 14 inches thick. Based on depth to bedrock around that site it is likely that the pressroom was constructed directly on top of bedrock.

Visual/olfactory evidence of a release of COCs in the form of soil staining and/or odors was not observed and there were no PID readings above background (0.0 ppm) in the soil sample screened. The sample (SS-101) collected from the central portion of the building was not reported as having ETPH above laboratory reporting limits.

No COCs were detected above applicable RSR criteria in the samples collected from two down gradient monitoring wells (MW-1 and MW-2). This data suggests that a release did not occur at this AOC.

At this time, it appears that remediation is not warranted. However, the investigation was limited due to the thickness of the concrete slab. If the building is demolished, additional evaluation of subsurface conditions should be conducted to confirm that releases of COCs have not occurred.

AOC-3 Loading Dock A

This loading dock is located along the southern side of the building and it was reported that hazardous chemicals were likely delivered to and/or removed from this area. Two borings (B-1 and B-2) were advanced near loading dock A during the Phase II ESA. Bedrock was encountered between 2 and 11 feet below the ground surface. Visual/olfactory evidence of a release of COCs in the form of soil staining and/or odors was not observed and there were no PID readings above background (0.0 ppm) in the soil samples screened. Materials encountered were red sand, silt, and rock fragments.

Two samples (B-1 (0-2') and B-2 (4-6')) were collected and submitted to the laboratory for analysis of ETPH, PAHs, and RCP Metals. ETPH and PAHs were not detected above laboratory reporting limits. Metals were not detected above background levels or applicable RSR criteria.

Based on these findings no further investigation or remediation is warranted.

AOC-4 Loading Dock B

This loading dock is located along the western side of the former paper storage room. Reportedly, hazardous chemicals were likely delivered to and/or removed from this area. During the Phase II ESA one boring (B-9) was advanced to approximately 7 feet below ground surface. Visual/olfactory evidence of a release of COCs in the form of soil staining and/or odors was not observed and there were no PID readings above

background (0.0 ppm) in the soil sample screened. Crushed gravel was encountered to 6 feet bgs and it was likely added during development of the Record-Journal building. Fill material was also encountered between 6 and 7 feet bgs.

The sample (B-9 (6-7')) was submitted to the laboratory for total RCP metals, ETPH, and total PAHs. There were no detections of PAHs or ETPH. Detected metals are within naturally occurring concentrations.

Based on these findings no further investigation or remediation is warranted.

AOC-5 Former Automotive Repair Shop

An automotive repair shop formerly existed in the northwestern portion of the site. Visual/olfactory evidence of a release of COCs in the form of soil staining and/or odors was not observed, PID readings ranged from 0.0 ppm to 3.8 ppm in the soil samples screened. Fill material including bricks and asphalt were observed in the top 8 feet of the borings advanced in this area. Four samples (B-3 (4-6'), B-8(4.5-5.5'), B-100(0-2') and B-101 (0-2')) in this area were submitted to the laboratory for analysis. The samples collected during the Phase II were submitted for analysis of total RCP metals, ETPH, VOCs, and PAHs. The samples collected during the Phase III ESA were submitted for total and SPLP lead and total and SPLP PAHs.

Acetone was the only VOC detected above laboratory reporting limits, but was well below applicable RSR criteria. Three samples (B-3 (4-6'), B-8 (4.5-5.5), and B-106 (6-7.5')) had detections of total PAHs above laboratory reporting limits. PAH detections were reported above RES DEC, I/C DEC, or GB PMC in these three borings. Low level SPLP PAHs were detected in three of the borings, they were well below applicable RSR criteria. Soil sample B-100 (0-2') had a detection of total lead above RES DEC and I/C DEC, SPLP lead was not detected above laboratory reporting limits. ETPH was also not detected above laboratory reporting limits.

It is likely that these elevated concentrations of PAHs and lead are indicative of a fill material located between zero and six feet below ground surface and not of a significant release from the automotive repair facility historically located in this area.

Site-wide fill material is discussed in AOC-9.

AOC-6 Former Press Manufacturing Company

Historical Sanborn Fire Insurance Maps (Sanborns) indicate that the western portion of the site was formerly a press manufacturing company. As part of the Phase II and III ESAs four soil samples (B-4 (0-2'), B-7 (0-10"), B-104 (0-2.5'), and B-105 (0-2')) were collected from this AOC. Visual/olfactory evidence of a release of COCs in the form of soil staining and/or odors was not observed and there were no PID readings above background (0.2 ppm) in the soil samples screened. Samples collected during the Phase II ESA were submitted to the laboratory for analysis of ETPH, RCP metals, and PAHs. Samples collected during the Phase III ESA were submitted for total and SPLP lead.

Soil samples B-4 (0-2') and B-7 (0-10") were reported not have detections of ETPH or PAHs. Soil boring B-4 (0-2') had a detection of total lead above RES DEC and I/C DEC. SPLP lead was not detected above laboratory reporting limits. Fill material observed in B-4 was similar to fill observed in B-100; therefore, it is likely that the elevated lead concentration is indicative of the same fill material and not of a significant release from the manufacturing facility historically located in this area.

Site-wide fill material is discussed in AOC-9.

AOC-7 Transformers

Five transformers exist in two locations on the site, south of loading dock B (two transformers) and the southwestern corner of the site (three transformers). During the Phase II ESA no labels were observed on the transformer indicating PCB concentrations. No evidence of release from these transformers were observed.

Two hand borings, identified as B-5 and B-6 were completed around the former transformer pads. Visual/olfactory evidence of a release of COCs in the form of soil staining and/or odors was not observed and there were no PID readings above background (0.0 ppm) in the soil sample screened. The soil samples, collected from zero to 0.5 feet bgs, were submitted to the laboratory for analysis for the presence of PCBs and were not detected at concentrations above the laboratory detection limits in the soil sample analyzed.

Based upon this information, it does not appear that a release to soil has occurred within this AOC and no further investigation or remediation is warranted.

AOC-8 Southeastern Parking Lot

According to the Phase I ESA, a release of 150 gallons of diesel fuel occurred on Crown Street. The report listed the release as affecting a drainage basin on Crown Street and the Record-Journal parking lot. The report stated the drainage basin was cleaned out but did not list any action taken on the Record-Journal parking lot.

During the Phase II ESA one soil boring (B-10) was advanced within the southeastern parking lot along Crown Street. The sample was submitted to the laboratory for analysis of PAHs, ETPH, and total RCP metals. The sample was reported as having concentrations of Benz(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, and Pyrene above at least one RSR criterion. Benzo(a)pyrene was reported at 32 mg/Kg, above the Significant Environmental Hazard Notification (SEHN) threshold concentration of 30 mg/Kg. The laboratory reported significant amounts of fine soft black material, inferred to be asphalt, present in the sample. Re-analysis of the sample reported concentration of Benzo(a)pyrene to be 13 mg/Kg, below the SEHN reportable concentration. Since this sample was taken at the 0-2 feet interval, it is likely that the concentrations of PAHs and ETPH in soil boring B-10 are due to fill material beneath the parking lot and not the reported release of diesel.

During the Phase III ESA four additional borings were advanced around B-10 to confirm the detection of PAHs and delineate the horizontal and vertical extent of impacted fill. The four soil samples (B-102 (0-2'), B-103 (0-1.5'), B-107 (0-2), and B-108 (0-2')) were collected surrounding the previously advanced soil boring B-10. During courier transport of the samples to the laboratory, B-108 was broken and was unable to be salvaged for analysis. The remaining three samples were submitted for analysis of total and SPLP PAHs and for B-102, ETPH and lead.

ETPH and total PAHs were not detected at concentrations above laboratory detection limits in the soil samples analyzed. SPLP PAHs were detected in B-102, but were significantly lower than applicable RSR criteria. Lead was detected in B-102 below applicable RSR criteria and at levels consistent with background concentrations.

Based on the exceedances only occurring at B-10, it is likely that the exceedances are due to localized fill material and not due to the release that occurred on Crown Street.

Site-wide fill material is discussed in AOC-9.

AOC-9 Site-Wide Fill Material

AOC-9, site-wide fill material, has been defined during this Phase III ESA based on fill material observed in borings throughout the site and similar RSR exceedances overlapping AOCs.

Soil samples B-3 (4-6'), B-8(4.5-5.5') and B-106 (6-7.5') were collected in the northwestern corner of the site and had detections of PAHs exceeding the DEC and/or GB PMC. According to Section 22a-133k-1(c)(2)(D) of the RSRs (amended June 27, 2013) compliance with the GB PMC is achieved when "the results of a TCLP or SPLP analysis of such soil does not exceed the ground-water protection for any such substance (i)(aa) multiplied by 10." In accordance with this definition, the fill material between four and seven feet bgs is in compliance with GB PMC because SPLP analysis was well below 10 times the GWPC. Additionally, this fill material is considered an "inaccessible soil" because it is polluted fill material at least four feet below the ground surface and is below at least three inches of bituminous concrete as defined by section 22a-133k-1(a)(32) of the RSRs (amended June 27, 2013). Based on this definition, the DEC does not apply to this fill material. As such, no further investigation or remediation is warranted for the fill material located in the northwestern corner of the site.

In the southeastern parking lot, fill material was observed in B-10 from zero to two feet bgs and PAHs were detected exceeding DEC and GB PMC. According to Section 22a-133k-1(c)(2)(D) of the RSRs compliance with the GB PMC is achieved when "the results of a TCLP or SPLP analysis of such soil does not exceed the ground-water protection for any such substance (i)(aa) multiplied by 10." Additionally, this fill material is considered an "inaccessible soil" because it is polluted fill material with PAHs that are normal constituents of bituminous concrete and is below at least three inches of bituminous concrete as defined by Section 22a-133k-1(a)(32) of the RSRs. Based on the above, these soils are in compliance with the DEC and GB PMC and no further investigation or remediation is warranted.

Along the western portion of the site two samples collected from zero to two feet bgs from B-4 and B-100 were reported as having total lead in exceedance of DEC. This fill material is located on top of the crushed gravel which was placed on top of the fill material previously mentioned. The RSR definition of "inaccessible soil" also states that soil polluted by metals is not to exceed concentrations two times the applicable DEC. The detection of lead in B-100 is more than two times the I/C DEC; as such, the fill material located between zero and two feet below the ground surface will need to be remediated to bring into compliance with the RSRs.

To use the "inaccessible soil" exemption of the RSRs an Environmental Land Use Restriction (ELUR) would have to be filed on the land records for the site to ensure soils will not be exposed as a result of excavation, demolition, or other activities and pavement is maintained in good condition.

Groundwater Investigation

As part of the Phase III ESA, three bedrock wells, identified as MW-1, MW-2 and MW-3, were installed across the site to assess bedrock groundwater conditions and flow direction. Following installation, it was discovered that MW-3 had been damaged beyond repair and therefore, was not utilized as part of the groundwater investigation. Samples collected from MW-1 and MW-2 were submitted to the laboratory for analysis of ETPH, PAHs, VOCs, and RCP metals. Barium, nickel, and zinc were detected in at least one sample, but below the established SWPC. There were no other detections above laboratory reporting limits.

Based upon this information, it does not appear that a release to bedrock groundwater has occurred and no further investigation or remediation is warranted.

Section 11 Summary and Recommendations

Tighe & Bond has completed this Phase III ESA for the City of Meriden for the site located at 11 Crown Street, Meriden, CT. Nine soil borings and two sub-slab cores were advanced, and three monitoring wells were installed as part of the Phase III investigations. A total of 10 soil samples and two groundwater samples were submitted to the laboratory for analysis of COCs.

11.1 Summary

Soil impacts above RSR criteria were identified at AOCs 5 (Former Automotive Repair Shop), 6 (Former Print Manufacturing Company), and 8 (Southeastern Parking lot) during the Phase II ESA. A Phase III ESA was performed to determine the source, extent and degree of reported impacts. Based on information gathered during the Phase III ESA the source and extent of soil impacts identified at the property have been delineated. No releases to the environment above RSR cleanup criteria were observed as part of this Phase III ESA. Site-wide impacted fill material (AOC-9) was found as having several COCs above RSR cleanup criteria. The following is a summary of impacted fill materials encountered at the site.

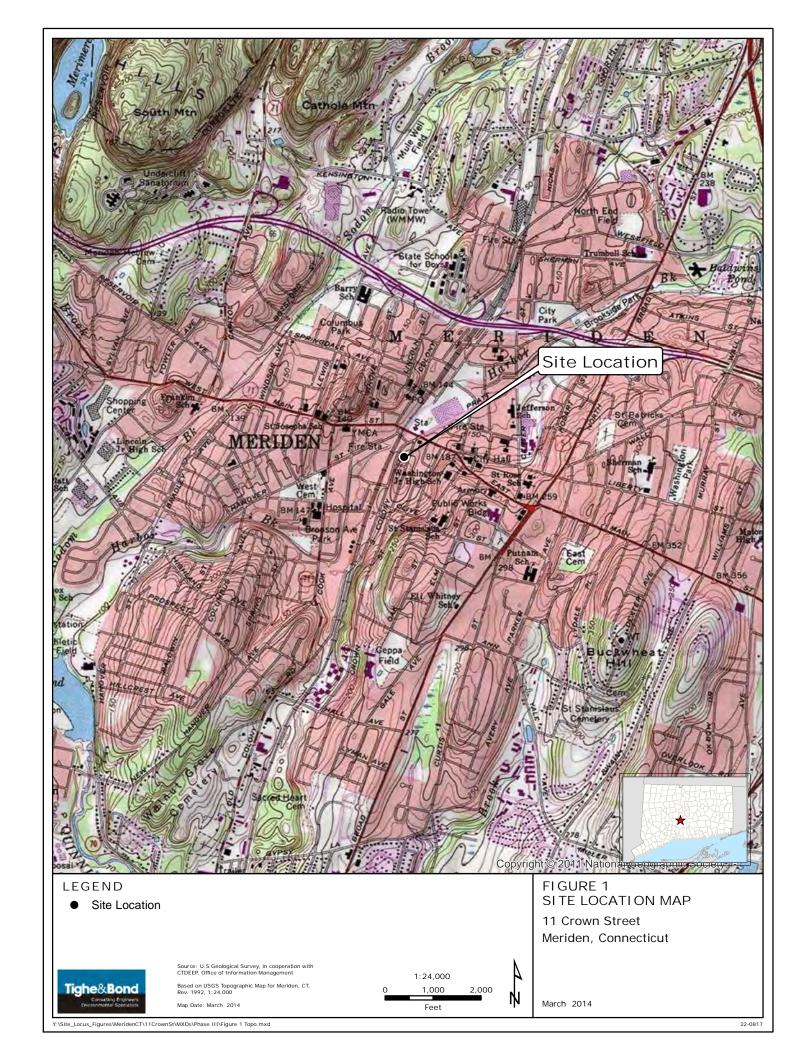
- Impacted fill material observed from four to six feet below ground surface (bgs) in the northwestern portion of the site is the source of polycyclic aromatic hydrocarbons (PAHs). This fill is prevalent throughout the site and would have to be managed during site redevelopment.
 - o Section 22a-133k-1(a)(32) of the Connecticut Remediation Standard Regulations (RSRs) states that the DEC does not apply to "inaccessible soils". The RSRs define such soils as "polluted fill beneath a bituminous concrete or concrete surface comprised of a minimum of three inches of bituminous concrete or concrete if such fill is polluted in excess of applicable direct exposure criteria only by semi-volatile substances or petroleum hydrocarbons that are normal constituents of bituminous concrete, and polluted by metals in concentrations not in excess of two times the applicable DEC."
 - Section 22a-133k-1(c)(2)(D) of the RSRs describes polluted soils in a GB area. Compliance with the GB PMC is achieved when "the results of a SPLP analysis of such soil does not exceed the ground-water protection for any such substance (i)(aa) multiplied by 10."
 - Based on these definitions by the RSRs, compliance with the DEC and GB PMC can be achieved for this fill material. An Environmental Land Use Restriction (ELUR) would have to be filed on the land records for the site to ensure soils will not be exposed as a result of excavation, demolition, or other activities and pavement is maintained in good condition.
- Impacted fill material observed from zero to two feet below ground surface at AOC-8 (southeastern parking lot) is the source of PAH and ETPH exceedances at soil boring B-10. Based on the fact that exceedances were only identified at B-10, it is likely that the exceedances are due to localized fill material and not due to the diesel release that occurred on Crown Street.

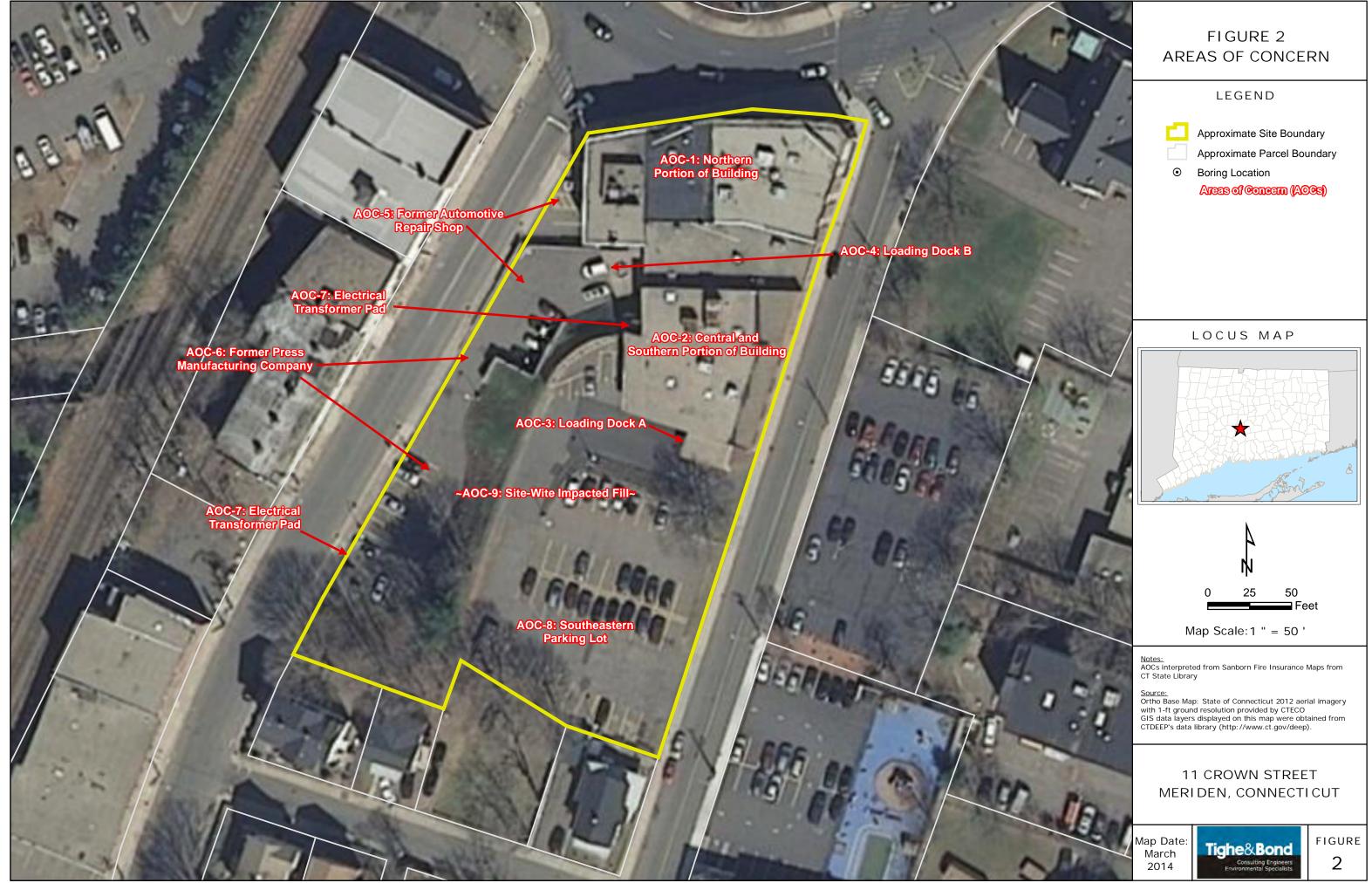
- o Based on the RSR definitions previously mentioned compliance with the DEC and GB PMC can be achieved with the filing of an ELUR and maintaining the pavement in good condition, as such no further investigation or remediation is warranted.
- Shallow impacted fill material observed from zero to two feet bgs along the western portion of the site is the source of two reported lead exceedances.
 - o The impacted fill material has a lead exceedance in access of two times the DEC, and requires remediation to achieve compliance. The impacted area is limited to a portion of the western parking lot; as such it is estimated to only be 150 cubic yards of impacted material.

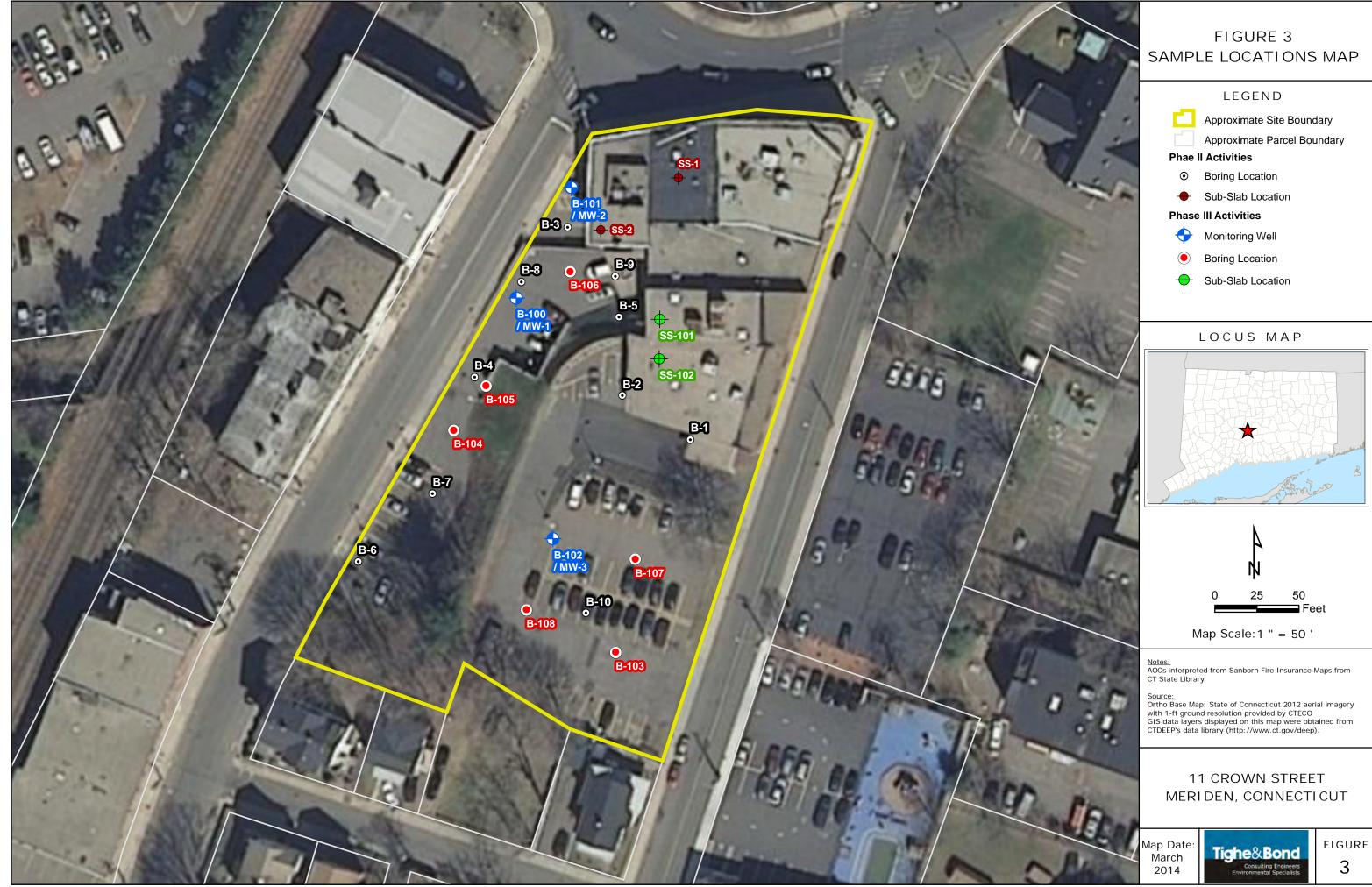
Groundwater at the site was investigated as part of the Phase III investigation. Two wells were installed and sampled along the western portion of the site in order to observe groundwater in the perceived down gradient direction from the site.

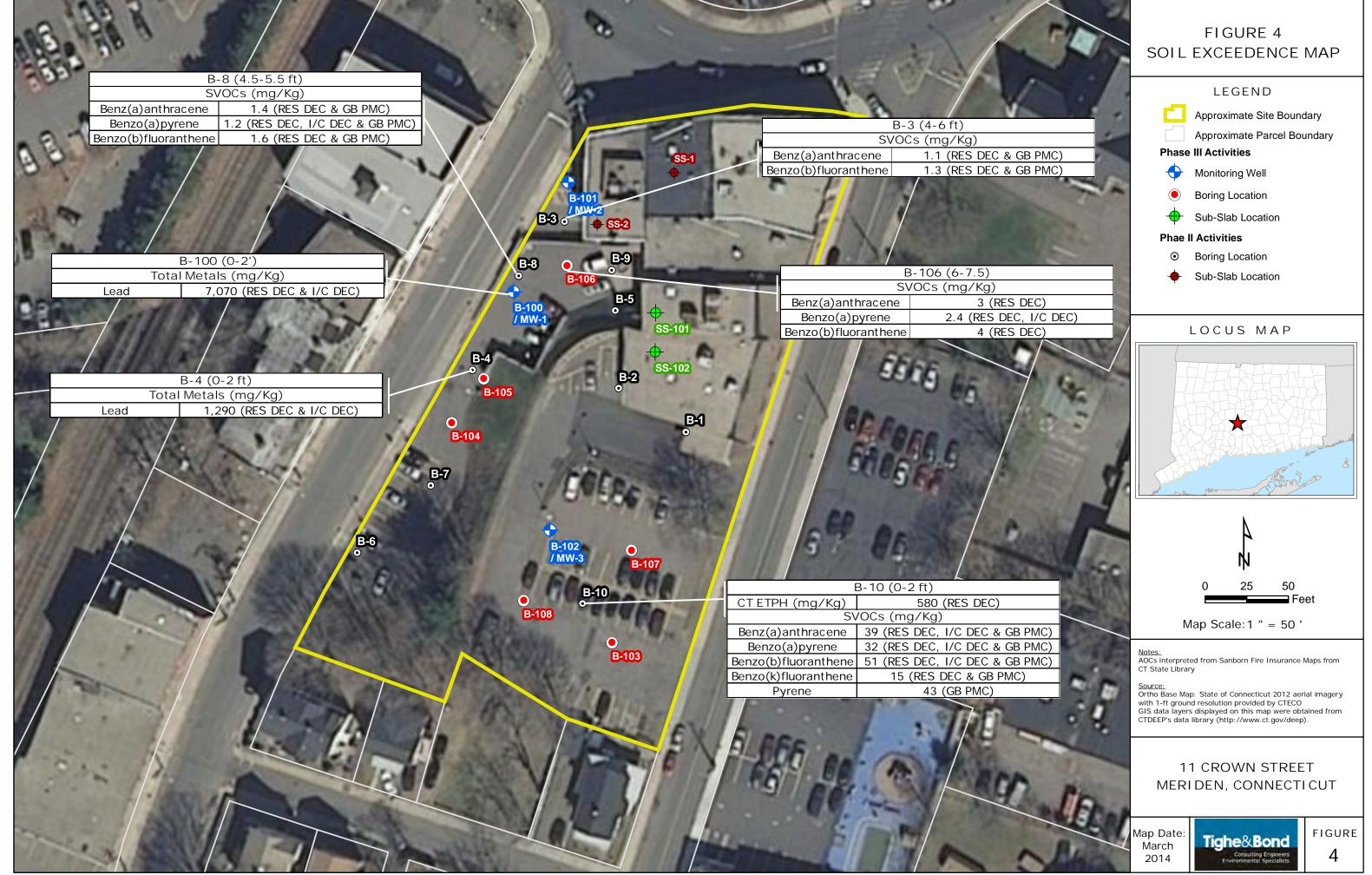
 Barium, nickel and zinc were detected below the established SWPC in at least one groundwater sample. There were no other detections above laboratory reporting limits. Based upon this information, it does not appear that a release to bedrock groundwater has occurred and no further investigation or remediation is warranted.

11.2 Recommendations


In order to further assess and remediate the environmental impacts at the site, we recommend the following actions:


- Preparation of a Remedial Action Plan (RAP) to address the fill materials across the site and lead-impacted soils (approximately 150 cubic yards) in the western parking lot in the vicinity of B-4.
- Lead-impacted soils in the western parking lot in the vicinity of B-4 should be excavated and disposed of as remediation waste if the building will be reused. If the building will be demolished, the soils can be relocated and capped with future buildings as part of site redevelopment.
- Preparation of Remedial Design and Technical Specifications for the excavation of lead-impacted soils and bidding including four additional borings to further delineate the extent of lead-impacted soils. Approximate Cost: \$10,000.
- Following completion of the remedial action, at least one year of quarterly monitoring is required before site closure can be achieved. Two additional monitoring wells will likely be required to provide coverage of the excavation area. Approximate Cost: \$15,000 for one year of quarterly monitoring and two monitoring wells.
- Preparation of the Completion of Investigation Form and LEP Verification Report once the site investigation and remediation have been completed. This is a requirement of the Property Transfer Program. Approximate Cost: \$12,000.


An Opinion of Probable Cost for excavation of disposal of lead-impacted soil in the western parking lot in the vicinity of B-4 is approximately \$30,000 to \$50,000 for on-site remediation only. If impact extends off site and remediation is required, costs will be higher.


J:\M\M0817 Meriden Brownfields\11 Crown St\Phase III ESA\Phase III Report.doc

Consulting Engineers Middletown, Connecticut

Record Journal Project:

11 Crown Street, Meriden, Connecticut Location: Client:

City of Meriden

Boring No. B-100/MW-1 Page 1 of 1 File No. M-0817 Checked by: SKW

Drilling Co.:	Martin Geo-Envir	ronment	al		Casing	Sampler		G	roundwater	Readings	
Foreman:	Doug Godard			Туре	HSA	Split Spoon	Date	Time	Depth	Casing	Sta. Time
T&B Rep.:	JLL			I.D./O.D.	3 1/4 X 6 1/2	1 1/2 X 2			S	See Note 2	
Date Start:	02/20/14	End:	02/20/14	Hammer Wt.	140		3/1/2014	13:00	14.92		
Location	See Site Plan			Hammer Fall	30						
GS. Elev.	Datum:			Other							

		_								-
Depth	PID	Sample No.	Sampl	e Depth ft.)	Sample Description	General Stratigraphy	N o t e	Well Construction		
(ft.)	PPM	Rec. (in)					s			
	-		0	0.25	Black ASPHALT	ASPHALT				
	1.7	1 / 14	0.25	1.5	Black, medium to coarse SAND and GRAVEL, some Silt, dry	SAND AND GRAVEL				NAT
										IVE
	0.0		1.5	2	Grey 1/4" GRAVEL, dry					₽
5	0.0	-	2	10	Grey 1/4" GRAVEL, some red Bedrock fragments, dry		2			NATIVE FILL AND #2 SAND
					magnients, dry			2		#2 S/
						GRAVEL		2" PVC Riser		N N
								Rise		
								¥		GI GI
10										ROUI
10	0.0		10	27	Red BEDROCK, dry to wet at 17 feet		1			BENTONITE AND GROUT SLURRY
										AND
1										
15										
							3	10' ‡		#2
						BEDROCK		10' #10 Slot Screen		#2 SAND
								lot S		D
20								creen		
								_		
25								;	#2 San	d
					End of Exploration at 27 feet					
30										

- Bedrock was encountered at approximately 10 feet below ground surface.
 Drill cuttings were observed from 2 feet to 27 feet.
 Groundwater was encountered at approximately 17 feet below ground surface.

Consulting Engineers Middletown, Connecticut

Record Journal Project:

11 Crown Street, Meriden, Connecticut Location: Client:

City of Meriden

Boring No. B-101 / MW-2 Page of 1 File No. M-0817 Checked by: SKW

Drilling Co.:	Martin Geo-Envir	ronment	al		Casing	Sampler		Gı	roundwater	Readings	
Foreman:	Doug Godard			Туре	HSA	Split Spoon	Date	Time	Depth	Casing	Sta. Time
T&B Rep.:	JLL			I.D./O.D.	3 1/4 X 6 1/2	1 1/2 X 2			5	See Note 1	
Date Start:	02/20/14	End:	02/20/14	Hammer Wt.	140		3/1/2014	11:00	10.22		
Location	See Site Plan			Hammer Fall	30						
GS. Elev.	Datum:			Other					,		

GS. Ele\	/. 	Datum:			Other							
Depth	PID PPM	Sample No.	Sampl (le Depth ft.)	Sample Description	(General Stratigraphy		N o t e s	Well	Constr	uction
(ft.)		Rec. (in)	0	0.0	Disak ACDUAL T		ASPHALT		ŭ			
-	-		0	0.3	Black ASPHALT Black to Red, FILL MATERIAL, brick, coal		ASPI	1AL I				
	0.4	1 / 22	0.3	4	ash, and construction debris, dry		FILL MA	TERIAL				
												NATI
5	1.3		4	9.5	Black to Red at bottom, fine to coarse SAN some Gravel, little Silt, brick to 5 feet, dry	ND,			2			/E FIL
					,			ND				NATIVE FILL AND #2 SAND
-							SA	ND		2		#2 SA
										2" PVC Riser		D
10	0.0		9.5	14	Highly weathered red BEDROCK, dry to we at 12 feet	/et			liser			
							WEATI					
-							BEDF	ЮСК	1			BEN1 GRO
											BENTONITE AND GROUT SLURRY	
15	-		14	25	Red BEDROCK, wet			3			E AND URRY	
-												
									ŀ			
20							BEDF	ROCK		7' #10		#2 \$
										7' #10 Slot Screen		#2 SAND
										creen		
25					End of Exploration at 25 feet	_			ŀ			
					End of Exploration at 20 100t							
30												

Notes:

- Groundwater was encountered at approximately 12 feet below ground surface
 Drill cuttings were observed from 2 feet to 25 feet.
 Bedrock was encountered at approximately 14 feet below ground surface

Record Journal Project:

11 Crown Street, Meriden, Connecticut Location: Client:

City of Meriden

Boring No. B-102 / MW-3 Page 1 of 3 File No. M-0817 SKW Checked by:

Drilling Co.:	Martin Geo-Envi	ronment	tal		Casing	Sampler		Readings			
Foreman:	Doug Godard			Туре	HSA	Split Spoon	Date	Time	Depth	Casing	Sta. Time
T&B Rep.:	JLL			I.D./O.D.	3 1/4 X 6 1/2	1 1/2 X 2			5	See Note 1	
Date Start:	02/20/14	End:	02/20/14	Hammer Wt.	140						
Location	See Site Plan			Hammer Fall	30						
GS. Elev.	Datum:			Other							

Depth (ft.)	PID PPM	Sample No. Rec. (in)	Sampl (le Depth ft.)	Sample Description	General Stratigraphy	N o t e s	W	ell Constr	ruction
(11.)		rtco. (III)	0	0.2	ASPHALT	ASPHALT				
	-			0.3						
	0.0	1 / 22	0.3	2	Red, fine to medium SAND and SILT, some Gravel, dry					
						SAND and SILT				
	0.0	-	2	4.5	Red, fine to medium SAND and SILT, some		2			
•					Gravel, dry					
5		_	4.5	72	Red BEDROCK, dry		3			
	-		4.5	12	1					
10										
}				-						
										BE
										NTO
										Ž
•								2" PVC Riser		BENTONITE AND GROUT SLURRY
15								C R		D GI
}				-				iser		ROU
						DEDDOOK				TS T
						BEDROCK				-UR
										~
•										
20										
-										
25										
					1					
30										
				L		I				

- Groundwater was not encountered during drilling activites
 Drill cuttings were observed from 2 feet to 72 feet.
 Bedrock was encountered at approximately 4.5 feet below ground surface.

Consulting Engineers Worcester, Massachusetts

Notes:

Record Journal Project:

11 Crown Street, Meriden, Connecticut Location:

Client:

City of Meriden

Boring No. B-102 / MW-3 Page 2 of 3 File No.
Checked by: M-0817 SKW

Depth (ft.)	Casing Blows Per Ft.	Sample No.	Sample (ft	e Depth	Sample Description	General Stratigraphy	N o t e s	W	ell Constr	uction
(ft.) 35 40 45	Per Ft.	Rec. (III)			Red BEDROCK, dry	BEDROCK		2" PVC Riser		Bentonite and Grout Slurry
55 60								2" #10 Slot Screen		#2 SAND
65										

Consulting Engineers Westfield, Massachusetts

Notes:

Project:

Record Journal
11 Crown Street, Meriden, Connecticut Location:

City of Meriden Client:

Boring No. B-102 / MW-3

Page 3 of 3

File No. M-0817 SKW

Checked by:

Depth (ft.)	Casing Blows Per Ft.	Sample No. Rec. (in)	Sample (f	e Depth t.)	Sample Description	General Stratigraphy	N o t e s	Well Construction
70					Red BEDROCK, dry	BEDROCK		#2 SAND
80					End of Exploration			
85 90								
95								
100								

Project: Record Journal

11 Crown Street, Meriden, Connecticut Location: Client:

City of Meriden

Boring No. B-103 Page 1 of 1 File No. M-0817 SKW Checked by:

Drilling Co.:	Martin Geo-Env	ironmen	tal		Casing	Sampler	Groundwater Readings				
Foreman:	Doug			Туре	N/A	Macro Core	Date	Time	Depth	Casing	Sta. Time
T&B Rep.:	JLL			I.D./O.D.	N/A	1 1/2			See No	ite 1	
Date Start:	02/20/14	End:	02/20/14	Hammer Wt.	N/A	N/A					
Location	See Site Plan			Hammer Fall	N/A	N/A					
GS. Elev.	Datum:			Other	N/A	N/A					

Depth (ft.)	PID PPM	Sample No. Rec. (in)	Sampl (t	e Depth ft.)	Sample Description	General Stratigraphy	N o t e s	Well Construction
,	-		0	0.3	ASPHALT	ASPHALT		
•		1		1.5	Black, fine to coarse SAND and GRAVEL,	7.0.1.1.2.		
	0.0	'	0.3	1.5	trace Silt, some Brick, dry			No Well Installed
						SAND and GRAVEL		
	0.0		1.5	4	Red, WEATHERED BEDROCK, dry			
					End of Exploration due to Refusal			
5								
10								
10								
ľ								
•								
15	-							
ľ								
20								
					1			
25					1			
30								
$ldsymbol{ldsymbol{ldsymbol{eta}}}$						I		

Notes:

1. Groundwater was not encountered during drilling activities.

Tig	he8	B	on	d

Project: Record Journal

11 Crown Street, Meriden, Connecticut Location:

City of Meriden Client:

Boring No. B-104 Page 1 of 1 File No. M-0817 Checked by: SKW

Drilling Co.:	Martin Geo-Env	rironmen	tal		Casing	Sampler	Groundwater Readings				
Foreman:	Doug			Туре	N/A	Macro Core	Date	Time	Depth	Casing	Sta. Time
T&B Rep.:	JLL			I.D./O.D.	N/A	1 1/2			See No	ite 1	
Date Start:	02/21/14	End:	02/21/14	Hammer Wt.	N/A	N/A					
Location	See Site Plan			Hammer Fall	N/A	N/A					
GS. Elev.	Datum:			Other	N/A	N/A					

GG. LIE	·	Datum.			Other IV/A IV/A			
Depth (ft.)	PID PPM	Sample No.	Sample (f	e Depth ft.)	Sample Description	General Stratigraphy	N o t e s	Well Construction
	-		0	0.3	ASPHALT and GRAVEL	ASPHALT		
	0.2	1	0.3	2.5	Red, fine SAND and SILT, some Weathered	SAND and SILT		No Well Installed
					Bedrock fragments, dry			
					End of Exploration due to Refusal at 2.5 feet			
					End of Exploration due to Nerusar at 2.5 leet			
_								
5								
-								
		<u> </u>						
10								
10								
-		1						
-								
-								
15	-							
20								
-		+						
		<u> </u>						
25								
25								
		+						
		<u> </u>						
20		+						
30								

Notes:
1. Groundwater was not encountered during drilling.

Tig	he8	B	on	d

Project: Record Journal

11 Crown Street, Meriden, Connecticut Location: Client:

City of Meriden

Boring No. B-105 Page 1 of 1 File No. M-0817 SKW Checked by:

Drilling Co.:	Martin Geo-Envi	ronment	al		Casing	Sampler					
Foreman:	Doug			Туре	N/A	Macro Core	Date	Time	Depth	Casing	Sta. Time
T&B Rep.:	JLL			I.D./O.D.	N/A	1 1/2			S	See Note 1	
Date Start:	02/21/14	End:	02/21/14	Hammer Wt.	N/A	N/A					
Location	See Site Plan			Hammer Fall	N/A	N/A					
GS. Elev.	Datum:			Other	N/A	N/A					

Depth (ft.)	PID PPM	Sample No.	Sampl (i	e Depth ft.)	Sample Description	General Stratigraphy	N o t e s	Well Construction
()		11001 ()	_	0.0	AODUM TO LODAVE	ASPHALT		
	-		0	0.3	ASPHALT and GRAVEL			
	0.0	1	0.3	2.5	Red, fine SAND and SILT, some Weathered	CAND and CILT		No Well Installed
l -					Bedrock fragments, dry	SAND and SILT		
					End of Exploration due to Refusal at 2.5 feet			
I -								
5								
ľ								
l 1								
I 1								
10								
I .								
I								
I	-							
15								
I -								
]								
20								
-								
t								
l [
]								
25								
]								
] [
t								
 								
30								
			_				_	

Notes:
1. Groundwater was not encountered during drilling.

Project: Record Journal

11 Crown Street, Meriden, Connecticut Location: Client:

City of Meriden

Boring No. B-106 Page 1 of 1 File No. M-0817 SKW Checked by:

Drilling Co.:	Orilling Co.: Martin Geo-Environmental				Casing	Sampler		Groundwater Readings			
Foreman:	Doug			Туре	N/A	Macro Core	Date	Time	Depth	Casing	Sta. Time
T&B Rep.:	JLL			I.D./O.D.	N/A	1 1/2		See Note 1			
Date Start:	02/21/14	End:	02/21/14	Hammer Wt.	N/A	N/A					
Location	See Site Plan			Hammer Fall	N/A	N/A					
GS. Elev.	Datum:			Other	N/A	N/A					

Depth (ft.)	PID PPM	Sample No. Rec. (in)	Sampl (i	e Depth ft.)	Sample Description	General Stratigraphy	N o t e s	Well Construction
()		1.1001 ()	_		ASPHALT and GRAVEL	ASPHALT		
	-		0	0.3		7101117121		
	0.0	1	0.3	4	Grey GRAVEL, little fine to medium Sand, dry			
						GRAVEL		No Well Installed
			4	6	Grey GRAVEL, little fine to medium Sand, dry			No Well Illstalled
5					Red to brown, fine SAND and SILT, trace			
ľ			6	7.5	Gravel, dry	SAND and SILT		
l 1					End of Exploration due to Refusal at 7.5 feet			
					End of Exploration due to Relusar at 7.5 feet			
l 1								
10					1			
 					1			
	_							
15								
•					1			
20								
20								
-								
-					1			
25					1			
-					1			
30					1			
30								

Notes:
1. Groundwater was not encountered during drilling.

Tig	he8	B	on	d

Project: Record Journal

11 Crown Street, Meriden, Connecticut Location: Client:

City of Meriden

Boring No. B-107 Page 1 of 1 File No. M-0817 Checked by: SKW

Drilling Co.: Martin Geo-Environmental					Casing	Sampler		Groundwater Readings			
Foreman:	Doug	Туре	N/A	Macro Core	Date	Time	Depth	Casing	Sta. Time		
T&B Rep.:	JLL			I.D./O.D.	N/A	1 1/2		See Note 1			
Date Start:	02/21/14	End:	02/21/14	Hammer Wt.	N/A	N/A					
Location	See Site Plan			Hammer Fall	N/A	N/A					
GS. Elev.	Datum:			Other	N/A	N/A					

GG. LIEV		Datum.			Other IV/A IV/A		l	
Depth (ft.)	PID PPM	Sample No.	Sample (f	e Depth t.)	Sample Description	General Stratigraphy	N o t e s	Well Construction
	-		0	0.25	ASPHALT and GRAVEL	ASPHALT		
-	0.0	1	0.25	3	Red SILT, some fine Sand, little Weathered	SILT		No Well Installed
					Bedrock fragments, dry	OIL!		
					End of Exploration due to Refusal at 3 feet			
5								
10								
45	-							
15								
20								
25								
[
30								
50								

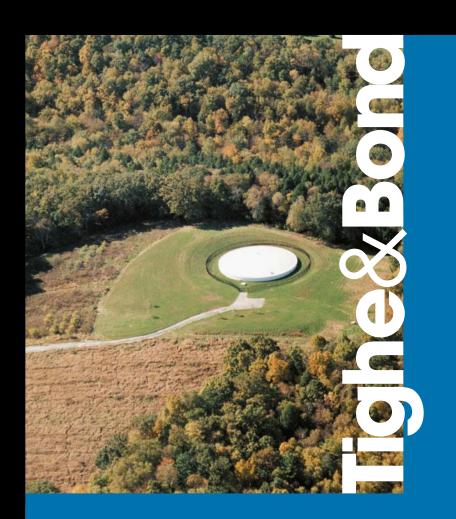
Notes:
1. Groundwater was not encountered during drilling.

Tig	he8	B	on	d

Project: Record Journal

11 Crown Street, Meriden, Connecticut Location: Client:

City of Meriden

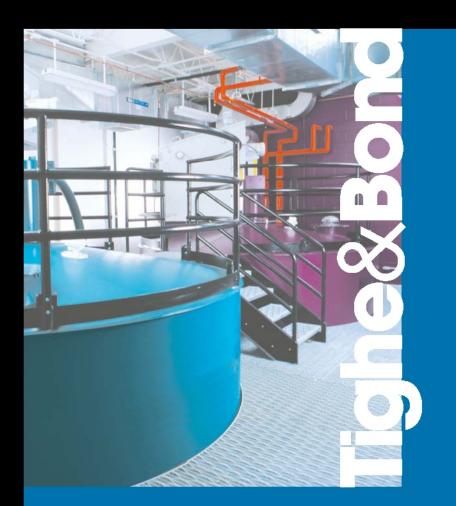

Boring No. B-108 Page 1 of 1 File No. M-0817 SKW Checked by:

Drilling Co.: Martin Geo-Environmental					Casing	Sampler		Groundwater Readings			
Foreman:					N/A	Macro Core	Date	Time	Depth	Casing	Sta. Time
T&B Rep.:	JLL			I.D./O.D.	N/A	1 1/2			See Note 1		
Date Start:	02/21/14	End:	02/21/14	Hammer Wt.	N/A	N/A					
Location	See Site Plan			Hammer Fall	N/A	N/A					
GS. Elev.	Datum:			Other	N/A	N/A					

GS. Elev	′·	Datum:			Otner -	N/A	N/A					
Depth (ft.)	PID PPM	Sample No. Rec. (in)	Sampl (i	le Depth ft.)		Sample Description			General S	Stratigraphy	N o t e s	Well Construction
(ft.)		Rec. (In)			ASPHALT a	and CDAVEI			ASP	HALT		
	-		0	0.25					7.0			
	0.1	1	0.25	4.5	Red SIL1, s Bedrock frag	some fine Sa gments, dry	nd, little Wea	thered				No Well Installed
_					_				S	ILT		No Well Illstalled
					_							
5					End of Ex	ploration due	to Refusal at	4.5 feet				
					_							
-					_							
-					4							
-					_							
10					_							
-					_							
-					1							
					1							
	_											
15					1							
-					1							
					<u> </u>							
-					<u> </u>							
20					1							
					1							
					1							
		1			1							
25		1			1							
-					1							
					1							
					1							
30					1							
					1				1			

Ν	otes	:

^{1.} Groundwater was not encountered during drilling.



Low-Flow Data Sheet

	_	Project Name:	KCCORD	DUCI	and		Well		-1	_
		roject Number:			-		Date:		14	_
		h to Water (ft):		a .	_		Sample time:		40	_
		to Bottom (ft):		+	-		Sampler:			_
		creen interval:	850	17	-		Purged (gal):	4901		
		Point of intake:	OXX	+	г		20.28			7
		Discharge/				Turbidity	DO (mg/L)		Specific	
	Time	Pumping rate (100-400		pH	Temp. (°C)	(NTU)	(<10%) or	ORP (mV)	Cond.	
	(3-5 min.)	mL/min)	(<0.3 ft)	(+/- 0.1)	(<3%)	(< 5 NTU or <10%)	below 0.5	(+/- 10 mV)	1 2	
						(10%)			(<3%)	
į.	1240	100	3+05	- PU	moing					
	1245	100	15.39	6.72	10.59	9.8	7.8(0	6.5	4.017	
	1250	100	15.0a	6.85	11.45	12.0	11.56	17.0	4.79	
	1255	100	15.83	6.95	11.31	179	12.08	21.3	4,902	
	1300	100	16.02	7.00	11,47	497	12,34	23.6	4,896	
	1305	100	16:22	7.04	11.41	107.9	12,40	28,9	4,915	
	1310	100	6.42	7.04	11.99	150.6	12.37	30,9	4,750	0
	1315	100	16.60	7.05	11,429	303 %	12.18	350	4.640	14
	1320	100	16.81	7,03	11,45	291.4	11,96	33.8	4.475	10
	1325	100	16.97	7,03	11,46	335.8	1187	36.0	4.379	0
	1330	100	17.11	10.F	11.23	393,7	11.68	38,3	4956	1
	1335	100	17,25	7.05	10.99	485.7	13,75	40.5	0300	*
-	1340	100	17,41	7,04	11,00	385.9	0.83	39.8	3.944	,
	1345	100	17.58	7.01	11.48	528.4	10,66	3811	3,908	
	1350	100	1+.75	0,98	148	4857	10,55	37.7	3,866	
-	1355	100	17.84	696	11153	450,6	10,44	36.0	3.798	
-	1400	100	18,00	6.95	11.80	508.4	10,31	30,5	3,753	
L	1405	100	18,18	6,90	11.85	5/6.6	10,09	35,4	3.657	
L	1410	100	18/28	6.94	11,91	446.7	10.09	35.7	3.578	
-	1415	100	18.40	6,93	11,91	414,6	9,95	34.7.	3.501	
F	1420	1000	18,45	6.99	1,88	1449	9.84	34,9	3,430	
L	14 25	100	18,400	0.90	19,03	389.6	1,75	35.8	3.334	
L	1430	100	18.51	6.91	12.18	370.4	9,59	344	3.214	
L	1435	100	8,53 (0,90	12.10	349.3	9,51	33.7	3:161	
L	1440	100	1857	0.89	19/3	325,6	1,47	39.4	30127	
		schiple i	N1971	0,45k	4 filte					
A	Analysis:	local syocal	Metals ETP	H) Other-		1				
F	Sample Containe Pump: Bladder //	rs: HCl voas	os / Other-	s Ambers	MNO3 Pla	stic Oth		_		
5	Color:	9			Turbidity:	Slignith	Land L	11-10	d coud	И
	Odor:			We	ell Condition:		1 2 2 2 6	E THE	V U	4
	Sheen:				Repairs: _	~		500		
,	* Cleans	of fla	1 Call	T. 100	٤.					
	1 CICOIN	W 1101	w Ull	, 001						

Low-Flow Data Sheet

Static Dept Depth S	Project Name: roject Number: th to Water (ft): to Bottom (ft): creen interval: Point of intake:	M-081	72	ernal		Well: MW - A Date: 3 1 1 4 Sample time: 1150 Sampler: 2 4 Purged (gal): 2			
Time (3-5 min.)	Discharge/ Pumping rate (100-400 mL/min)	DTW (ft) (<0.3 ft)	pH (+/- 0.1)	Temp. (°C) (<3%)	Turbidity (NTU) (< 5 NTU or <10%)	DO (mg/L) (<10%) or below 0.5	ORP (mV) (+/- 10 mV)	Specific Cond. (mS/cm) (<3%)	
1115 1120- 1125 1135 1140 1145 1150- 1200	250 250 250 250 250 250 250 250 250 250	10,23 10,23 10,23 10,23 10	(c. 76) (c. 76) (c. 77)	10,5,5 10,49 11,73 11,73 11,78	3.0 3.0 3.7 1.4 1.8 1.8	(a, 17 4, 34 4, 14 3, 93 3, 93	-6.8 -5.7 -2.6 +2.1 0.7	3,731 2,716 2,717 2,831 2,901	
Pump: Bladder / Color: Odor: Sheen:	Peristalic Grun	fos / Other-			None		_		

Tuesday, March 11, 2014

Attn: Ms Jill Libby Tighe & Bond 213 Court St Suite 900 Middletown, CT 06457

Project ID: RECORD JOURNAL

Sample ID#s: BG12137 - BG12144, BG12146 - BG12147

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

Enclosed are revised Analysis Report pages. Please replace and discard the original pages. If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

Phyllis Shiller

Laboratory Director

NELAC - #NY11301

CT Lab Registration #PH-0618
MA Lab Registration #MA-CT-007

ME Lab Registration #CT-007

NH Lab Registration #213693-A,B

NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530

RI Lab Registration #63

VT Lab Registration #VT11301

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

March 11, 2014

FOR: Attn: Ms Jill Libby

Tighe & Bond 213 Court St Suite 900

Middletown, CT 06457

Sample Information **Custody Information Date** <u>Time</u> SOIL Collected by: JL 02/20/14 0:00 Matrix: Received by: Location Code: **TIGHE** LK 02/24/14 16:40

Rush Request: Standard Analyzed by: see "By" below

RI/

P.O.#:

Laboratory Data

SDG ID: GBG12137

Phoenix ID: BG12137

Project ID: RECORD JOURNAL

Client ID: B-100

Parameter	Result	RL/ PQL	Units	Date/Time	Ву	Reference
Lead	7070	34	mg/Kg	02/25/14	EK	SW6010
SPLP Lead	< 0.010	0.010	mg/L	02/25/14	LK	SW6010
SPLP Metals Digestion	Completed			02/25/14	1/1	SW846-3005
Percent Solid	90		%	02/24/14	1	E160.3
Soil Extraction SVOA PAH	Completed			02/24/14	BJ/FV	SW3545
SPLP Extraction for Metals	Completed			02/24/14	1	EPA 1312
SPLP Extraction for Organics	Completed			02/24/14	1	EPA1312
SPLP Semivolatiles (SIM) Ext.	Completed			02/25/14	E/D	SW3510/3520
Total Metals Digest	Completed			02/24/14	Z/AG	SW846 - 3050
Polynuclear Aromatic H	<u>IC</u>					
2-Methylnaphthalene	ND	250	ug/Kg	02/25/14	DD	SW 8270
Acenaphthene	ND	250	ug/Kg	02/25/14	DD	SW 8270
Acenaphthylene	ND	250	ug/Kg	02/25/14	DD	SW 8270
Anthracene	ND	250	ug/Kg	02/25/14	DD	SW 8270
Benz(a)anthracene	ND	250	ug/Kg	02/25/14	DD	SW 8270
Benzo(a)pyrene	ND	250	ug/Kg	02/25/14	DD	SW 8270
Benzo(b)fluoranthene	ND	250	ug/Kg	02/25/14	DD	SW 8270
Benzo(ghi)perylene	ND	250	ug/Kg	02/25/14	DD	SW 8270
Benzo(k)fluoranthene	ND	250	ug/Kg	02/25/14	DD	SW 8270
Chrysene	ND	250	ug/Kg	02/25/14	DD	SW 8270
Dibenz(a,h)anthracene	ND	250	ug/Kg	02/25/14	DD	SW 8270
Fluoranthene	ND	250	ug/Kg	02/25/14	DD	SW 8270
Fluorene	ND	250	ug/Kg	02/25/14	DD	SW 8270
Indeno(1,2,3-cd)pyrene	ND	250	ug/Kg	02/25/14	DD	SW 8270
Naphthalene	ND	250	ug/Kg	02/25/14	DD	SW 8270
Phenanthrene	ND	250	ug/Kg	02/25/14	DD	SW 8270
Pyrene	ND	250	ug/Kg	02/25/14	DD	SW 8270

Page 1 of 17 Ver 2

Project ID: RECORD JOURNAL Phoenix I.D.: BG12137

Client ID: B-100

		RL/				
Parameter	Result	PQL	Units	Date/Time	Ву	Reference
QA/QC Surrogates						
% 2-Fluorobiphenyl	80		%	02/25/14	DD	30 - 130 %
% Nitrobenzene-d5	82		%	02/25/14	DD	30 - 130 %
% Terphenyl-d14	82		%	02/25/14	DD	30 - 130 %
SPLP Semivolatiles b	oy SIM					
2-Methylnaphthalene	ND	0.10	ug/L	02/26/14	DD	8270(SIM)
Acenaphthene	ND	0.10	ug/L	02/26/14	DD	8270(SIM)
Acenaphthylene	ND	0.10	ug/L	02/26/14	DD	8270(SIM)
Anthracene	ND	0.10	ug/L	02/26/14	DD	8270(SIM)
Benz(a)anthracene	0.04	0.02	ug/L	02/26/14	DD	8270(SIM) B*
Benzo(a)pyrene	0.03	0.02	ug/L	02/26/14	DD	8270(SIM)
Benzo(b)fluoranthene	0.02	0.02	ug/L	02/26/14	DD	8270(SIM)
Benzo(ghi)perylene	0.11	0.10	ug/L	02/26/14	DD	8270(SIM)
Benzo(k)fluoranthene	ND	0.02	ug/L	02/26/14	DD	8270(SIM)
Chrysene	0.03	0.02	ug/L	02/26/14	DD	8270(SIM) B*
Dibenz(a,h)anthracene	0.01	0.01	ug/L	02/26/14	DD	8270(SIM)
Fluoranthene	ND	0.10	ug/L	02/26/14	DD	8270(SIM)
Fluorene	ND	0.10	ug/L	02/26/14	DD	8270(SIM)
Indeno(1,2,3-cd)pyrene	0.04	0.02	ug/L	02/26/14	DD	8270(SIM)
Naphthalene	ND	0.10	ug/L	02/26/14	DD	8270(SIM)
Phenanthrene	0.09	0.07	ug/L	02/26/14	DD	8270(SIM)
Pyrene	0.13	0.10	ug/L	02/26/14	DD	8270(SIM)
QA/QC Surrogates						
% 2-Fluorobiphenyl	87		%	02/26/14	DD	30 - 130 %
% Nitrobenzene-d5	92		%	02/26/14	DD	30 - 130 %
% Terphenyl-d14	117		%	02/26/14	DD	30 - 130 %

 B^* = Present in blank, a bias is possible.

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

March 11, 2014

Reviewed and Released by: Greg Lawrence, Assistant Lab Director

Page 2 of 17 Ver 2

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

March 11, 2014

FOR: Attn: Ms Jill Libby

Tighe & Bond 213 Court St Suite 900

Middletown, CT 06457

Sample Information **Custody Information Date** <u>Time</u> SOIL Collected by: JL 02/20/14 0:00 Matrix: Received by: Location Code: **TIGHE** LK 02/24/14 16:40

Rush Request: Standard Analyzed by: see "By" below

RI/

P.O.#:

Laboratory Data

SDG ID: GBG12137

Phoenix ID: BG12138

Project ID: RECORD JOURNAL

Client ID: B-101

Parameter	Result	RL/ PQL	Units	Date/Time	Ву	Reference
Lead	62.2	0.36	mg/Kg	02/25/14	LK	SW6010
SPLP Lead	< 0.010	0.010	mg/L	02/25/14	LK	SW6010
SPLP Metals Digestion	Completed			02/25/14	1/1	SW846-3005
Percent Solid	93		%	02/24/14	1	E160.3
Soil Extraction SVOA PAH	Completed			02/24/14	BJ/FV	SW3545
SPLP Extraction for Metals	Completed			02/24/14	1	EPA 1312
SPLP Extraction for Organics	Completed			02/24/14	1	EPA1312
SPLP Semivolatiles (SIM) Ext.	Completed			02/25/14	E/D	SW3510/3520
Total Metals Digest	Completed			02/24/14	Z/AG	SW846 - 3050
Polynuclear Aromatic H	<u>IC</u>					
2-Methylnaphthalene	ND	250	ug/Kg	02/25/14	DD	SW 8270
Acenaphthene	ND	250	ug/Kg	02/25/14	DD	SW 8270
Acenaphthylene	ND	250	ug/Kg	02/25/14	DD	SW 8270
Anthracene	ND	250	ug/Kg	02/25/14	DD	SW 8270
Benz(a)anthracene	ND	250	ug/Kg	02/25/14	DD	SW 8270
Benzo(a)pyrene	ND	250	ug/Kg	02/25/14	DD	SW 8270
Benzo(b)fluoranthene	ND	250	ug/Kg	02/25/14	DD	SW 8270
Benzo(ghi)perylene	ND	250	ug/Kg	02/25/14	DD	SW 8270
Benzo(k)fluoranthene	ND	250	ug/Kg	02/25/14	DD	SW 8270
Chrysene	ND	250	ug/Kg	02/25/14	DD	SW 8270
Dibenz(a,h)anthracene	ND	250	ug/Kg	02/25/14	DD	SW 8270
Fluoranthene	ND	250	ug/Kg	02/25/14	DD	SW 8270
Fluorene	ND	250	ug/Kg	02/25/14	DD	SW 8270
Indeno(1,2,3-cd)pyrene	ND	250	ug/Kg	02/25/14	DD	SW 8270
Naphthalene	ND	250	ug/Kg	02/25/14	DD	SW 8270
Phenanthrene	ND	250	ug/Kg	02/25/14	DD	SW 8270
Pyrene	ND	250	ug/Kg	02/25/14	DD	SW 8270

Page 3 of 17 Ver 2

Project ID: RECORD JOURNAL Phoenix I.D.: BG12138

Client ID: B-101

Parameter Result PQL Units Date/Time By Reference QA/QC Surrogates % 2-Fluorobiphenyl 85 % 02/25/14 DD 30 - 130 %	_
0/ 2 Elyprobiphopyl 95 9/ 02/25/44 DD 20 420 9/	
% 2-Fluorobiphenyl 85 % 02/25/14 DD 30 - 130 %	
% Nitrobenzene-d5 79 % 02/25/14 DD 30 - 130 %	
% Terphenyl-d14 91 % 02/25/14 DD 30 - 130 %	
SPLP Semivolatiles by SIM	
2-Methylnaphthalene ND 0.10 ug/L 02/26/14 DD 8270(SIM)	
Acenaphthene ND 0.10 ug/L 02/26/14 DD 8270(SIM)	
Acenaphthylene ND 0.10 ug/L 02/26/14 DD 8270(SIM)	
Anthracene ND 0.10 ug/L 02/26/14 DD 8270(SIM)	
Benz(a)anthracene 0.03 0.02 ug/L 02/26/14 DD 8270(SIM)	B*
Benzo(a)pyrene ND 0.02 ug/L 02/26/14 DD 8270(SIM)	
Benzo(b)fluoranthene ND 0.02 ug/L 02/26/14 DD 8270(SIM)	
Benzo(ghi)perylene ND 0.10 ug/L 02/26/14 DD 8270(SIM)	
Benzo(k)fluoranthene ND 0.02 ug/L 02/26/14 DD 8270(SIM)	
Chrysene 0.02 0.02 ug/L 02/26/14 DD 8270(SIM)	B*
Dibenz(a,h)anthracene ND 0.01 ug/L 02/26/14 DD 8270(SIM)	
Fluoranthene ND 0.10 ug/L 02/26/14 DD 8270(SIM)	
Fluorene ND 0.10 ug/L 02/26/14 DD 8270(SIM)	
Indeno(1,2,3-cd)pyrene ND 0.02 ug/L 02/26/14 DD 8270(SIM)	
Naphthalene ND 0.10 ug/L 02/26/14 DD 8270(SIM)	
Phenanthrene ND 0.07 ug/L 02/26/14 DD 8270(SIM)	
Pyrene ND 0.10 ug/L 02/26/14 DD 8270(SIM)	
QA/QC Surrogates	
% 2-Fluorobiphenyl 82 % 02/26/14 DD 30 - 130 %	
% Nitrobenzene-d5 87 % 02/26/14 DD 30 - 130 %	
% Terphenyl-d14 117 % 02/26/14 DD 30 - 130 %	

 B^* = Present in blank, a bias is possible.

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

March 11, 2014

Reviewed and Released by: Greg Lawrence, Assistant Lab Director

Page 4 of 17 Ver 2

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

March 11, 2014

FOR: Attn: Ms Jill Libby

Tighe & Bond 213 Court St Suite 900

Middletown, CT 06457

Sample Information **Custody Information Date** <u>Time</u> SOIL Collected by: JL 02/21/14 0:00 Matrix: Received by: Location Code: **TIGHE** LK 02/24/14 16:40

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

Laboratory Data

SDG ID: GBG12137

Phoenix ID: BG12139

Project ID: RECORD JOURNAL

Client ID: B-102

		RL/				
Parameter	Result	PQL	Units	Date/Time	Ву	Reference
Lead	8.58	0.34	mg/Kg	02/25/14	LK	SW6010
SPLP Lead	< 0.010	0.010	mg/L	02/25/14	LK	SW6010
SPLP Metals Digestion	Completed			02/25/14	1/1	SW846-3005
Percent Solid	90		%	02/24/14	1	E160.3
Soil Extraction SVOA PAH	Completed			02/24/14	BJ/FV	SW3545
Extraction of CT ETPH	Completed			02/24/14	BS/F	3545
SPLP Extraction for Metals	Completed			02/24/14	1	EPA 1312
SPLP Extraction for Organics	Completed			02/24/14	1	EPA1312
SPLP Semivolatiles (SIM) Ext.	Completed			02/25/14	E/D	SW3510/3520
Total Metals Digest	Completed			02/24/14	Z/AG	SW846 - 3050
TPU by GC (Extractable	Products)					
TPH by GC (Extractable				00/07/4		OT
Ext. Petroleum HC	ND	55	mg/Kg	02/25/14	JRB	CT ETPH/8015
Identification	ND		mg/Kg	02/25/14	JRB	CT ETPH/8015
QA/QC Surrogates						
% n-Pentacosane	99		%	02/25/14	JRB	50 - 150 %
Polynuclear Aromatic H	<u>C</u>					
2-Methylnaphthalene	 ND	260	ug/Kg	02/25/14	DD	SW 8270
Acenaphthene	ND	260	ug/Kg	02/25/14	DD	SW 8270
Acenaphthylene	ND	260	ug/Kg	02/25/14	DD	SW 8270
Anthracene	ND	260	ug/Kg	02/25/14	DD	SW 8270
Benz(a)anthracene	ND	260	ug/Kg	02/25/14	DD	SW 8270
Benzo(a)pyrene	ND	260	ug/Kg	02/25/14	DD	SW 8270
Benzo(b)fluoranthene	ND	260	ug/Kg	02/25/14	DD	SW 8270
Benzo(ghi)perylene	ND	260	ug/Kg	02/25/14	DD	SW 8270
Benzo(k)fluoranthene	ND	260	ug/Kg	02/25/14	DD	SW 8270
Chrysene	ND	260	ug/Kg	02/25/14	DD	SW 8270

Page 5 of 17 Ver 2

Project ID: RECORD JOURNAL Phoenix I.D.: BG12139

Client ID: B-102

Parameter	Result	RL/ PQL	Units	Date/Time	Ву	Reference	
Dibenz(a,h)anthracene	ND	260	ug/Kg	02/25/14	DD	SW 8270	_
Fluoranthene	ND	260	ug/Kg	02/25/14	DD	SW 8270	
Fluorene	ND	260	ug/Kg	02/25/14	DD	SW 8270	
Indeno(1,2,3-cd)pyrene	ND	260	ug/Kg	02/25/14	DD	SW 8270	
Naphthalene	ND	260	ug/Kg	02/25/14	DD	SW 8270	
Phenanthrene	ND	260	ug/Kg	02/25/14	DD	SW 8270	
Pyrene	ND	260	ug/Kg	02/25/14	DD	SW 8270	
QA/QC Surrogates							
% 2-Fluorobiphenyl	69		%	02/25/14	DD	30 - 130 %	
% Nitrobenzene-d5	67		%	02/25/14	DD	30 - 130 %	
% Terphenyl-d14	74		%	02/25/14	DD	30 - 130 %	
SPLP Semivolatiles by	SIM						
2-Methylnaphthalene	ND	0.10	ug/L	02/26/14	DD	8270(SIM)	
Acenaphthene	ND	0.10	ug/L	02/26/14	DD	8270(SIM)	
Acenaphthylene	ND	0.10	ug/L	02/26/14	DD	8270(SIM)	
Anthracene	ND	0.10	ug/L	02/26/14	DD	8270(SIM)	
Benz(a)anthracene	0.03	0.02	ug/L	02/26/14	DD	8270(SIM)	В*
Benzo(a)pyrene	ND	0.02	ug/L	02/26/14	DD	8270(SIM)	
Benzo(b)fluoranthene	ND	0.02	ug/L	02/26/14	DD	8270(SIM)	
Benzo(ghi)perylene	ND	0.10	ug/L	02/26/14	DD	8270(SIM)	
Benzo(k)fluoranthene	ND	0.02	ug/L	02/26/14	DD	8270(SIM)	
Chrysene	0.02	0.02	ug/L	02/26/14	DD	8270(SIM)	B*
Dibenz(a,h)anthracene	ND	0.01	ug/L	02/26/14	DD	8270(SIM)	
Fluoranthene	ND	0.10	ug/L	02/26/14	DD	8270(SIM)	
Fluorene	ND	0.10	ug/L	02/26/14	DD	8270(SIM)	
Indeno(1,2,3-cd)pyrene	ND	0.02	ug/L	02/26/14	DD	8270(SIM)	
Naphthalene	ND	0.10	ug/L	02/26/14	DD	8270(SIM)	
Phenanthrene	ND	0.07	ug/L	02/26/14	DD	8270(SIM)	
Pyrene	ND	0.10	ug/L	02/26/14	DD	8270(SIM)	
QA/QC Surrogates							
% 2-Fluorobiphenyl	81		%	02/26/14	DD	30 - 130 %	
% Nitrobenzene-d5	86		%	02/26/14	DD	30 - 130 %	
% Terphenyl-d14	99		%	02/26/14	DD	30 - 130 %	

 B^* = Present in blank, a bias is possible.

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

March 11, 2014

Reviewed and Released by: Greg Lawrence, Assistant Lab Director

Page 6 of 17 Ver 2

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

March 11, 2014

FOR: Attn: Ms Jill Libby

Tighe & Bond 213 Court St Suite 900

Middletown, CT 06457

Sample Information **Custody Information Date** <u>Time</u> SOIL Collected by: JL 02/20/14 0:00 Matrix: Received by: Location Code: **TIGHE** LK 02/24/14 16:40

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

Laboratory Data

SDG ID: GBG12137

Phoenix ID: BG12140

Project ID: RECORD JOURNAL

Client ID: B-103

		RL/				
Parameter	Result	PQL	Units	Date/Time	Ву	Reference
Percent Solid	86		%	02/24/14	I	E160.3
Soil Extraction SVOA PAH	Completed			03/06/14	BB/FV	SW3545
Extraction of CT ETPH	Completed			02/24/14	BS/F	3545
SPLP Extraction for Organics	Completed			03/06/14	I	EPA1312
SPLP Semivolatiles (SIM) Ext.	Completed			03/07/14	W/W	SW3510/3520
TPH by GC (Extractable	Products)					
Ext. Petroleum HC	ND	58	mg/Kg	02/26/14	JRB	CT ETPH/8015
Identification	ND		mg/Kg	02/26/14	JRB	CT ETPH/8015
QA/QC Surrogates						
% n-Pentacosane	97		%	02/26/14	JRB	50 - 150 %
Polynuclear Aromatic Ho	<u>C</u>					
2-Methylnaphthalene	 ND	270	ug/Kg	03/07/14	DD	SW 8270
Acenaphthene	ND	270	ug/Kg	03/07/14	DD	SW 8270
Acenaphthylene	ND	270	ug/Kg	03/07/14	DD	SW 8270
Anthracene	ND	270	ug/Kg	03/07/14	DD	SW 8270
Benz(a)anthracene	ND	270	ug/Kg	03/07/14	DD	SW 8270
Benzo(a)pyrene	ND	270	ug/Kg	03/07/14	DD	SW 8270
Benzo(b)fluoranthene	ND	270	ug/Kg	03/07/14	DD	SW 8270
Benzo(ghi)perylene	ND	270	ug/Kg	03/07/14	DD	SW 8270
Benzo(k)fluoranthene	ND	270	ug/Kg	03/07/14	DD	SW 8270
Chrysene	ND	270	ug/Kg	03/07/14	DD	SW 8270
Dibenz(a,h)anthracene	ND	270	ug/Kg	03/07/14	DD	SW 8270
Fluoranthene	280	270	ug/Kg	03/07/14	DD	SW 8270
Fluorene	ND	270	ug/Kg	03/07/14	DD	SW 8270
Indeno(1,2,3-cd)pyrene	ND	270	ug/Kg	03/07/14	DD	SW 8270
Naphthalene	ND	270	ug/Kg	03/07/14	DD	SW 8270

Page 7 of 17 Ver 2

Project ID: RECORD JOURNAL Phoenix I.D.: BG12140

Client ID: B-103

		RL/				
Parameter	Result	PQL	Units	Date/Time	Ву	Reference
Phenanthrene	ND	270	ug/Kg	03/07/14	DD	SW 8270
Pyrene	ND	270	ug/Kg	03/07/14	DD	SW 8270
QA/QC Surrogates						
% 2-Fluorobiphenyl	69		%	03/07/14	DD	30 - 130 %
% Nitrobenzene-d5	65		%	03/07/14	DD	30 - 130 %
% Terphenyl-d14	68		%	03/07/14	DD	30 - 130 %
SPLP Semivolatiles by	/ SIM					
2-Methylnaphthalene	ND	0.10	ug/L	03/07/14	DD	8270(SIM)
Acenaphthene	0.15	0.10	ug/L	03/07/14	DD	8270(SIM)
Acenaphthylene	ND	0.10	ug/L	03/07/14	DD	8270(SIM)
Anthracene	ND	0.10	ug/L	03/07/14	DD	8270(SIM)
Benz(a)anthracene	0.03	0.02	ug/L	03/07/14	DD	8270(SIM) B*
Benzo(a)pyrene	ND	0.02	ug/L	03/07/14	DD	8270(SIM)
Benzo(b)fluoranthene	ND	0.02	ug/L	03/07/14	DD	8270(SIM)
Benzo(ghi)perylene	ND	0.10	ug/L	03/07/14	DD	8270(SIM)
Benzo(k)fluoranthene	ND	0.02	ug/L	03/07/14	DD	8270(SIM)
Chrysene	0.02	0.02	ug/L	03/07/14	DD	8270(SIM)
Dibenz(a,h)anthracene	ND	0.01	ug/L	03/07/14	DD	8270(SIM)
Fluoranthene	ND	0.10	ug/L	03/07/14	DD	8270(SIM)
Fluorene	ND	0.10	ug/L	03/07/14	DD	8270(SIM)
Indeno(1,2,3-cd)pyrene	ND	0.02	ug/L	03/07/14	DD	8270(SIM)
Naphthalene	ND	0.10	ug/L	03/07/14	DD	8270(SIM)
Phenanthrene	0.25	0.07	ug/L	03/07/14	DD	8270(SIM)
Pyrene	ND	0.10	ug/L	03/07/14	DD	8270(SIM)
QA/QC Surrogates						
% 2-Fluorobiphenyl	72		%	03/07/14	DD	30 - 130 %
% Nitrobenzene-d5	81		%	03/07/14	DD	30 - 130 %
% Terphenyl-d14	99		%	03/07/14	DD	30 - 130 %

 B^* = Present in blank, a bias is possible.

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

March 11, 2014

Reviewed and Released by: Greg Lawrence, Assistant Lab Director

Page 8 of 17 Ver 2

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

March 11, 2014

FOR: Attn: Ms Jill Libby

Tighe & Bond 213 Court St Suite 900

Middletown, CT 06457

Sample Information **Custody Information Date** <u>Time</u> SOIL Collected by: JL 02/21/14 0:00 Matrix: **TIGHE** Received by: Location Code: LK 02/24/14 16:40

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

_aboratory Data SDG ID: GBG12137

Phoenix ID: BG12141

Project ID: RECORD JOURNAL

Client ID: B-104

Parameter	Result	RL/ PQL	Units	Date/Time	Ву	Reference
Lead	13.3	0.37	mg/Kg	02/25/14	LK	SW6010
SPLP Lead	< 0.010	0.010	mg/L	02/25/14	LK	SW6010
SPLP Metals Digestion	Completed			02/25/14	1/1	SW846-3005
Percent Solid	88		%	02/24/14	I	E160.3
SPLP Extraction for Metals	Completed			02/24/14	1	EPA 1312
Total Metals Digest	Completed			02/24/14	Z/AG	SW846 - 3050

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

March 11, 2014

Reviewed and Released by: Greg Lawrence, Assistant Lab Director

Page 9 of 17 Ver 2

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

March 11, 2014

FOR: Attn: Ms Jill Libby

Tighe & Bond 213 Court St Suite 900

Middletown, CT 06457

Sample Information **Custody Information** Date Time JL 02/21/14 Matrix: SOIL Collected by: 0:00 Received by: Location Code: **TIGHE** LK 02/24/14 16:40

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

Laboratory Data

SDG ID: GBG12137

Phoenix ID: BG12142

Project ID: RECORD JOURNAL

Client ID: B-105

RL/ Parameter Result **PQL** Units Date/Time Reference Βy Lead 13.5 0.38 mg/Kg 02/25/14 LK SW6010 SPLP Lead < 0.010 0.010 mg/L 02/25/14 LK SW6010 **SPLP Metals Digestion** Completed 02/25/14 1/1 SW846-3005 Percent Solid 90 % 02/24/14 E160.3 SPLP Extraction for Metals 02/24/14 EPA 1312 Completed Z/AG SW846 - 3050 **Total Metals Digest** Completed 02/24/14

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

March 11, 2014

Reviewed and Released by: Greg Lawrence, Assistant Lab Director

Page 10 of 17 Ver 2

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

March 11, 2014

FOR: Attn: Ms Jill Libby

Tighe & Bond 213 Court St Suite 900

Middletown, CT 06457

Sample Information **Custody Information Date** <u>Time</u> SOIL Collected by: JL 02/21/14 0:00 Matrix: Received by: Location Code: **TIGHE** LK 02/24/14 16:40

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

Laboratory Data

SDG ID: GBG12137

Phoenix ID: BG12143

Project ID: RECORD JOURNAL

Client ID: B-106

		RL/				
Parameter	Result	PQL	Units	Date/Time	Ву	Reference
Lead	44.9	0.37	mg/Kg	02/25/14	LK	SW6010
SPLP Lead	0.036	0.010	mg/L	02/25/14	LK	SW6010
SPLP Metals Digestion	Completed			02/25/14	1/1	SW846-3005
Percent Solid	91		%	02/24/14	- 1	E160.3
Soil Extraction SVOA PAH	Completed			02/24/14	BJ/FV	SW3545
SPLP Extraction for Metals	Completed			02/24/14	- 1	EPA 1312
SPLP Extraction for Organics	Completed			02/24/14	- 1	EPA1312
SPLP Semivolatiles (SIM) Ext.	Completed			02/25/14	E/D	SW3510/3520
Total Metals Digest	Completed			02/24/14	Z/AG	SW846 - 3050
Polynuclear Aromatic H	С					
2-Methylnaphthalene	440	260	ug/Kg	02/25/14	DD	SW 8270
Acenaphthene	1200	260	ug/Kg	02/25/14	DD	SW 8270
Acenaphthylene	ND	260	ug/Kg	02/25/14	DD	SW 8270
Anthracene	1900	260	ug/Kg	02/25/14	DD	SW 8270
Benz(a)anthracene	3000	260	ug/Kg	02/25/14	DD	SW 8270
Benzo(a)pyrene	2400	260	ug/Kg	02/25/14	DD	SW 8270
Benzo(b)fluoranthene	4000	260	ug/Kg	02/25/14	DD	SW 8270
Benzo(ghi)perylene	1400	260	ug/Kg	02/25/14	DD	SW 8270
Benzo(k)fluoranthene	4100	260	ug/Kg	02/25/14	DD	SW 8270
Chrysene	2800	260	ug/Kg	02/25/14	DD	SW 8270
Dibenz(a,h)anthracene	370	260	ug/Kg	02/25/14	DD	SW 8270
Fluoranthene	7300	260	ug/Kg	02/25/14	DD	SW 8270
Fluorene	1300	260	ug/Kg	02/25/14	DD	SW 8270
Indeno(1,2,3-cd)pyrene	1100	260	ug/Kg	02/25/14	DD	SW 8270
Naphthalene	1100	260	ug/Kg	02/25/14	DD	SW 8270
Phenanthrene	9600	260	ug/Kg	02/25/14	DD	SW 8270
Pyrene	4100	260	ug/Kg	02/25/14	DD	SW 8270

Page 11 of 17 Ver 2

Project ID: RECORD JOURNAL Phoenix I.D.: BG12143

Client ID: B-106

		RL/				
Parameter	Result	PQL	Units	Date/Time	Ву	Reference
QA/QC Surrogates						
% 2-Fluorobiphenyl	84		%	02/25/14	DD	30 - 130 %
% Nitrobenzene-d5	81		%	02/25/14	DD	30 - 130 %
% Terphenyl-d14	60		%	02/25/14	DD	30 - 130 %
SPLP Semivolatiles by	y SIM					
2-Methylnaphthalene	0.12	0.10	ug/L	02/26/14	DD	8270(SIM)
Acenaphthene	0.1	0.10	ug/L	02/26/14	DD	8270(SIM)
Acenaphthylene	ND	0.10	ug/L	02/26/14	DD	8270(SIM)
Anthracene	ND	0.10	ug/L	02/26/14	DD	8270(SIM)
Benz(a)anthracene	0.05	0.02	ug/L	02/26/14	DD	8270(SIM) B*
Benzo(a)pyrene	ND	0.02	ug/L	02/26/14	DD	8270(SIM)
Benzo(b)fluoranthene	0.05	0.02	ug/L	02/26/14	DD	8270(SIM)
Benzo(ghi)perylene	ND	0.10	ug/L	02/26/14	DD	8270(SIM)
Benzo(k)fluoranthene	0.03	0.02	ug/L	02/26/14	DD	8270(SIM)
Chrysene	0.05	0.02	ug/L	02/26/14	DD	8270(SIM) B*
Dibenz(a,h)anthracene	ND	0.01	ug/L	02/26/14	DD	8270(SIM)
Fluoranthene	0.11	0.10	ug/L	02/26/14	DD	8270(SIM)
Fluorene	ND	0.10	ug/L	02/26/14	DD	8270(SIM)
Indeno(1,2,3-cd)pyrene	0.02	0.02	ug/L	02/26/14	DD	8270(SIM)
Naphthalene	0.68	0.10	ug/L	02/26/14	DD	8270(SIM)
Phenanthrene	0.2	0.07	ug/L	02/26/14	DD	8270(SIM)
Pyrene	ND	0.10	ug/L	02/26/14	DD	8270(SIM)
QA/QC Surrogates						
% 2-Fluorobiphenyl	80		%	02/26/14	DD	30 - 130 %
% Nitrobenzene-d5	85		%	02/26/14	DD	30 - 130 %
% Terphenyl-d14	103		%	02/26/14	DD	30 - 130 %
70 1 1111 0 10 1 1 1 1 1 1 1 1 1 1 1 1 1						

 B^* = Present in blank, a bias is possible.

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

March 11, 2014

Reviewed and Released by: Greg Lawrence, Assistant Lab Director

Page 12 of 17 Ver 2

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

March 11, 2014

FOR: Attn: Ms Jill Libby

Tighe & Bond 213 Court St Suite 900

Middletown, CT 06457

Sample Information **Custody Information Date** <u>Time</u> SOIL Collected by: JL 02/21/14 0:00 Matrix: Received by: Location Code: **TIGHE** LK 02/24/14 16:40

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

Laboratory Data

SDG ID: GBG12137

Phoenix ID: BG12144

Project ID: RECORD JOURNAL

Client ID: B-107

		RL/				
Parameter	Result	PQL	Units	Date/Time	Ву	Reference
Percent Solid	83		%	02/24/14	I	E160.3
Soil Extraction SVOA PAH	Completed			02/24/14	BJ/FV	SW3545
Extraction of CT ETPH	Completed			02/24/14	BS/F	3545
SPLP Extraction for Organics	Completed			02/24/14	I	EPA1312
SPLP Semivolatiles (SIM) Ext.	Completed			02/25/14	E/D	SW3510/3520
TPH by GC (Extractable F	Products)					
Ext. Petroleum HC	ND	59	mg/Kg	02/26/14	JRB	CT ETPH/8015
Identification	ND		mg/Kg	02/26/14	JRB	CT ETPH/8015
QA/QC Surrogates						
% n-Pentacosane	99		%	02/26/14	JRB	50 - 150 %
Polynuclear Aromatic HC	<u> </u>					
2-Methylnaphthalene	ND	270	ug/Kg	02/25/14	DD	SW 8270
Acenaphthene	ND	270	ug/Kg	02/25/14	DD	SW 8270
Acenaphthylene	ND	270	ug/Kg	02/25/14	DD	SW 8270
Anthracene	ND	270	ug/Kg	02/25/14	DD	SW 8270
Benz(a)anthracene	ND	270	ug/Kg	02/25/14	DD	SW 8270
Benzo(a)pyrene	ND	270	ug/Kg	02/25/14	DD	SW 8270
Benzo(b)fluoranthene	ND	270	ug/Kg	02/25/14	DD	SW 8270
Benzo(ghi)perylene	ND	270	ug/Kg	02/25/14	DD	SW 8270
Benzo(k)fluoranthene	ND	270	ug/Kg	02/25/14	DD	SW 8270
Chrysene	ND	270	ug/Kg	02/25/14	DD	SW 8270
Dibenz(a,h)anthracene	ND	270	ug/Kg	02/25/14	DD	SW 8270
Fluoranthene	ND	270	ug/Kg	02/25/14	DD	SW 8270
Fluorene	ND	270	ug/Kg	02/25/14	DD	SW 8270
Indeno(1,2,3-cd)pyrene	ND	270	ug/Kg	02/25/14	DD	SW 8270
Naphthalene	ND	270	ug/Kg	02/25/14	DD	SW 8270

Page 13 of 17 Ver 2

Project ID: RECORD JOURNAL Phoenix I.D.: BG12144

Client ID: B-107

		RL/					
Parameter	Result	PQL	Units	Date/Time	Ву	Reference	
Phenanthrene	ND	270	ug/Kg	02/25/14	DD	SW 8270	•
Pyrene	ND	270	ug/Kg	02/25/14	DD	SW 8270	
QA/QC Surrogates							
% 2-Fluorobiphenyl	85		%	02/25/14	DD	30 - 130 %	
% Nitrobenzene-d5	80		%	02/25/14	DD	30 - 130 %	
% Terphenyl-d14	70		%	02/25/14	DD	30 - 130 %	
SPLP Semivolatiles by	y SIM						
2-Methylnaphthalene	ND	0.10	ug/L	02/26/14	DD	8270(SIM)	
Acenaphthene	ND	0.10	ug/L	02/26/14	DD	8270(SIM)	
Acenaphthylene	ND	0.10	ug/L	02/26/14	DD	8270(SIM)	
Anthracene	ND	0.10	ug/L	02/26/14	DD	8270(SIM)	
Benz(a)anthracene	0.02	0.02	ug/L	02/26/14	DD	8270(SIM) B*	r
Benzo(a)pyrene	ND	0.02	ug/L	02/26/14	DD	8270(SIM)	
Benzo(b)fluoranthene	ND	0.02	ug/L	02/26/14	DD	8270(SIM)	
Benzo(ghi)perylene	ND	0.10	ug/L	02/26/14	DD	8270(SIM)	
Benzo(k)fluoranthene	ND	0.02	ug/L	02/26/14	DD	8270(SIM)	
Chrysene	ND	0.02	ug/L	02/26/14	DD	8270(SIM) B	j
Dibenz(a,h)anthracene	ND	0.01	ug/L	02/26/14	DD	8270(SIM)	
Fluoranthene	ND	0.10	ug/L	02/26/14	DD	8270(SIM)	
Fluorene	ND	0.10	ug/L	02/26/14	DD	8270(SIM)	
Indeno(1,2,3-cd)pyrene	ND	0.02	ug/L	02/26/14	DD	8270(SIM)	
Naphthalene	ND	0.10	ug/L	02/26/14	DD	8270(SIM)	
Phenanthrene	ND	0.07	ug/L	02/26/14	DD	8270(SIM)	
Pyrene	ND	0.10	ug/L	02/26/14	DD	8270(SIM)	
QA/QC Surrogates							
% 2-Fluorobiphenyl	78		%	02/26/14	DD	30 - 130 %	
% Nitrobenzene-d5	87		%	02/26/14	DD	30 - 130 %	
% Terphenyl-d14	99		%	02/26/14	DD	30 - 130 %	

 B^* = Present in blank, a bias is possible.

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

March 11, 2014

Reviewed and Released by: Greg Lawrence, Assistant Lab Director

Page 14 of 17 Ver 2

B = Present in blank, no bias suspected.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

March 11, 2014

FOR: Attn: Ms Jill Libby

Tighe & Bond 213 Court St Suite 900

Middletown, CT 06457

Sample Information **Custody Information** Date Time JL 02/21/14 Matrix: SOIL Collected by: 0:00 Received by: Location Code: **TIGHE** LK 02/24/14 16:40

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

aboratory Data SDG ID: GBG12137

Phoenix ID: BG12146

Project ID: RECORD JOURNAL

Client ID: SS-101

RL/ Parameter **PQL** Units Date/Time Reference Result Βy Percent Solid 88 % 02/24/14 E160.3 Extraction of CT ETPH Completed 02/24/14 BS/F 3545 TPH by GC (Extractable Products)

Ext. Petroleum HC ND 56 mg/Kg 02/26/14 JRB CT ETPH/8015 ND CT ETPH/8015 Identification mg/Kg 02/26/14 JRB **QA/QC Surrogates** % n-Pentacosane 78 02/26/14 JRB 50 - 150 % %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

March 11, 2014

Reviewed and Released by: Greg Lawrence, Assistant Lab Director

Page 15 of 17 Ver 2

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

March 11, 2014

FOR: Attn: Ms Jill Libby

Tighe & Bond 213 Court St Suite 900

Middletown, CT 06457

Sample Information **Custody Information Date** <u>Time</u> SOIL Collected by: JL 02/21/14 0:00 Matrix: Received by: Location Code: **TIGHE** LK 02/24/14 16:40

Rush Request: Standard Analyzed by: see "By" below

P.O.#:

Laboratory Data

SDG ID: GBG12137

Phoenix ID: BG12147

Project ID: RECORD JOURNAL

Client ID: DUP

		RL/				
Parameter	Result	PQL	Units	Date/Time	Ву	Reference
Lead	7.86	0.38	mg/Kg	02/25/14	LK	SW6010
SPLP Lead	< 0.010	0.010	mg/L	02/25/14	LK	SW6010
SPLP Metals Digestion	Completed			02/25/14	1/1	SW846-3005
Percent Solid	90		%	02/24/14	1	E160.3
Soil Extraction SVOA PAH	Completed			02/24/14	BJ/FV	SW3545
Extraction of CT ETPH	Completed			02/24/14	BS/F	3545
SPLP Extraction for Metals	Completed			02/24/14	1	EPA 1312
SPLP Extraction for Organics	Completed			02/24/14	1	EPA1312
SPLP Semivolatiles (SIM) Ext.	Completed			02/25/14	E/D	SW3510/3520
Total Metals Digest	Completed			02/24/14	Z/AG	SW846 - 3050
TPU by GC (Extractable	Products)					
TPH by GC (Extractable				00/00/4		OT
Ext. Petroleum HC	ND	55	mg/Kg	02/26/14	JRB	CT ETPH/8015
Identification	ND		mg/Kg	02/26/14	JRB	CT ETPH/8015
QA/QC Surrogates						
% n-Pentacosane	88		%	02/26/14	JRB	50 - 150 %
Polynuclear Aromatic H	<u>C</u>					
2-Methylnaphthalene	 ND	250	ug/Kg	02/25/14	DD	SW 8270
Acenaphthene	ND	250	ug/Kg	02/25/14	DD	SW 8270
Acenaphthylene	ND	250	ug/Kg	02/25/14	DD	SW 8270
Anthracene	ND	250	ug/Kg	02/25/14	DD	SW 8270
Benz(a)anthracene	ND	250	ug/Kg	02/25/14	DD	SW 8270
Benzo(a)pyrene	ND	250	ug/Kg	02/25/14	DD	SW 8270
Benzo(b)fluoranthene	ND	250	ug/Kg	02/25/14	DD	SW 8270
Benzo(ghi)perylene	ND	250	ug/Kg	02/25/14	DD	SW 8270
Benzo(k)fluoranthene	ND	250	ug/Kg	02/25/14	DD	SW 8270
Chrysene	ND	250	ug/Kg	02/25/14	DD	SW 8270

Page 16 of 17 Ver 2

Project ID: RECORD JOURNAL Phoenix I.D.: BG12147

Client ID: DUP

Parameter	Result	RL/ PQL	Units	Date/Time	Ву	Reference	
Dibenz(a,h)anthracene	ND	250	ug/Kg	02/25/14	DD	SW 8270	
Fluoranthene	ND	250	ug/Kg	02/25/14	DD	SW 8270	
Fluorene	ND	250	ug/Kg	02/25/14	DD	SW 8270	
Indeno(1,2,3-cd)pyrene	ND	250	ug/Kg	02/25/14	DD	SW 8270	
Naphthalene	ND	250	ug/Kg	02/25/14	DD	SW 8270	
Phenanthrene	ND	250	ug/Kg	02/25/14	DD	SW 8270	
Pyrene	ND	250	ug/Kg	02/25/14	DD	SW 8270	
QA/QC Surrogates							
% 2-Fluorobiphenyl	71		%	02/25/14	DD	30 - 130 %	
% Nitrobenzene-d5	70		%	02/25/14	DD	30 - 130 %	
% Terphenyl-d14	73		%	02/25/14	DD	30 - 130 %	
SPLP Semivolatiles by	/ SIM						
2-Methylnaphthalene	ND	0.10	ug/L	02/26/14	DD	8270(SIM)	
Acenaphthene	ND	0.10	ug/L	02/26/14	DD	8270(SIM)	
Acenaphthylene	ND	0.10	ug/L	02/26/14	DD	8270(SIM)	
Anthracene	ND	0.10	ug/L	02/26/14	DD	8270(SIM)	
Benz(a)anthracene	0.02	0.02	ug/L	02/26/14	DD	8270(SIM)	В*
Benzo(a)pyrene	ND	0.02	ug/L	02/26/14	DD	8270(SIM)	
Benzo(b)fluoranthene	ND	0.02	ug/L	02/26/14	DD	8270(SIM)	
Benzo(ghi)perylene	ND	0.10	ug/L	02/26/14	DD	8270(SIM)	
Benzo(k)fluoranthene	ND	0.02	ug/L	02/26/14	DD	8270(SIM)	
Chrysene	ND	0.02	ug/L	02/26/14	DD	8270(SIM)	В
Dibenz(a,h)anthracene	ND	0.01	ug/L	02/26/14	DD	8270(SIM)	
Fluoranthene	ND	0.10	ug/L	02/26/14	DD	8270(SIM)	
Fluorene	ND	0.10	ug/L	02/26/14	DD	8270(SIM)	
Indeno(1,2,3-cd)pyrene	ND	0.02	ug/L	02/26/14	DD	8270(SIM)	
Naphthalene	ND	0.10	ug/L	02/26/14	DD	8270(SIM)	
Phenanthrene	ND	0.07	ug/L	02/26/14	DD	8270(SIM)	
Pyrene	ND	0.10	ug/L	02/26/14	DD	8270(SIM)	
QA/QC Surrogates							
% 2-Fluorobiphenyl	77		%	02/26/14	DD	30 - 130 %	
% Nitrobenzene-d5	84		%	02/26/14	DD	30 - 130 %	
% Terphenyl-d14	99		%	02/26/14	DD	30 - 130 %	

 B^* = Present in blank, a bias is possible.

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

March 11, 2014

Reviewed and Released by: Greg Lawrence, Assistant Lab Director

Page 17 of 17 Ver 2

B = Present in blank, no bias suspected.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

March 11, 2014

QA/QC Data

SDG I.D.: GBG12137

Parameter	Blank	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	Rec Limits	RPD Limits	
QA/QC Batch 267317, QC Sample N	lo: BG0	7586 (BC	G12137,	BG1213	38, BG	12139, E	3G1214	1, BG1	2142, E	3G1214	3, BG121	47)	
ICP Metals - SPLP Extraction													
Lead	BRL	0.026	0.024	NC	97.1	98.8	1.7	96.1	98.8	2.8	75 - 125	20	
QA/QC Batch 267390, QC Sample N	QA/QC Batch 267390, QC Sample No: BG12067 (BG12137, BG12138, BG12139, BG12141, BG12142, BG12143, BG12147)												
ICP Metals - Soil													
Lead	BRL	48.4	87.4	57.4	105	103	1.9	102	76.2	29.0	75 - 125	30	r

r = This parameter is outside laboratory rpd specified recovery limits.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

March 11, 2014

QA/QC Data

SDG I.D.: GBG12137

Parameter	Blank	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 267379, QC	Sample No: BG12138 (BG12137,	BG12138, BG	12139, I	3G1214	13, BG1	12144, E	3G1214	7)		
Polynuclear Aromatic	HC - Soil									
2-Methylnaphthalene	ND	74	79	6.5	81	85	4.8	30 - 130	30	
Acenaphthene	ND	76	79	3.9	83	88	5.8	30 - 130	30	
Acenaphthylene	ND	75	78	3.9	82	86	4.8	30 - 130	30	
Anthracene	ND	75	81	7.7	84	89	5.8	30 - 130	30	
Benz(a)anthracene	ND	68	72	5.7	76	81	6.4	30 - 130	30	
Benzo(a)pyrene	ND	71	75	5.5	79	85	7.3	30 - 130	30	
Benzo(b)fluoranthene	ND	87	90	3.4	91	104	13.3	30 - 130	30	
Benzo(ghi)perylene	ND	66	81	20.4	88	86	2.3	30 - 130	30	
Benzo(k)fluoranthene	ND	90	86	4.5	92	100	8.3	30 - 130	30	
Chrysene	ND	72	77	6.7	80	87	8.4	30 - 130	30	
Dibenz(a,h)anthracene	ND	67	83	21.3	88	88	0.0	30 - 130	30	
Fluoranthene	ND	84	93	10.2	96	105	9.0	30 - 130	30	
Fluorene	ND	77	83	7.5	87	91	4.5	30 - 130	30	
Indeno(1,2,3-cd)pyrene	ND	67	82	20.1	88	88	0.0	30 - 130	30	
Naphthalene	ND	72	75	4.1	77	82	6.3	30 - 130	30	
Phenanthrene	ND	77	82	6.3	87	93	6.7	30 - 130	30	
Pyrene	ND	89	95	6.5	99	109	9.6	30 - 130	30	
% 2-Fluorobiphenyl	75	75	77	2.6	79	85	7.3	30 - 130	30	
% Nitrobenzene-d5	74	66	70	5.9	72	76	5.4	30 - 130	30	
% Terphenyl-d14	81	101	104	2.9	103	115	11.0	30 - 130	30	
Comment:										
Additional 8270 criteria: 20% acceptance range for aqueor	of compounds can be outside of accepus samples: 15-110%, for soils 30-1309	otance criteria as %)	s long as	recovery	y is at le	ast 10%	. (Acid sı	urrogates		
QA/QC Batch 267391, QC	Sample No: BG12139 (BG12139,	BG12140, BG	12144, I	3G1214	6, BG1	12147)				
TPH by GC (Extractal	ole Products) - Soil									
Ext. Petroleum HC	ND	70	77	9.5	77	45	52.5	60 - 120	30	m,r
% n-Pentacosane	95	89	100	11.6	99	66	40.0	50 - 150	30	r
QA/QC Batch 268272, QC	Sample No: BG12140 (BG12140)									
<u>Semivolatiles</u>										
2-Methylnaphthalene	ND	67	68	1.5				30 - 130	20	
Acenaphthene	ND	67	68	1.5				30 - 130	20	
Acenaphthylene	ND	66	67	1.5				30 - 130	20	
Anthracene	ND	70	71	1.4				30 - 130	20	
Benz(a)anthracene	0.03	67	69	2.9				30 - 130	20	
Benzo(a)pyrene	ND	64	65	1.6				30 - 130	20	
Benzo(b)fluoranthene	ND	72	71	1.4				30 - 130	20	
Benzo(ghi)perylene	ND	70	68	2.9				30 - 130	20	
Benzo(k)fluoranthene	ND	67	73	8.6				30 - 130	20	
Chrysene	ND	75	75 75	0.0				30 - 130	20	
Dibenz(a,h)anthracene	ND	69	68	1.5				30 - 130	20	
2.2012(a,ii)antili acciic	IND	07	50	1.5				55 - 150	20	

I -		
ta	CDCID.	GBG12137
14	ZIJ(-111).	(315(31/15/

20

20

20

20

30 - 130

30 - 130

30 - 130

30 - 130

Parameter	Blank	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
Fluoranthene	ND	61	61	0.0				30 - 130	20	
Fluorene	ND	70	70	0.0				30 - 130	20	
Indeno(1,2,3-cd)pyrene	ND	69	67	2.9				30 - 130	20	
Naphthalene	ND	65	65	0.0				30 - 130	20	
Phenanthrene	ND	71	72	1.4				30 - 130	20	
Pyrene	ND	61	61	0.0				30 - 130	20	
% 2-Fluorobiphenyl	77	63	64	1.6				30 - 130	20	
% Nitrobenzene-d5	85	67	68	1.5				30 - 130	20	
% Terphenyl-d14	94	61	61	0.0				30 - 130	20	
Comment:										

Additional 8270 criteria: 20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

QA/QC Batch 267481, QC Sample No: BG12778 (BG12137, BG12138, BG12139, BG12143, BG12144, BG12147)

2-Methylnaphthalene	ND	78	82	5.0	30 - 130	20
Acenaphthene	ND	81	86	6.0	30 - 130	20
Acenaphthylene	ND	80	84	4.9	30 - 130	20
Anthracene	ND	83	87	4.7	30 - 130	20
Benz(a)anthracene	0.03	84	87	3.5	30 - 130	20
Benzo(a)pyrene	ND	76	81	6.4	30 - 130	20
Benzo(b)fluoranthene	ND	86	88	2.3	30 - 130	20
Benzo(ghi)perylene	ND	79	93	16.3	30 - 130	20
Benzo(k)fluoranthene	ND	86	89	3.4	30 - 130	20
Chrysene	0.02	85	89	4.6	30 - 130	20
Dibenz(a,h)anthracene	ND	79	91	14.1	30 - 130	20
Fluoranthene	ND	89	90	1.1	30 - 130	20
Fluorene	ND	84	89	5.8	30 - 130	20
Indeno(1,2,3-cd)pyrene	ND	78	90	14.3	30 - 130	20
Naphthalene	ND	72	75	4.1	30 - 130	20
Phenanthrene	ND	83	87	4.7	30 - 130	20

91

79

71

101

91

82

74

100

0.0

3.7

4.1

1.0

Additional 8270 criteria: 20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

QA/QC Batch 268112, QC Sample No: BG15604 (BG12140)

ND

82

89

92

Semivolatiles

Pyrene

% 2-Fluorobiphenyl

% Nitrobenzene-d5

% Terphenyl-d14

Comment:

Polynuclear Aromatic F	IC - Soil	•								
2-Methylnaphthalene	ND	63	61	3.2	72	73	1.4	30 - 130	30	
Acenaphthene	ND	69	70	1.4	74	75	1.3	30 - 130	30	
Acenaphthylene	ND	69	69	0.0	74	74	0.0	30 - 130	30	
Anthracene	ND	71	71	0.0	76	76	0.0	30 - 130	30	
Benz(a)anthracene	ND	73	73	0.0	80	81	1.2	30 - 130	30	
Benzo(a)pyrene	ND	68	68	0.0	72	72	0.0	30 - 130	30	
Benzo(b)fluoranthene	ND	77	80	3.8	78	79	1.3	30 - 130	30	
Benzo(ghi)perylene	ND	68	68	0.0	81	83	2.4	30 - 130	30	
Benzo(k)fluoranthene	ND	79	79	0.0	83	82	1.2	30 - 130	30	
Chrysene	ND	73	74	1.4	76	77	1.3	30 - 130	30	
Dibenz(a,h)anthracene	ND	71	70	1.4	82	83	1.2	30 - 130	30	
Fluoranthene	ND	84	90	6.9	86	94	8.9	30 - 130	30	
Fluorene	ND	70	69	1.4	76	76	0.0	30 - 130	30	

Parameter	Blank	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
Indeno(1,2,3-cd)pyrene	ND	70	70	0.0	82	83	1.2	30 - 130	30
Naphthalene	ND	63	62	1.6	72	73	1.4	30 - 130	30
Phenanthrene	ND	73	73	0.0	74	76	2.7	30 - 130	30
Pyrene	ND	89	95	6.5	89	98	9.6	30 - 130	30
% 2-Fluorobiphenyl	73	71	71	0.0	73	74	1.4	30 - 130	30
% Nitrobenzene-d5	68	63	62	1.6	66	65	1.5	30 - 130	30

101

Additional 8270 criteria: 20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

91

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

% Terphenyl-d14

Comment:

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director

SDG I.D.: GBG12137

March 11, 2014

7.6

98

106

7.8

30 - 130

30

 $m = This\ parameter\ is\ outside\ laboratory\ ms/msd\ specified\ recovery\ limits.$

r = This parameter is outside laboratory rpd specified recovery limits.

Page 1 of 1

Analysis

Tuesday, March 11, 2014 Criteria: CT: GAM, RC

Sample Criteria Exceedences Report GBG12137 - TIGHE

State: CT

SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
BG12137	PB-SM	Lead	CT / INORGANIC SUBSTANCES / RES DEC (mg/kg)	7070	34	400	400	mg/Kg
BG12143	\$8100SMR	Phenanthrene	CT / SEMIVOLATILE ORGANIC COMP / GA/GAA PMC (9600	260	4000	4000	ug/Kg
BG12143	\$8100SMR	Fluoranthene	CT / SEMIVOLATILE ORGANIC COMP / GA/GAA PMC (7300	260	5600	5600	ug/Kg
BG12143	\$8100SMR	Pyrene	CT / SEMIVOLATILE ORGANIC COMP / GA/GAA PMC ((4100	260	4000	4000	ug/Kg
BG12143	\$8100SMR	Benz(a)anthracene	CT / SEMIVOLATILE ORGANIC COMP / GA/GAA PMC (3000	260	1000	1000	ug/Kg
BG12143	\$8100SMR	Benz(a)anthracene	CT / SEMIVOLATILE ORGANIC COMP / RES DEC (mg/	k 3000	260	1000	1000	ug/Kg
BG12143	\$8100SMR	Chrysene	CT / SEMIVOLATILE ORGANIC COMP / GA/GAA PMC ((2800	260	1000	1000	ug/Kg
BG12143	\$8100SMR	Benzo(b)fluoranthene	CT / SEMIVOLATILE ORGANIC COMP / GA/GAA PMC (4000	260	1000	1000	ug/Kg
BG12143	\$8100SMR	Benzo(b)fluoranthene	CT / SEMIVOLATILE ORGANIC COMP / RES DEC (mg/	k 4000	260	1000	1000	ug/Kg
BG12143	\$8100SMR	Benzo(k)fluoranthene	CT / SEMIVOLATILE ORGANIC COMP / GA/GAA PMC ((4100	260	1000	1000	ug/Kg
BG12143	\$8100SMR	Benzo(a)pyrene	CT / SEMIVOLATILE ORGANIC COMP / GA/GAA PMC (2400	260	1000	1000	ug/Kg
BG12143	\$8100SMR	Benzo(a)pyrene	CT / SEMIVOLATILE ORGANIC COMP / RES DEC (mg/	k 2400	260	1000	1000	ug/Kg
BG12143	\$8100SMR	Indeno(1,2,3-cd)pyrene	CT / SEMIVOLATILE ORGANIC COMP / GA/GAA PMC ((1100	260	1000	1000	ug/Kg
BG12143	\$8100SMR	Indeno(1,2,3-cd)pyrene	CT / SEMIVOLATILE ORGANIC COMP / RES DEC (mg/	k 1100	260	1000	1000	ug/Kg
BG12143	SPLP-PB	SPLP Lead	CT / INORGANIC SUBSTANCES / GA/GAA PMC (mg/l)*	* 0.036	0.010	0.015	0.015	mg/L

Phoenix Laboratories does not assume responsibility for the data contained in this report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

Reasonable Confidence Protocol Laboratory Analysis QA/QC Certification Form

Laboratory Name: Phoenix Environmental Labs, Inc. Client: Tighe & Bond Project Location: RECORD JOURNAL **Project Number:** Laboratory Sample ID(s): BG12137, BG12138, BG12139, BG12140, BG12141, BG12142, BG12143, BG12144, BG12145, BG12146, BG12147 Sampling Date(s): 2/20/2014, 2/21/2014 **RCP Methods Used: ✓** 1311/1312 **✓** 6010 7000 7196 8081 □ EPH ☐ TO15 7470/7471 8082 8151 8260 **✓** 8270 ✓ ETPH 9010/9012 VPH For each analytical method referenced in this laboratory report package, were all 1. ✓ Yes □ No specified QA/QC performance criteria followed, including the requirement to explain any criteria falling outside of acceptable guidelines, as specified in the CT DEP method-specific Reasonable Confidence Protocol documents? Were the method specified preservation and holding time requirements met? ✓ Yes □ No EPH and VPH methods only: Was the VPH or EPH method conducted without 1b. ☐ Yes ☐ No. **✓** NA significant modifications (see section 11.3 of respective RCP methods) Were all samples received by the laboratory in a condition consistent with that 2. ✓ Yes □ No described on the associated Chain-of-Custody document(s)? Were samples received at an appropriate temperature (< 6 Degrees C)? 3. \square NA ✓ Yes □ No Were all QA/QC performance criteria specified in the Reasonable Confidence 4. ☐ Yes ✓ No Protocol documents acheived? See Sections: ETPH Narration, ICP Narration, SVOASIM Narration. Were reporting limits specified or referenced on the chain-of-custody? 5a. ✓ Yes □ No Were these reporting limits met? 5b. ✓ Yes No. □ NA For each analytical method referenced in this laboratory report package, were 6. ☐ Yes **☑** No \square NA results reported for all constituents identified in the method-specific analyte lists presented in the Reasonable Confidence Protocol documents? 7. Are project-specific matrix spikes and laboratory duplicates included in the data set? ✓ Yes □ No. \square NA Note: For all questions to which the response was "No" (with the exception of question #5a, #7), additional information must be provided in an attached narrative. If the answer to question #1, #1A or 1B is "No", the data package does not meet the requirements for "Reasonable Confidence". I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowlegde and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. Date: Tuesday, March 11, 2014 Authorized Printed Name: Greg Lawrence Signature: Position: Assistant Lab Director

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

March 11, 2014

SDG I.D.: GBG12137

BG12137, BG12138, BG12139, BG12141, BG12142, BG12143, BG12147 - The client requested a short list of analytes from the 6010 RCP Metals list: Only Lead was reported as requested on the chain-of-custody.

BG12137, BG12138, BG12139, BG12143, BG12144, BG12147 - The client requested a short list for 8270 RCP Semivolatiles. Only the PAH constituents are reported as requested on the chain-of-custody.

ETPH Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? No.

QC Batch 267391 (Samples: BG12139, BG12140, BG12144, BG12146, BG12147): -----

The site specific MSD recovery is below the method criteria for Ext. Petroleum HC, therefore a low bias is likely.

The site specific MS/MSD RPD is above the method criteria for Ext. Petroleum HC. This analyte was not reported in the samples, therefore no sample variability is suspected.

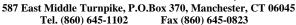
The site specific MS/MSD RPD is above the method criteria for the surrogate %n-Pentacosane, therefore there may be variability in the reported result.

Instrument: Au-fid1 02/25/14-1 (BG12139)

Initial Calibration (FID1 - ETPH_1) - The initial calibration curve was within method criteria and had a %RSD less than 30%.

As per section 7.2.3, a discrimination check standard was run and contained the following outliers: C36

Printed Name Jeff Bucko
Position: Chemist
Date: 2/25/2014


Instrument: Au-fid1 02/25/14-2 (BG12139, BG12140, BG12144, BG12146, BG12147)

Initial Calibration (FID1 - ETPH_1) - The initial calibration curve was within method criteria and had a %RSD less than 30%.

As per section 7.2.3, a discrimination check standard was run and contained the following outliers: C36

Printed Name Jeff Bucko **Position:** Chemist **Date:** 2/25/2014

RCP Certification Report

March 11, 2014

SDG I.D.: GBG12137

QC (Site Specific)

----- Sample No: BG12139, QA/QC Batch: 267391 -----

All LCS recoveries were within 60 - 120 with the following exceptions: None.

All LCSD recoveries were within 60 - 120 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

All MS recoveries were within 50 - 150 with the following exceptions: None.

All MSD recoveries were within 50 - 150 with the following exceptions: Ext. Petroleum HC(45%)

All MS/MSD RPDs were less than 30% with the following exceptions: % n-Pentacosane(40.0%), Ext. Petroleum HC(52.5%)

A matrix effect is suspected when a MS/MSD recovery is outside of criteria. No further action is required if LCS/LCSD compounds are within criteria.

ICP Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? No.

QC Batch 267390 (Samples: BG12137, BG12138, BG12139, BG12141, BG12142, BG12143, BG12147) ----

The Laboratory Duplicate RPD is above the method criteria for Lead, therefore there may be variability in the reported result.

Instrument: Arcos 02/25/14-1 (BG12137, BG12138, BG12139, BG12141, BG12142, BG12143,

BG12147)

The initial calibration met criteria.

The continuing calibration standards met criteria for all the elements reported. The linear range is defined daily by the calibration range.

The continuing calibration blanks were less than the reporting level for the elements reported.

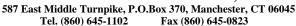
The ICSA and ICSAB were analyzed at the beginning and end of the run and were within criteria.

Printed Name Laura Kinnin
Position: Chemist
Date: 2/25/2014

Instrument: Blue 02/25/14-1 (BG12137, BG12138, BG12139, BG12141, BG12142, BG12143,

BG12147)

The initial calibration met criteria.


The continuing calibration standards met criteria for all the elements reported. The linear range is defined daily by the calibration range.

The continuing calibration blanks were less than the reporting level for the elements reported.

The ICSA and ICSAB were analyzed at the beginning and end of the run and were within criteria.

Printed Name Laura Kinnin Position: Chemist Date: 2/25/2014

RCP Certification Report

March 11, 2014

SDG I.D.: GBG12137

QC (Batch Specific)

----- Sample No: BG07586, QA/QC Batch: 267317 -----

All LCS recoveries were within 75 - 125 with the following exceptions: None.

All LCSD recoveries were within 75 - 125 with the following exceptions: None.

All LCS/LCSD RPDs were less than 20% with the following exceptions: None.

----- Sample No: BG12067, QA/QC Batch: 267390 ------

All LCS recoveries were within 75 - 125 with the following exceptions: None.

All LCSD recoveries were within 75 - 125 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

PAH Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument: Chem07 02/24/14-1 (BG12137, BG12138, BG12139)

The DDT breakdown and pentachlorophenol & benzidine peak tailing were evaluated in the DFTPP tune and were found to be in control.

If PAH/base neutral were requested, Phoenix utilized a method that contained a shortened list, so some of the compounds in the narrative may be non-applicable. Initial Calibration Verification (CHEM07/BN_0220):

100% of target compounds met criteria.

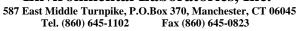
The following compounds had %RSDs >20%: None.

The following compounds did not meet a minimum response factor of 0.01: None.

 $Continuing\ Calibration\ Verification\ (CHEM07/0224_04-BN_0220):$

100% of target compounds met criteria. Internal standards were within the 50%-200% deviation from the initial calibration. The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.


The following compounds did not meet recommended response factors: None.

The following compounds did not meet minimum response factors: None.

Printed Name Damien Drobinski

Position: Chemist **Date:** 2/24/2014

RCP Certification Report

March 11, 2014

SDG I.D.: GBG12137

QC (Site Specific)
Sample No: BG12138, QA/QC Batch: 267379
All LCS recoveries were within 30 - 130 with the following exceptions: None.
All LCSD recoveries were within 30 - 130 with the following exceptions: None.
All LCS/LCSD RPDs were less than 30% with the following exceptions: None.
All MS recoveries were within 30 - 130 with the following exceptions: None.
All MSD recoveries were within 30 - 130 with the following exceptions: None.
All MS/MSD RPDs were less than 30% with the following exceptions: None.
Sample No: BG12140, QA/QC Batch: 268272
All LCS recoveries were within 30 - 130 with the following exceptions: None.
All LCSD recoveries were within 30 - 130 with the following exceptions: None.
All LCS/LCSD RPDs were less than 20% with the following exceptions: None.
A matrix effect is suspected when a MS/MSD recovery is outside of criteria. No further action is required if LCS/LCSD compounds are within criteria. QC (Batch Specific)
Sample No: BG12778, QA/QC Batch: 267481
All LCS recoveries were within 30 - 130 with the following exceptions: None.
All LCSD recoveries were within 30 - 130 with the following exceptions: None.
All LCS/LCSD RPDs were less than 20% with the following exceptions: None.
Sample No: BG15604, QA/QC Batch: 268112
All LCS recoveries were within 30 - 130 with the following exceptions: None.
All LCSD recoveries were within 30 - 130 with the following exceptions: None.
All LCS/LCSD RPDs were less than 30% with the following exceptions: None.
SVOA Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Chem05 03/06/14-1 (BG12140)

Instrument:

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

March 11, 2014

SDG I.D.: GBG12137

Initial Calibration Verification (CHEM05/SV_0306):

99% of target compounds met criteria.

The following compounds had %RSDs >20%: 4,6-Dinitro-2-methylphenol (32%)

The following compounds did not meet a minimum response factor of 0.01: None.

Continuing Calibration Verification (CHEM05/0306_11-SV_0306):

100% of target compounds met criteria. Internal standards were within the 50%-200% deviation from the initial calibration. The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: 2-nitrophenol (.062)[0.1], Hexachlorobenzene (.084)[0.1]

The following compounds did not meet minimum response factors: None.

Printed Name Damien Drobinski

Position: Chemist Date: 3/6/2014

Instrument: Chem06 02/25/14-1 (BG12147)

The DDT breakdown and pentachlorophenol & benzidine peak tailing were evaluated in the DFTPP tune and were found to be in control.Initial Calibration Verification (CHEM06/SV_0224):

95% of target compounds met criteria.

The following compounds had %RSDs >20%: 2,4-Dinitrophenol (22%), 4-Nitrophenol (25%), Atrazine (22%), Benzaldehyde (25%)

The following compounds did not meet a minimum response factor of 0.01: None.

Continuing Calibration Verification (CHEM06/0225_02-SV_0224):

100% of target compounds met criteria. Internal standards were within the 50%-200% deviation from the initial calibration. The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: 2-nitrophenol (.054)[0.1], Hexachlorobenzene (.070)[0.1]

The following compounds did not meet minimum response factors: None.

Printed Name Damien Drobinski

Position: Chemist **Date:** 2/25/2014

Instrument: Chem06 03/09/14-1 (BG12140)

The DDT breakdown and pentachlorophenol & benzidine peak tailing were evaluated in the DFTPP tune and were found to be in control.Initial Calibration Verification (CHEM06/SV_0306):

98% of target compounds met criteria.

The following compounds had %RSDs >20%: 2,4-Dinitrophenol (32%), Hexachlorocyclopentadiene (27%)

The following compounds did not meet a minimum response factor of 0.01: None.

Continuing Calibration Verification (CHEM06/0309_02-SV_0306):

100% of target compounds met criteria. Internal standards were within the 50%-200% deviation from the initial calibration. The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: 2-nitrophenol (.056)[0.1], Hexachlorobenzene (.079)[0.1]

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

March 11, 2014

SDG I.D.: GBG12137

The following compounds did not meet minimum response factors: None.

Printed Name Damien Drobinski

Position: Chemist **Date:** 3/9/2014

Instrument: Chem12 02/25/14-1 (BG12143)

The DDT breakdown and pentachlorophenol & benzidine peak tailing were evaluated in the DFTPP tune and were found to be in control.Initial Calibration Verification (CHEM12/sv_0210):

94% of target compounds met criteria.

The following compounds had %RSDs >20%: 2-Nitroaniline (21%), 3-Nitroaniline (39%), 4-Chloroaniline (21%), 4-Nitrophenol (23%), Carbazole (39%)

The following compounds did not meet a minimum response factor of 0.01: None.

Continuing Calibration Verification (CHEM12/0225_02-sv_0210):

99% of target compounds met criteria. Internal standards were within the 50%-200% deviation from the initial calibration. The following compounds did not meet % deviation criteria: 2,4-dinitrophenol (-33%)[30%]

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: 2-nitrophenol (.047)[0.1], Hexachlorobenzene (.074)[0.1]

The following compounds did not meet minimum response factors: None.

Printed Name Damien Drobinski

Position: Chemist **Date:** 2/25/2014

Instrument: Chem19 02/24/14-1 (BG12143, BG12144)

The DDT breakdown and pentachlorophenol & benzidine peak tailing were evaluated in the DFTPP tune and were found to be in control. Initial Calibration Verification (CHEM19/SV 0214):

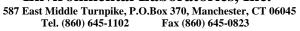
99% of target compounds met criteria.

The following compounds had %RSDs >20%: Benzaldehyde (22%)

The following compounds did not meet a minimum response factor of 0.01: None.

Continuing Calibration Verification (CHEM19/0224_04-SV_0214):

100% of target compounds met criteria. Internal standards were within the 50%-200% deviation from the initial calibration. The following compounds did not meet % deviation criteria: None.


The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: 2-nitrophenol (.068)[0.1], Hexachlorobenzene (.080)[0.1] The following compounds did not meet minimum response factors: None.

Printed Name Damien Drobinski

Position: Chemist **Date:** 2/24/2014

RCP Certification Report

March 11, 2014

SDG I.D.: GBG12137

QC (Site Specific)
Sample No: BG12138, QA/QC Batch: 267379
All LCS recoveries were within 30 - 130 with the following exceptions: None.
All LCSD recoveries were within 30 - 130 with the following exceptions: None.
All LCS/LCSD RPDs were less than 30% with the following exceptions: None.
All MS recoveries were within 30 - 130 with the following exceptions: None.
All MSD recoveries were within 30 - 130 with the following exceptions: None.
All MS/MSD RPDs were less than 30% with the following exceptions: None.
Sample No: BG12140, QA/QC Batch: 268272
All LCS recoveries were within 30 - 130 with the following exceptions: None.
All LCSD recoveries were within 30 - 130 with the following exceptions: None.
All LCS/LCSD RPDs were less than 20% with the following exceptions: None.
A matrix effect is suspected when a MS/MSD recovery is outside of criteria. No further action is required if LCS/LCSD compounds are within criteria.
QC (Batch Specific)
Sample No: BG12778, QA/QC Batch: 267481
All LCS recoveries were within 30 - 130 with the following exceptions: None.
All LCSD recoveries were within 30 - 130 with the following exceptions: None.
All LCS/LCSD RPDs were less than 20% with the following exceptions: None.
Sample No: BG15604, QA/QC Batch: 268112
All LCS recoveries were within 30 - 130 with the following exceptions: None.
All LCSD recoveries were within 30 - 130 with the following exceptions: None.
All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

March 11, 2014

SDG I.D.: GBG12137

SVOASIM Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? No.

QC Batch 267481 (Samples: BG12137, BG12138, BG12139, BG12143, BG12144, BG12147): -----

SPLP Extraction-Benz(a)anthracene and SPLP Extraction-Chrysene were detected in the blank. A high bias is suspected for Benz(a)anthracene in samples BG12137, BG12138, BG12139, BG12143, BG12144, and BG12147 and for Chrysene in samples BG12137, BG12138, BG12139, BG12143. Chrysene was not reported in samples BG12144 and BG12147, so no bias is suspected.

Instrument: Chem04 02/26/14-1 (BG12137, BG12138, BG12139, BG12143, BG12144, BG12147)

The DDT breakdown and pentachlorophenol & benzidine peak tailing were evaluated in the DFTPP tune and were found to be in control.

In the event that lower detection levels were requested, the samples may have been analyzed by selective ion monitoring (SIM) mode.

If PAH/base neutral were requested, Phoenix utilized a method that contained a shortened list, so some of the compounds in the narrative may be non-applicable. Initial Calibration Verification (CHEM04/SIM_0219):

98% of target compounds met criteria.

The following compounds had %RSDs >20%: 4,6-Dinitro-2-methylphenol (21%)

The following compounds did not meet a minimum response factor of 0.01: None.

Continuing Calibration Verification (CHEM04/0226_02A-SIM_0219):

100% of target compounds met criteria. Internal standards were within the 50%-200% deviation from the initial calibration. The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: 2-nitrophenol (.086)[0.1]

The following compounds did not meet minimum response factors: None.

Printed Name Damien Drobinski

Position: Chemist **Date:** 2/26/2014

Instrument: Chem04 03/07/14-1 (BG12140)

The DDT breakdown and pentachlorophenol & benzidine peak tailing were evaluated in the DFTPP tune and were found to be in control.

In the event that lower detection levels were requested, the samples may have been analyzed by selective ion monitoring (SIM) mode.

If PAH/base neutral were requested, Phoenix utilized a method that contained a shortened list, so some of the compounds in the narrative may be non-applicable. Initial Calibration Verification (CHEM04/SIM_0219):

98% of target compounds met criteria.

The following compounds had %RSDs >20%: 4,6-Dinitro-2-methylphenol (21%)

The following compounds did not meet a minimum response factor of 0.01: None.

Continuing Calibration Verification (CHEM04/0307_02-SIM_0219):

95% of target compounds met criteria. Internal standards were within the 50%-200% deviation from the initial calibration. The following compounds did not meet % deviation criteria: 4,6-dinitro-2-methylphenol (39%)[30%], Pentachlorophenol (-61%)[30%]

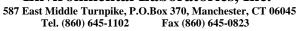
The following compounds did not meet maximum % deviations: Pentachlorophenol (-61%)[40%]

The following compounds did not meet recommended response factors: 2-nitrophenol (.086)[0.1]

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

March 11, 2014


SDG I.D.: GBG12137

The following compounds did not meet minimum response factors: None.

Printed Name Damien Drobinski

Position: Chemist **Date:** 3/7/2014

RCP Certification Report

March 11, 2014

SDG I.D.: GBG12137

QC (Site Specific)
Sample No: BG12138, QA/QC Batch: 267379
All LCS recoveries were within 30 - 130 with the following exceptions: None.
All LCSD recoveries were within 30 - 130 with the following exceptions: None.
All LCS/LCSD RPDs were less than 30% with the following exceptions: None.
All MS recoveries were within 30 - 130 with the following exceptions: None.
All MSD recoveries were within 30 - 130 with the following exceptions: None.
All MS/MSD RPDs were less than 30% with the following exceptions: None.
Sample No: BG12140, QA/QC Batch: 268272
All LCS recoveries were within 30 - 130 with the following exceptions: None.
All LCSD recoveries were within 30 - 130 with the following exceptions: None.
All LCS/LCSD RPDs were less than 20% with the following exceptions: None.
A matrix effect is suspected when a MS/MSD recovery is outside of criteria. No further action is required if LCS/LCSD compounds are within
criteria.
QC (Batch Specific)
Sample No: BG12778, QA/QC Batch: 267481
All LCS recoveries were within 30 - 130 with the following exceptions: None.
All LCSD recoveries were within 30 - 130 with the following exceptions: None.
All LCS/LCSD RPDs were less than 20% with the following exceptions: None.
Sample No: BG15604, QA/QC Batch: 268112
All LCS recoveries were within 30 - 130 with the following exceptions: None.
All LCSD recoveries were within 30 - 130 with the following exceptions: None.
All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

Temperature Narration

The samples were received at 6C with cooling initiated. (Note acceptance criteria is above freezing up to 6° C)

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

March 11, 2014

SDG I.D.: GBG12137

	Č	CHAIN OF CHEADY BECODE		Cooler: Cooler: Cooler: Temp & Cooler:	Yes No
		del Trimple of Co. 270 P.	Archotte of cease	Contact	- »
LILOLLI VILA 🗐 🎉 Environmental Laboratories, Inc.) 	East Middle Tuffpike, P.O. Box 3/U, Manchester, C.F. Dov40 Email: info@phoenixlabs.com Fax (860) 645-0823 Client Services (860) 645-8726		Fax: (215) 436 Phone: (215) 436 Email: - 12, 1564	36-83(G)
M 2:1		Re	word traundal	Project P.O:	
Address: 2) \$ (00 html Michael Aman	CT 06457	Invoice to: T+B	Libby Pield	This section complete	This section MUST be completed with
3				Bottle Q	Bottle Quantities.
Sampler's Signature	- Identification Date: 2 2 1/4	Analysis Required			14000
Matrix Code: DW=Drinking Water GW=Ground Water SW=Surface Water WW=Waste RW=Raw Water SE=Sediment SL=Studge S=Soil SD=Soild W=Wipe OIL=Oil B=Bulk L=Liquid	urface Water WW =Waste Water Soil SD =Soild W =Wipe	A CASS			
PHOENIX USE ONLY Customer Sample SAMPLE # Identification	Sample Date Time Matrix Sampled Sampled	2013		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	OR BURGER TO
8-10	न/क्ट/ह	××			
38 18-101	4/30/14	× ×			
	3/11/12/	× × X			
9.	11/00/11	×			
	4)(ide	×\2			
2143 8-103		× × ×			
		_			
2145 8-108		×			
2146 85-104		**	9		
2147 Dup	>	X X			
Relinquished by: Accepted by		Time:	<u>CT</u>	MA Data	Data Format
1+3 I	المارية	4 3 /H 1500	Direct Exposure RCP Cert (Residential)		Excel
This Lo	-/	2/34/14 1100	V-		GIS/Key
xx + Canal	adre	234/14 1640	☐ Other ☐ ☐ GA Mobility		EQuIS Other
Hold extra 55-101 for	4 / V / V / V / V / V / V / V / V / V /	Turnaround:	GB Mobility Residential DEC	S-1 Data Data	Data Package
after we red	IN WE REVENT ETPH MANING	☐ 2 Days* ☐ 3 Days*	I/C DEC	A eSMART K	Full Data Package* Phoenix Std Report
大名の手	om ax (ed)	Standard Other		Other J	Other
* lar broken woon receipt"	upt- client Ce	* SURCHARGE APPLIES	State where samples were collected:		* SURCHARGE APPLIES

Christine Paradise

GBG 12137

From:

Christine Paradise [christine@phoenixlabs.com]

Sent:

Monday, February 24, 2014 5:30 PM

To:

'JLLIBBY@TIGHEBOND.COM'

Subject: SAMPLES RECEIVED 2/24/14

Hi Jill,

We received samples today for project Record Journal, and one soil jar was broken upon receipt. The broken sample ID is B-108. Please let me know how you would like us to proceed. Thank you very much.

Christine Paradise

Phoenix Environmental Laboratories 587 East Middle Turnpike Manchester, CT 06040

Phone: 860-645-1102 Fax: 860-645-0823

6B612137

Christine Paradise

Jill L. Libby [JLLibby@tigheBond.com] From: Sent: Tuesday, February 25, 2014 3:08 PM

To: Christine Paradise

Subject: RE: SAMPLES RECEIVED 2/24/14

Alright, well we are not able to re-sample the location so please note on report that sample was broken during courier transport to the lab.

Thanks,

Jill

Jill Libby | Environmental Scientist Tighe & Bond | 213 Court Street | Middletown, CT 06457 | 860-704-4756 | 315-436-8260 (cell) www.tighebond.com | Follow us on: Twitter Facebook LinkedIn

Tighe&Bond

From: Christine Paradise [mailto:christine@phoenixlabs.com]

Sent: Tuesday, February 25, 2014 12:01 PM

To: Jill L. Libby

Subject: RE: SAMPLES RECEIVED 2/24/14

Jill.

Unfortunately when the sample broke we were unable to salvage it.

Christine Paradise

Phoenix Environmental Laboratories

587 East Middle Turnpike

Manchester, CT 06040 Phone: 860-645-1102 860-645-0823 Fax:

From: Jill L. Libby [mailto:JLLibby@tigheBond.com]

Sent: Tuesday, February 25, 2014 11:35 AM

To: Christine Paradise

Subject: RE: SAMPLES RECEIVED 2/24/14

Christine,

Would you still be able to gather most of the sample and run it?

Jill Libby| Environmental Scientist
Tighe & Bond | 213 Court Street | Middletown, CT 06457 | 860-704-4756 | 315-436-8260 (cell)
www.tighebond.com | Follow us on: Twitter Facebook LinkedIn

Tighe@Bond

From: Christine Paradise [mailto:christine@phoenixlabs.com]

Sent: Monday, February 24, 2014 5:30 PM

To: Jill L. Libby

Subject: SAMPLES RECEIVED 2/24/14

Hi Jill,

We received samples today for project Record Journal, and one soil jar was broken upon receipt. The broken sample ID is B-108. Please let me know how you would like us to proceed. Thank you very much.

Christine Paradise

Phoenix Environmental Laboratories 587 East Middle Turnpike Manchester, CT 06040 Phone: 860-645-1102

Fax: 860-645-0823

Greg - Phoenixlabs

From: Jill L. Libby [JLLibby@tigheBond.com]

Sent: Thursday, March 06, 2014 7:39 AM

To: Greg - Phoenixlabs

Subject: RE: Additional tests if sample is availble

Yes please, TAT of I believe 72 hours so I can have it by next Tuesday.

Thank, Jill

Jill Libby| Environmental Scientist
Tighe & Bond | 213 Court Street | Middletown, CT 06457 | 860-704-4756 | 315-436-8260 (cell)
www.tighebond.com | Follow us on: Twitter Facebook LinkedIn

Tighe&Bond

From: Greg - Phoenixlabs [mailto:greg@phoenixlabs.com]

Sent: Wednesday, March 05, 2014 5:33 PM

To: Jill L. Libby

Subject: RE: Additional tests if sample is availble

Importance: High

Jill,

We do have additional sample, would you like us to go ahead with the two analyses? If so, what type of TAT would you like?

Gregory Lawrence Phoenix Environmental Laboratories 587 East Middle Turnpike Manchester, CT 06040 Ph: 1-860-645-1102

From: Jill L. Libby [mailto:JLLibby@tigheBond.com] Sent: Wednesday, March 05, 2014 4:49 PM

To: greq@phoenixlabs.com

Subject: Additional tests if sample is availble

Greg,

From our Record Journal soil samples (GBG12137) is there sample left from ID B-103 (12140) to run SPLP and mass PAHs?

Jill

Jill Libby| Environmental Scientist
Tighe & Bond | 213 Court Street | Middletown, CT 06457 | 860-704-4756 | 315-436-8260 (cell)
www.tighebond.com | Follow us on: Twitter Facebook LinkedIn

Tighe&Bond

Tuesday, March 11, 2014

Attn: Jill Libby Tighe & Bond 213 Court St Suite 900

Middletown, CT 06457

Project ID: **RECORD JOURNAL** Sample ID#s: BG15041 - BG15044

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

Phyllis Shiller

Laboratory Director

NELAC - #NY11301

CT Lab Registration #PH-0618

MA Lab Registration #MA-CT-007

ME Lab Registration #CT-007

NH Lab Registration #213693-A,B

NJ Lab Registration #CT-003 NY Lab Registration #11301

PA Lab Registration #68-03530 RI Lab Registration #63

VT Lab Registration #VT11301

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

March 11, 2014

FOR: Attn: Jill Libby

Tighe & Bond 213 Court St Suite 900

Middletown, CT 06457

Sample Information **Custody Information** Date Time JL 03/01/14 Matrix: **GROUND WATER** Collected by: 11:00 Received by: Location Code: **TIGHE** LDA 03/04/14 14:57

Rush Request: 72 Hour Analyzed by: see "By" below

P.O.#: M-018420JL Laborat

<u>aboratory Data</u> SDG ID: GBG15041
Phoenix ID: BG15041

Project ID: RECORD JOURNAL

Client ID: TRIP BLANK

RL/ Parameter Result **PQL** Units Date/Time Reference Βv **Volatiles** 1,1,1,2-Tetrachloroethane ND 1.0 ug/L 03/04/14 НМ SW8260 ND 03/04/14 НМ SW8260 1,1,1-Trichloroethane 1.0 ug/L ND 0.50 ug/L 03/04/14 НМ SW8260 1,1,2,2-Tetrachloroethane ND SW8260 1,1,2-Trichloroethane 1.0 ug/L 03/04/14 HM ND 1.0 ug/L 03/04/14 НМ SW8260 1,1-Dichloroethane ND 03/04/14 НМ SW8260 1,1-Dichloroethene 1.0 ug/L SW8260 ND 1.0 ug/L 03/04/14 НМ 1,1-Dichloropropene ND SW8260 1,2,3-Trichlorobenzene 1.0 ug/L 03/04/14 1,2,3-Trichloropropane ND 1.0 ug/L 03/04/14 НМ SW8260 1,2,4-Trichlorobenzene ND 1.0 ug/L 03/04/14 НМ SW8260 SW8260 ND 03/04/14 НМ 1.0 ug/L 1,2,4-Trimethylbenzene ND 03/04/14 НМ SW8260 1,2-Dibromo-3-chloropropane 1.0 ug/L ND 1.0 ug/L 03/04/14 НМ SW8260 1,2-Dibromoethane ND 03/04/14 SW8260 1,2-Dichlorobenzene 1.0 ug/L ND 0.60 ug/L 03/04/14 НМ SW8260 1,2-Dichloroethane ND ug/L 03/04/14 НМ SW8260 1.0 1,2-Dichloropropane ND 1.0 03/04/14 НМ SW8260 1,3,5-Trimethylbenzene ug/L ND 03/04/14 НМ SW8260 1.0 ug/L 1,3-Dichlorobenzene ND 1.0 ug/L 03/04/14 НМ SW8260 1,3-Dichloropropane ND 1.0 ug/L 03/04/14 SW8260 1,4-Dichlorobenzene SW8260 ND 1.0 ug/L 03/04/14 НМ 2,2-Dichloropropane ND 1.0 ug/L 03/04/14 НМ SW8260 2-Chlorotoluene ND 5.0 03/04/14 НМ SW8260 ug/L 2-Hexanone ND 1.0 03/04/14 НМ SW8260 ug/L 2-Isopropyltoluene ND 1.0 ug/L 03/04/14 НМ SW8260 4-Chlorotoluene SW8260 ND 5.0 ug/L 03/04/14 НМ 4-Methyl-2-pentanone

Page 1 of 14 Ver 1

Client ID: TRIP BLANK

cetone corylonitrile denzene dromobenzene dromochloromethane dromodichloromethane dromomethane	Result ND ND ND ND ND ND ND ND ND N	PQL 25 5.0 0.70 1.0 1.0 0.50 1.0 1.0 1.0 1.0 1	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	03/04/14 03/04/14 03/04/14 03/04/14 03/04/14 03/04/14 03/04/14 03/04/14 03/04/14 03/04/14 03/04/14 03/04/14	By HM HM HM HM HM HM HM HM	Reference SW8260
corylonitrile denzene dromobenzene dromochloromethane dromodichloromethane dromomethane	ND N	5.0 0.70 1.0 1.0 0.50 1.0 1.0 5.0 1.0 1.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	03/04/14 03/04/14 03/04/14 03/04/14 03/04/14 03/04/14 03/04/14 03/04/14	HM HM HM HM HM HM HM	SW8260 SW8260 SW8260 SW8260 SW8260 SW8260 SW8260 SW8260 SW8260
denzene dromobenzene dromochloromethane dromodichloromethane dromoform dromomethane drarbon Disulfide drarbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane dis-1,2-Dichloroethene	ND N	0.70 1.0 1.0 0.50 1.0 1.0 5.0 1.0 1.0 1.0 1.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	03/04/14 03/04/14 03/04/14 03/04/14 03/04/14 03/04/14 03/04/14 03/04/14	HM HM HM HM HM HM	SW8260 SW8260 SW8260 SW8260 SW8260 SW8260 SW8260 SW8260 SW8260
cromobenzene cromochloromethane cromodichloromethane cromoform cromomethane carbon Disulfide carbon tetrachloride chlorobenzene chloroethane chloroform chloromethane is-1,2-Dichloroethene	ND N	1.0 1.0 0.50 1.0 1.0 5.0 1.0 1.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	03/04/14 03/04/14 03/04/14 03/04/14 03/04/14 03/04/14 03/04/14	HM HM HM HM HM HM	SW8260 SW8260 SW8260 SW8260 SW8260 SW8260 SW8260 SW8260
cromochloromethane cromodichloromethane cromoform cromomethane carbon Disulfide carbon tetrachloride chlorobenzene chloroethane chloromethane chloromethane cis-1,2-Dichloroethene	ND N	1.0 0.50 1.0 1.0 5.0 1.0 1.0	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	03/04/14 03/04/14 03/04/14 03/04/14 03/04/14 03/04/14	HM HM HM HM HM	SW8260 SW8260 SW8260 SW8260 SW8260 SW8260 SW8260
cromodichloromethane cromoform cromomethane carbon Disulfide carbon tetrachloride chlorobenzene chloroethane chloroform chloromethane is-1,2-Dichloroethene	ND N	0.50 1.0 1.0 5.0 1.0 1.0 1.0	ug/L ug/L ug/L ug/L ug/L ug/L	03/04/14 03/04/14 03/04/14 03/04/14 03/04/14	HM HM HM HM HM	SW8260 SW8260 SW8260 SW8260 SW8260 SW8260
cromoform cromomethane carbon Disulfide carbon tetrachloride chlorobenzene chloroethane chloroform chloromethane is-1,2-Dichloroethene	ND N	1.0 1.0 5.0 1.0 1.0 1.0	ug/L ug/L ug/L ug/L ug/L ug/L	03/04/14 03/04/14 03/04/14 03/04/14	HM HM HM HM	SW8260 SW8260 SW8260 SW8260 SW8260
cromomethane Carbon Disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane is-1,2-Dichloroethene	ND	1.0 5.0 1.0 1.0 1.0	ug/L ug/L ug/L ug/L ug/L	03/04/14 03/04/14 03/04/14	HM HM HM HM	SW8260 SW8260 SW8260 SW8260
Carbon Disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane is-1,2-Dichloroethene	ND ND ND ND ND ND	5.0 1.0 1.0 1.0	ug/L ug/L ug/L ug/L	03/04/14 03/04/14 03/04/14	HM HM HM	SW8260 SW8260 SW8260
Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane is-1,2-Dichloroethene	ND ND ND ND ND	1.0 1.0 1.0 1.0	ug/L ug/L ug/L	03/04/14 03/04/14	HM HM	SW8260 SW8260
Chlorobenzene Chloroethane Chloroform Chloromethane is-1,2-Dichloroethene	ND ND ND ND	1.0 1.0 1.0	ug/L ug/L	03/04/14	НМ	SW8260
Chloroethane Chloroform Chloromethane is-1,2-Dichloroethene	ND ND ND ND	1.0 1.0	ug/L			
Chloroform Chloromethane is-1,2-Dichloroethene	ND ND ND	1.0		03/04/14	HILL	
chloromethane is-1,2-Dichloroethene	ND ND			00/04/44		SW8260
is-1,2-Dichloroethene	ND	1 ()	ug/L	03/04/14	HM	SW8260
			ug/L	03/04/14	HM	SW8260
ie-1 3-Dichloropropene		1.0	ug/L	03/04/14	HM	SW8260
• •	ND	0.40	ug/L	03/04/14	HM	SW8260
ibromochloromethane	ND	0.50	ug/L	03/04/14	HM	SW8260
ibromomethane	ND	1.0	ug/L	03/04/14	HM	SW8260
ichlorodifluoromethane	ND	1.0	ug/L	03/04/14	НМ	SW8260
thylbenzene	ND	1.0	ug/L	03/04/14	НМ	SW8260
exachlorobutadiene	ND	0.40	ug/L	03/04/14	HM	SW8260
sopropylbenzene	ND	1.0	ug/L	03/04/14	HM	SW8260
ı&p-Xylene	ND	1.0	ug/L	03/04/14	HM	SW8260
lethyl ethyl ketone	ND	5.0	ug/L	03/04/14	НМ	SW8260
lethyl t-butyl ether (MTBE)	ND	1.0	ug/L	03/04/14	HM	SW8260
lethylene chloride	ND	1.0	ug/L	03/04/14	HM	SW8260
laphthalene	ND	1.0	ug/L	03/04/14	HM	SW8260
-Butylbenzene	ND	1.0	ug/L	03/04/14	HM	SW8260
-Propylbenzene	ND	1.0	ug/L	03/04/14	НМ	SW8260
-Xylene	ND	1.0	ug/L	03/04/14	HM	SW8260
-lsopropyltoluene	ND	1.0	ug/L	03/04/14	НМ	SW8260
ec-Butylbenzene	ND	1.0	ug/L	03/04/14	HM	SW8260
tyrene	ND	1.0	ug/L	03/04/14	HM	SW8260
ert-Butylbenzene	ND	1.0	ug/L	03/04/14	НМ	SW8260
etrachloroethene	ND	1.0	ug/L	03/04/14	HM	SW8260
etrahydrofuran (THF)	ND	2.5	ug/L	03/04/14	НМ	SW8260
oluene	ND	1.0	ug/L	03/04/14	НМ	SW8260
otal Xylenes	ND	2.0	ug/L	03/04/14	НМ	SW8260
rans-1,2-Dichloroethene	ND	1.0	ug/L	03/04/14	НМ	SW8260
rans-1,3-Dichloropropene	ND	0.40	ug/L	03/04/14	НМ	SW8260
ans-1,4-dichloro-2-butene	ND	5.0	ug/L	03/04/14	НМ	SW8260
richloroethene	ND	1.0	ug/L	03/04/14	НМ	SW8260
richlorofluoromethane	ND	1.0	ug/L	03/04/14	НМ	SW8260
richlorotrifluoroethane	ND	1.0	ug/L	03/04/14	НМ	SW8260
inyl chloride	ND	1.0	ug/L	03/04/14	НМ	SW8260
QA/QC Surrogates	_	-	- J			
6 1,2-dichlorobenzene-d4	102		%	03/04/14	НМ	70 - 130 %
6 Bromofluorobenzene	93		%	03/04/14	HM	70 - 130 %
6 Dibromofluoromethane	95 95		%	03/04/14	HM	70 - 130 %

Page 2 of 14 Ver 1

Phoenix I.D.: BG15041

Project ID: RECORD JOURNAL Phoenix I.D.: BG15041

Client ID: TRIP BLANK

Parameter	Result	RL/ PQL	Units	Date/Time	Ву	Reference
% Toluene-d8	99		%	03/04/14	НМ	70 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

March 11, 2014

Reviewed and Released by: Greg Lawrence, Assistant Lab Director

Page 3 of 14 Ver 1

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

March 11, 2014

FOR: Attn: Jill Libby

Tighe & Bond 213 Court St Suite 900

Middletown, CT 06457

Sample Information **Custody Information Date** <u>Time</u> **GROUND WATER** Collected by: JL 03/01/14 Matrix: 11:50 Received by: Location Code: **TIGHE** LDA 03/04/14 14:57

Rush Request: 72 Hour Analyzed by: see "By" below

P.O.#: M-018420JL Laboratory Data

SDG ID: GBG15041

Phoenix ID: BG15042
roject ID: RECORD JOURNAL

Project ID: RECORD Client ID: MW-2

		RL/				
Parameter	Result	PQL	Units	Date/Time	Ву	Reference
Silver	< 0.001	0.001	mg/L	03/04/14	LK	SW6010
Arsenic	< 0.004	0.004	mg/L	03/04/14	LK	SW6010
Barium	0.527	0.002	mg/L	03/04/14	LK	SW6010
Beryllium	< 0.001	0.001	mg/L	03/04/14	LK	SW6010
Cadmium	< 0.001	0.001	mg/L	03/04/14	LK	SW6010
Chromium	< 0.001	0.001	mg/L	03/04/14	LK	SW6010
Copper	< 0.005	0.005	mg/L	03/04/14	LK	SW6010
Mercury	< 0.0002	0.0002	mg/L	03/05/14	RS	SW7470
Nickel	< 0.001	0.001	mg/L	03/04/14	LK	SW6010
Lead	< 0.002	0.002	mg/L	03/04/14	LK	SW6010
Antimony	< 0.005	0.005	mg/L	03/04/14	LK	SW6010
Selenium	< 0.010	0.010	mg/L	03/04/14	LK	SW6010
Thallium	< 0.002	0.002	mg/L	03/07/14	RS	SM3113B/SW70
Vanadium	< 0.002	0.002	mg/L	03/04/14	LK	SW6010
Zinc	< 0.002	0.002	mg/L	03/04/14	LK	SW6010
Extraction of CT ETPH	Completed			03/04/14	E/D	3510/3520
Mercury Digestion	Completed			03/05/14	I/I	SW7470
Semi-Volatile Extraction	Completed			03/04/14	E/D	SW3520
Total Metals Digestion	Completed			03/04/14	AG	SW846 - 3050
TPH by GC (Extractable	e Products)					
Ext. Petroleum HC	ND	0.070	mg/L	03/05/14	JRB	CTETPH/8015D
Identification	ND		mg/L	03/05/14	JRB	CTETPH/8015D
QA/QC Surrogates						
% n-Pentacosane	95		%	03/05/14	JRB	50 - 150 %
<u>Volatiles</u>						
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	03/04/14	НМ	SW8260

Page 4 of 14 Ver 1

Client ID: MW-2

Client ID: MWV-2						
Doromotor	Dogult	RL/ PQL	Units	Date/Time	D.	Deference
Parameter	Result				Ву	Reference
1,1,1-Trichloroethane	ND	1.0	ug/L	03/04/14	НМ	SW8260
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	03/04/14	НМ	SW8260
1,1,2-Trichloroethane	ND	1.0	ug/L	03/04/14	НМ	SW8260
1,1-Dichloroethane	ND	1.0	ug/L	03/04/14	НМ	SW8260
1,1-Dichloroethene	ND	1.0	ug/L	03/04/14	НМ	SW8260
1,1-Dichloropropene	ND	1.0	ug/L	03/04/14	НМ	SW8260
1,2,3-Trichlorobenzene	ND	1.0	ug/L	03/04/14	НМ	SW8260
1,2,3-Trichloropropane	ND	1.0	ug/L	03/04/14	НМ	SW8260
1,2,4-Trichlorobenzene	ND	1.0	ug/L	03/04/14	HM	SW8260
1,2,4-Trimethylbenzene	ND	1.0	ug/L	03/04/14	HM	SW8260
1,2-Dibromo-3-chloropropane	ND	1.0	ug/L	03/04/14	HM	SW8260
1,2-Dibromoethane	ND	1.0	ug/L	03/04/14	HM	SW8260
1,2-Dichlorobenzene	ND	1.0	ug/L	03/04/14	НМ	SW8260
1,2-Dichloroethane	ND	0.60	ug/L	03/04/14	HM	SW8260
1,2-Dichloropropane	ND	1.0	ug/L	03/04/14	HM	SW8260
1,3,5-Trimethylbenzene	ND	1.0	ug/L	03/04/14	НМ	SW8260
1,3-Dichlorobenzene	ND	1.0	ug/L	03/04/14	НМ	SW8260
1,3-Dichloropropane	ND	1.0	ug/L	03/04/14	НМ	SW8260
1,4-Dichlorobenzene	ND	1.0	ug/L	03/04/14	НМ	SW8260
2,2-Dichloropropane	ND	1.0	ug/L	03/04/14	НМ	SW8260
2-Chlorotoluene	ND	1.0	ug/L	03/04/14	НМ	SW8260
2-Hexanone	ND	5.0	ug/L	03/04/14	НМ	SW8260
2-Isopropyltoluene	ND	1.0	ug/L	03/04/14	НМ	SW8260
4-Chlorotoluene	ND	1.0	ug/L	03/04/14	НМ	SW8260
4-Methyl-2-pentanone	ND	5.0	ug/L	03/04/14	НМ	SW8260
Acetone	ND	25	ug/L	03/04/14	НМ	SW8260
Acrylonitrile	ND	5.0	ug/L	03/04/14	НМ	SW8260
Benzene	ND	0.70	ug/L	03/04/14	НМ	SW8260
Bromobenzene	ND	1.0	ug/L	03/04/14	НМ	SW8260
Bromochloromethane	ND	1.0	ug/L	03/04/14	НМ	SW8260
Bromodichloromethane	ND	0.50	ug/L	03/04/14	НМ	SW8260
Bromoform	ND	1.0	ug/L	03/04/14	НМ	SW8260
Bromomethane	ND	1.0	ug/L	03/04/14	НМ	SW8260
Carbon Disulfide	ND	5.0	ug/L	03/04/14	НМ	SW8260
Carbon tetrachloride	ND	1.0	ug/L	03/04/14	НМ	SW8260
Chlorobenzene	ND	1.0	ug/L	03/04/14	НМ	SW8260
Chloroethane	ND	1.0	ug/L	03/04/14	НМ	SW8260
Chloroform	ND	1.0	ug/L	03/04/14	НМ	SW8260
Chloromethane	ND	1.0	ug/L	03/04/14	НМ	SW8260
cis-1,2-Dichloroethene	ND	1.0	ug/L	03/04/14	НМ	SW8260
cis-1,3-Dichloropropene	ND	0.40	ug/L	03/04/14	НМ	SW8260
Dibromochloromethane	ND	0.50	ug/L	03/04/14	НМ	SW8260
Dibromomethane	ND	1.0	ug/L	03/04/14	НМ	SW8260
Dichlorodifluoromethane	ND	1.0	ug/L	03/04/14	НМ	SW8260
Ethylbenzene	ND	1.0	ug/L	03/04/14	HM	SW8260
Hexachlorobutadiene	ND	0.40	ug/L	03/04/14	HM	SW8260
	ND	1.0	ug/L	03/04/14	НМ	SW8260
Isopropylbenzene	ND	1.0	ug/L ug/L	03/04/14	HM	SW8260
m&p-Xylene	ND ND			03/04/14	HM	SW8260
Methyl ethyl ketone	שאו	5.0	ug/L	03/04/14	IVIFI	3440200

Page 5 of 14 Ver 1

Phoenix I.D.: BG15042

Project ID: RECORD JOURNAL

Client ID: MW-2

		PQL	Units	Date/Time	Ву	Reference
Methyl t-butyl ether (MTBE)	ND	1.0	ug/L	03/04/14	НМ	SW8260
Methylene chloride	ND	1.0	ug/L	03/04/14	HM	SW8260
Naphthalene	ND	1.0	ug/L	03/04/14	HM	SW8260
n-Butylbenzene	ND	1.0	ug/L	03/04/14	HM	SW8260
n-Propylbenzene	ND	1.0	ug/L	03/04/14	HM	SW8260
o-Xylene	ND	1.0	ug/L	03/04/14	HM	SW8260
p-Isopropyltoluene	ND	1.0	ug/L	03/04/14	HM	SW8260
sec-Butylbenzene	ND	1.0	ug/L	03/04/14	HM	SW8260
Styrene	ND	1.0	ug/L	03/04/14	HM	SW8260
tert-Butylbenzene	ND	1.0	ug/L	03/04/14	HM	SW8260
Tetrachloroethene	ND	1.0	ug/L	03/04/14	HM	SW8260
Tetrahydrofuran (THF)	ND	2.5	ug/L	03/04/14	HM	SW8260
Toluene	ND	1.0	ug/L	03/04/14	HM	SW8260
Total Xylenes	ND	2.0	ug/L	03/04/14	HM	SW8260
trans-1,2-Dichloroethene	ND	1.0	ug/L	03/04/14	HM	SW8260
trans-1,3-Dichloropropene	ND	0.40	ug/L	03/04/14	HM	SW8260
trans-1,4-dichloro-2-butene	ND	5.0	ug/L	03/04/14	HM	SW8260
Trichloroethene	ND	1.0	ug/L	03/04/14	HM	SW8260
Trichlorofluoromethane	ND	1.0	ug/L	03/04/14	HM	SW8260
Trichlorotrifluoroethane	ND	1.0	ug/L	03/04/14	HM	SW8260
Vinyl chloride	ND	1.0	ug/L	03/04/14	HM	SW8260
QA/QC Surrogates						
% 1,2-dichlorobenzene-d4	101		%	03/04/14	HM	70 - 130 %
% Bromofluorobenzene	93		%	03/04/14	HM	70 - 130 %
% Dibromofluoromethane	98		%	03/04/14	HM	70 - 130 %
% Toluene-d8	97		%	03/04/14	НМ	70 - 130 %
Semivolatiles by SIM						
2-Methylnaphthalene	ND	0.10	ug/L	03/05/14	DD	8270(SIM)
Acenaphthene	ND	0.10	ug/L	03/05/14	DD	8270(SIM)
Acenaphthylene	ND	0.10	ug/L	03/05/14	DD	8270(SIM)
Anthracene	ND	0.10	ug/L	03/05/14	DD	8270(SIM)
Benz(a)anthracene	ND	0.02	ug/L	03/05/14	DD	8270(SIM)
Benzo(a)pyrene	ND	0.02	ug/L	03/05/14	DD	8270(SIM)
Benzo(b)fluoranthene	ND	0.02	ug/L	03/05/14	DD	8270(SIM)
Benzo(ghi)perylene	ND	0.10	ug/L	03/05/14	DD	8270(SIM)
Benzo(k)fluoranthene	ND	0.02	ug/L	03/05/14	DD	8270(SIM)
Chrysene	ND	0.02	ug/L	03/05/14	DD	8270(SIM)
Dibenz(a,h)anthracene	ND	0.01	ug/L	03/05/14	DD	8270(SIM)
Fluoranthene	ND	0.10	ug/L	03/05/14	DD	8270(SIM)
Fluorene	ND	0.10	ug/L	03/05/14	DD	8270(SIM)
Indeno(1,2,3-cd)pyrene	ND	0.02	ug/L	03/05/14	DD	8270(SIM)
Naphthalene	ND	0.10	ug/L	03/05/14	DD	8270(SIM)
Phenanthrene	ND	0.07	ug/L	03/05/14	DD	8270(SIM)
Pyrene	ND	0.10	ug/L	03/05/14	DD	8270(SIM)
QA/QC Surrogates						
% 2-Fluorobiphenyl	74		%	03/05/14	DD	30 - 130 %
% Nitrobenzene-d5	83		%	03/05/14	DD	30 - 130 %
% Terphenyl-d14	116		%	03/05/14	DD	30 - 130 %

Page 6 of 14 Ver 1

Phoenix I.D.: BG15042

Project ID: RECORD JOURNAL Phoenix I.D.: BG15042

Client ID: MW-2

RL/

Parameter Result PQL Units Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

March 11, 2014

Reviewed and Released by: Greg Lawrence, Assistant Lab Director

Page 7 of 14 Ver 1

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

March 11, 2014

FOR: Attn: Jill Libby

Tighe & Bond 213 Court St Suite 900

Middletown, CT 06457

Sample Information **Custody Information Date** <u>Time</u> **GROUND WATER** Collected by: JL 03/01/14 12:00 Matrix: Received by: Location Code: **TIGHE** LDA 03/04/14 14:57

Rush Request: 72 Hour Analyzed by: see "By" below

P.O.#: M-018420JL

Laboratory Data SDG ID: GBG15041

Phoenix ID: BG15043

Project ID: RECORD JOURNAL Client ID: DUPLICATE

Parameter	Result	RL/ PQL	Units	Date/Time	Ву	Reference
Silver	< 0.001	0.001	mg/L	03/04/14	LK	SW6010
Arsenic	< 0.004	0.004	mg/L	03/04/14	LK	SW6010
Barium	0.539	0.002	mg/L	03/04/14	LK	SW6010
Beryllium	< 0.001	0.001	mg/L	03/04/14	LK	SW6010
Cadmium	< 0.001	0.001	mg/L	03/04/14	LK	SW6010
Chromium	< 0.001	0.001	mg/L	03/04/14	LK	SW6010
Copper	< 0.005	0.005	mg/L	03/04/14	LK	SW6010
Mercury	< 0.0002	0.0002	mg/L	03/05/14	RS	SW7470
Nickel	< 0.001	0.001	mg/L	03/04/14	LK	SW6010
Lead	< 0.002	0.002	mg/L	03/04/14	LK	SW6010
Antimony	< 0.005	0.005	mg/L	03/04/14	LK	SW6010
Selenium	< 0.010	0.010	mg/L	03/04/14	LK	SW6010
Thallium	< 0.002	0.002	mg/L	03/07/14	RS	SM3113B/SW70
Vanadium	< 0.002	0.002	mg/L	03/04/14	LK	SW6010
Zinc	< 0.002	0.002	mg/L	03/04/14	LK	SW6010
Extraction of CT ETPH	Completed			03/04/14	E/D	3510/3520
Mercury Digestion	Completed			03/05/14	I/I	SW7470
Semi-Volatile Extraction	Completed			03/04/14	E/D	SW3520
Total Metals Digestion	Completed			03/04/14	AG	SW846 - 3050
TPH by GC (Extractable	Products)					
Ext. Petroleum HC	ND	0.070	mg/L	03/05/14	JRB	CTETPH/8015D
Identification	ND		mg/L	03/05/14	JRB	CTETPH/8015D
QA/QC Surrogates						
% n-Pentacosane	91		%	03/05/14	JRB	50 - 150 %
Volatiles						
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	03/04/14	НМ	SW8260

Page 8 of 14 Ver 1

Parameter	Result	RL/ PQL	Units	Date/Time	Ву	Reference
1,1,1-Trichloroethane	ND	1.0	ug/L	03/04/14	HM	SW8260
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	03/04/14	НМ	SW8260
1,1,2-Trichloroethane	ND	1.0	ug/L	03/04/14	НМ	SW8260
1,1-Dichloroethane	ND	1.0	ug/L	03/04/14	НМ	SW8260
1,1-Dichloroethene	ND	1.0	ug/L	03/04/14	НМ	SW8260
1,1-Dichloropropene	ND	1.0	ug/L	03/04/14	НМ	SW8260
1,2,3-Trichlorobenzene	ND	1.0	ug/L	03/04/14	НМ	SW8260
1,2,3-Trichloropropane	ND	1.0	ug/L	03/04/14	HM	SW8260
1,2,4-Trichlorobenzene	ND	1.0	ug/L	03/04/14	HM	SW8260
1,2,4-Trimethylbenzene	ND	1.0	ug/L	03/04/14	HM	SW8260
,2-Dibromo-3-chloropropane	ND	1.0	ug/L	03/04/14	HM	SW8260
	ND	1.0	ug/L	03/04/14	HM	SW8260
,2-Dibromoethane	ND	1.0	ug/L	03/04/14	HM	SW8260
,2-Dichlorobenzene	ND	0.60	ug/L	03/04/14	HM	SW8260
,2-Dichloroethane	ND	1.0		03/04/14	HM	SW8260
,2-Dichloropropane			ug/L	03/04/14		SW8260
,3,5-Trimethylbenzene	ND	1.0	ug/L		HM	
,3-Dichlorobenzene	ND	1.0	ug/L	03/04/14	HM	SW8260
,3-Dichloropropane	ND	1.0	ug/L	03/04/14	HM	SW8260
,4-Dichlorobenzene	ND	1.0	ug/L	03/04/14	HM	SW8260
2,2-Dichloropropane	ND	1.0	ug/L	03/04/14	HM	SW8260
-Chlorotoluene	ND	1.0	ug/L	03/04/14	HM	SW8260
-Hexanone	ND	5.0	ug/L	03/04/14	HM	SW8260
-Isopropyltoluene	ND	1.0	ug/L	03/04/14	HM	SW8260
-Chlorotoluene	ND	1.0	ug/L	03/04/14	НМ	SW8260
-Methyl-2-pentanone	ND	5.0	ug/L	03/04/14	HM	SW8260
acetone	ND	25	ug/L	03/04/14	НМ	SW8260
Acrylonitrile	ND	5.0	ug/L	03/04/14	НМ	SW8260
Benzene	ND	0.70	ug/L	03/04/14	HM	SW8260
Bromobenzene	ND	1.0	ug/L	03/04/14	HM	SW8260
Bromochloromethane	ND	1.0	ug/L	03/04/14	НМ	SW8260
Bromodichloromethane	ND	0.50	ug/L	03/04/14	НМ	SW8260
Bromoform	ND	1.0	ug/L	03/04/14	НМ	SW8260
Bromomethane	ND	1.0	ug/L	03/04/14	HM	SW8260
Carbon Disulfide	ND	5.0	ug/L	03/04/14	НМ	SW8260
Carbon tetrachloride	ND	1.0	ug/L	03/04/14	HM	SW8260
Chlorobenzene	ND	1.0	ug/L	03/04/14	HM	SW8260
Chloroethane	ND	1.0	ug/L	03/04/14	HM	SW8260
Chloroform	ND	1.0	ug/L	03/04/14	НМ	SW8260
Chloromethane	ND	1.0	ug/L	03/04/14	НМ	SW8260
is-1,2-Dichloroethene	ND	1.0	ug/L	03/04/14	НМ	SW8260
is-1,3-Dichloropropene	ND	0.40	ug/L	03/04/14	НМ	SW8260
Dibromochloromethane	ND	0.50	ug/L	03/04/14	НМ	SW8260
Dibromomethane	ND	1.0	ug/L	03/04/14	НМ	SW8260
Dichlorodifluoromethane	ND	1.0	ug/L	03/04/14	НМ	SW8260
Ethylbenzene	ND	1.0	ug/L	03/04/14	НМ	SW8260
lexachlorobutadiene	ND	0.40	ug/L	03/04/14	НМ	SW8260
sopropylbenzene	ND	1.0	ug/L	03/04/14	HM	SW8260
n&p-Xylene	ND	1.0	ug/L	03/04/14	HM	SW8260
nap-valene	שויו	1.0	ug/ L	03/04/14	1 111/1	3440200

Page 9 of 14 Ver 1

Phoenix I.D.: BG15043

Client ID: DUPLICATE

Parameter	Result	RL/ PQL	Units	Date/Time	Ву	Reference
Methyl t-butyl ether (MTBE)	ND	1.0	ug/L	03/04/14	НМ	SW8260
Methylene chloride	ND	1.0	ug/L	03/04/14	HM	SW8260
Naphthalene	ND	1.0	ug/L	03/04/14	HM	SW8260
n-Butylbenzene	ND	1.0	ug/L	03/04/14	HM	SW8260
n-Propylbenzene	ND	1.0	ug/L	03/04/14	HM	SW8260
o-Xylene	ND	1.0	ug/L	03/04/14	НМ	SW8260
p-Isopropyltoluene	ND	1.0	ug/L	03/04/14	HM	SW8260
sec-Butylbenzene	ND	1.0	ug/L	03/04/14	HM	SW8260
Styrene	ND	1.0	ug/L	03/04/14	HM	SW8260
tert-Butylbenzene	ND	1.0	ug/L	03/04/14	НМ	SW8260
Tetrachloroethene	ND	1.0	ug/L	03/04/14	НМ	SW8260
Tetrahydrofuran (THF)	ND	2.5	ug/L	03/04/14	НМ	SW8260
Toluene	ND	1.0	ug/L	03/04/14	НМ	SW8260
Total Xylenes	ND	2.0	ug/L	03/04/14	HM	SW8260
trans-1,2-Dichloroethene	ND	1.0	ug/L	03/04/14	НМ	SW8260
trans-1,3-Dichloropropene	ND	0.40	ug/L	03/04/14	НМ	SW8260
trans-1,4-dichloro-2-butene	ND	5.0	ug/L	03/04/14	НМ	SW8260
Trichloroethene	ND	1.0	ug/L	03/04/14	НМ	SW8260
Trichlorofluoromethane	ND	1.0	ug/L	03/04/14	НМ	SW8260
Trichlorotrifluoroethane	ND	1.0	ug/L	03/04/14	НМ	SW8260
Vinyl chloride	ND	1.0	ug/L	03/04/14	НМ	SW8260
QA/QC Surrogates			-			
% 1,2-dichlorobenzene-d4	104		%	03/04/14	НМ	70 - 130 %
% Bromofluorobenzene	94		%	03/04/14	НМ	70 - 130 %
% Dibromofluoromethane	95		%	03/04/14	НМ	70 - 130 %
% Toluene-d8	99		%	03/04/14	НМ	70 - 130 %
Semivolatiles by SIM						
2-Methylnaphthalene	ND	0.10	ug/L	03/05/14	DD	8270(SIM)
Acenaphthene	ND	0.10	ug/L	03/05/14	DD	8270(SIM)
Acenaphthylene	ND	0.10	ug/L	03/05/14	DD	8270(SIM)
Anthracene	ND	0.10	ug/L	03/05/14	DD	8270(SIM)
Benz(a)anthracene	ND	0.02	ug/L	03/05/14	DD	8270(SIM)
Benzo(a)pyrene	ND	0.02	ug/L	03/05/14	DD	8270(SIM)
Benzo(b)fluoranthene	ND	0.02	ug/L	03/05/14	DD	8270(SIM)
Benzo(ghi)perylene	ND	0.10	ug/L	03/05/14	DD	8270(SIM)
Benzo(k)fluoranthene	ND	0.02	ug/L	03/05/14	DD	8270(SIM)
Chrysene	ND	0.02	ug/L	03/05/14	DD	8270(SIM)
Dibenz(a,h)anthracene	ND	0.01	ug/L	03/05/14	DD	8270(SIM)
Fluoranthene	ND	0.10	ug/L	03/05/14	DD	8270(SIM)
Fluorene	ND	0.10	ug/L	03/05/14	DD	8270(SIM)
Indeno(1,2,3-cd)pyrene	ND	0.02	ug/L	03/05/14	DD	8270(SIM)
Naphthalene	ND	0.10	ug/L	03/05/14	DD	8270(SIM)
Phenanthrene	ND	0.07	ug/L	03/05/14	DD	8270(SIM)
Pyrene	ND	0.10	ug/L	03/05/14	DD	8270(SIM)
QA/QC Surrogates		-	- 3		_	ζ/
% 2-Fluorobiphenyl	72		%	03/05/14	DD	30 - 130 %
	79		%	03/05/14	DD	30 - 130 %
% Nitrobenzene-d5	1.71		70	(), 1/ (), 1/ 14	נונן	3U - 13U 7n

Page 10 of 14 Ver 1

Phoenix I.D.: BG15043

Project ID: RECORD JOURNAL Phoenix I.D.: BG15043

Client ID: DUPLICATE

RL/

Parameter Result PQL Units Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

March 11, 2014

Reviewed and Released by: Greg Lawrence, Assistant Lab Director

Page 11 of 14 Ver 1

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

March 11, 2014

FOR: Attn: Jill Libby

Tighe & Bond 213 Court St Suite 900

Middletown, CT 06457

Sample Information **Custody Information Date GROUND WATER** Collected by: JL 03/01/14 Matrix:

14:45 Received by: Location Code: **TIGHE** LDA 03/04/14 14:57

Rush Request: 72 Hour Analyzed by: see "By" below M-018420JL

aboratory Data

D. /

SDG ID: GBG15041 Phoenix ID: BG15044

<u>Time</u>

RECORD JOURNAL Project ID:

Client ID: MW-1

P.O.#:

		RL/				
Parameter	Result	PQL	Units	Date/Time	Ву	Reference
Silver	< 0.001	0.001	mg/L	03/04/14	LK	SW6010
Arsenic	< 0.004	0.004	mg/L	03/04/14	LK	SW6010
Barium	0.450	0.002	mg/L	03/04/14	LK	SW6010
Beryllium	< 0.001	0.001	mg/L	03/04/14	LK	SW6010
Cadmium	< 0.001	0.001	mg/L	03/04/14	LK	SW6010
Chromium	< 0.001	0.001	mg/L	03/04/14	LK	SW6010
Copper	< 0.005	0.005	mg/L	03/04/14	LK	SW6010
Mercury	< 0.0002	0.0002	mg/L	03/05/14	RS	SW7470
Nickel	0.001	0.001	mg/L	03/04/14	LK	SW6010
Lead	< 0.002	0.002	mg/L	03/04/14	LK	SW6010
Antimony	< 0.005	0.005	mg/L	03/04/14	LK	SW6010
Selenium	< 0.010	0.010	mg/L	03/04/14	LK	SW6010
Thallium	< 0.002	0.002	mg/L	03/07/14	RS	SM3113B/SW70
Vanadium	< 0.002	0.002	mg/L	03/04/14	LK	SW6010
Zinc	0.003	0.002	mg/L	03/04/14	LK	SW6010
Extraction of CT ETPH	Completed			03/04/14	E/D	3510/3520
Mercury Digestion	Completed			03/05/14	I/I	SW7470
Total Metals Digestion	Completed			03/04/14	AG	SW846 - 3050
TPH by GC (Extractabl	e Products)	<u>.</u>				
Ext. Petroleum HC	ND	0.070	mg/L	03/05/14	JRB	CTETPH/8015D
Identification	ND		mg/L	03/05/14	JRB	CTETPH/8015D
QA/QC Surrogates						
% n-Pentacosane	119		%	03/05/14	JRB	50 - 150 %
<u>Volatiles</u>						
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	03/04/14	НМ	SW8260
1,1,1-Trichloroethane	ND	1.0	ug/L	03/04/14	НМ	SW8260

Page 12 of 14 Ver 1 Client ID: MW-1

Client ID: MW-1						
Parameter	Dogult	RL/ PQL	Units	Date/Time	Dv	Deference
Parameter	Result				Ву	Reference
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	03/04/14	НМ	SW8260
1,1,2-Trichloroethane	ND	1.0	ug/L	03/04/14	НМ	SW8260
1,1-Dichloroethane	ND	1.0	ug/L	03/04/14	НМ	SW8260
1,1-Dichloroethene	ND	1.0	ug/L	03/04/14	НМ	SW8260
1,1-Dichloropropene	ND	1.0	ug/L	03/04/14	НМ	SW8260
1,2,3-Trichlorobenzene	ND	1.0	ug/L	03/04/14	НМ	SW8260
1,2,3-Trichloropropane	ND	1.0	ug/L	03/04/14	HM	SW8260
1,2,4-Trichlorobenzene	ND	1.0	ug/L	03/04/14	HM	SW8260
1,2,4-Trimethylbenzene	ND	1.0	ug/L	03/04/14	HM	SW8260
1,2-Dibromo-3-chloropropane	ND	1.0	ug/L	03/04/14	HM	SW8260
1,2-Dibromoethane	ND	1.0	ug/L	03/04/14	HM	SW8260
1,2-Dichlorobenzene	ND	1.0	ug/L	03/04/14	HM	SW8260
1,2-Dichloroethane	ND	0.60	ug/L	03/04/14	HM	SW8260
1,2-Dichloropropane	ND	1.0	ug/L	03/04/14	HM	SW8260
1,3,5-Trimethylbenzene	ND	1.0	ug/L	03/04/14	НМ	SW8260
1,3-Dichlorobenzene	ND	1.0	ug/L	03/04/14	НМ	SW8260
1,3-Dichloropropane	ND	1.0	ug/L	03/04/14	НМ	SW8260
1,4-Dichlorobenzene	ND	1.0	ug/L	03/04/14	HM	SW8260
2,2-Dichloropropane	ND	1.0	ug/L	03/04/14	НМ	SW8260
2-Chlorotoluene	ND	1.0	ug/L	03/04/14	НМ	SW8260
2-Hexanone	ND	5.0	ug/L	03/04/14	НМ	SW8260
2-Isopropyltoluene	ND	1.0	ug/L	03/04/14	НМ	SW8260
4-Chlorotoluene	ND	1.0	ug/L	03/04/14	НМ	SW8260
4-Methyl-2-pentanone	ND	5.0	ug/L	03/04/14	НМ	SW8260
Acetone	ND	25	ug/L	03/04/14	НМ	SW8260
Acrylonitrile	ND	5.0	ug/L	03/04/14	НМ	SW8260
Benzene	ND	0.70	ug/L	03/04/14	НМ	SW8260
Bromobenzene	ND	1.0	ug/L	03/04/14	НМ	SW8260
Bromochloromethane	ND	1.0	ug/L	03/04/14	НМ	SW8260
Bromodichloromethane	ND	0.50	ug/L	03/04/14	НМ	SW8260
Bromoform	ND	1.0	ug/L	03/04/14	НМ	SW8260
Bromomethane	ND	1.0	ug/L	03/04/14	НМ	SW8260
Carbon Disulfide	ND	5.0	ug/L	03/04/14	НМ	SW8260
Carbon tetrachloride	ND	1.0	ug/L	03/04/14	НМ	SW8260
Chlorobenzene	ND	1.0	ug/L	03/04/14	НМ	SW8260
Chloroethane	ND	1.0	ug/L	03/04/14	НМ	SW8260
Chloroform	ND	1.0	ug/L	03/04/14	НМ	SW8260
Chloromethane	ND	1.0	ug/L	03/04/14	HM	SW8260
cis-1,2-Dichloroethene	ND	1.0	ug/L	03/04/14	НМ	SW8260
	ND	0.40	ug/L	03/04/14	HM	SW8260
cis-1,3-Dichloropropene	ND	0.40	ug/L	03/04/14	HM	SW8260
Dibromochloromethane Dibromomethane	ND	1.0	=	03/04/14	HM	SW8260
			ug/L			
Dichlorodifluoromethane	ND	1.0	ug/L	03/04/14	HM	SW8260
Ethylbenzene	ND	1.0	ug/L	03/04/14	HM	SW8260
Hexachlorobutadiene	ND	0.40	ug/L	03/04/14	HM	SW8260
Isopropylbenzene	ND	1.0	ug/L	03/04/14	HM	SW8260
m&p-Xylene	ND	1.0	ug/L	03/04/14	HM	SW8260
Methyl ethyl ketone	ND	5.0	ug/L	03/04/14	HM	SW8260
Methyl t-butyl ether (MTBE)	ND	1.0	ug/L	03/04/14	НМ	SW8260

Page 13 of 14 Ver 1

Phoenix I.D.: BG15044

Project ID: RECORD JOURNAL Phoenix I.D.: BG15044

Client ID: MW-1

		RL/				
Parameter	Result	PQL	Units	Date/Time	Ву	Reference
Methylene chloride	ND	1.0	ug/L	03/04/14	НМ	SW8260
Naphthalene	ND	1.0	ug/L	03/04/14	НМ	SW8260
n-Butylbenzene	ND	1.0	ug/L	03/04/14	НМ	SW8260
n-Propylbenzene	ND	1.0	ug/L	03/04/14	HM	SW8260
o-Xylene	ND	1.0	ug/L	03/04/14	HM	SW8260
p-Isopropyltoluene	ND	1.0	ug/L	03/04/14	НМ	SW8260
sec-Butylbenzene	ND	1.0	ug/L	03/04/14	HM	SW8260
Styrene	ND	1.0	ug/L	03/04/14	НМ	SW8260
tert-Butylbenzene	ND	1.0	ug/L	03/04/14	НМ	SW8260
Tetrachloroethene	ND	1.0	ug/L	03/04/14	НМ	SW8260
Tetrahydrofuran (THF)	ND	2.5	ug/L	03/04/14	НМ	SW8260
Toluene	ND	1.0	ug/L	03/04/14	НМ	SW8260
Total Xylenes	ND	2.0	ug/L	03/04/14	НМ	SW8260
trans-1,2-Dichloroethene	ND	1.0	ug/L	03/04/14	НМ	SW8260
trans-1,3-Dichloropropene	ND	0.40	ug/L	03/04/14	НМ	SW8260
trans-1,4-dichloro-2-butene	ND	5.0	ug/L	03/04/14	НМ	SW8260
Trichloroethene	ND	1.0	ug/L	03/04/14	НМ	SW8260
Trichlorofluoromethane	ND	1.0	ug/L	03/04/14	НМ	SW8260
Trichlorotrifluoroethane	ND	1.0	ug/L	03/04/14	HM	SW8260
Vinyl chloride	ND	1.0	ug/L	03/04/14	НМ	SW8260
QA/QC Surrogates						
% 1,2-dichlorobenzene-d4	98		%	03/04/14	НМ	70 - 130 %
% Bromofluorobenzene	94		%	03/04/14	НМ	70 - 130 %
% Dibromofluoromethane	99		%	03/04/14	НМ	70 - 130 %
% Toluene-d8	98		%	03/04/14	НМ	70 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director

March 11, 2014

Reviewed and Released by: Greg Lawrence, Assistant Lab Director

Page 14 of 14 Ver 1

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

March 11, 2014

QA/QC Data

SDG I.D.: GBG15041

Parameter	Blank	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 267567, QC Sample	No: BG1	2774 (BC	G15042, I	BG150	43, BG	15044)						
Thallium - Water	BRL		<0.002		95.5	97.8	2.4				75 - 125	20
QA/QC Batch 267944, QC Sample	No: BG1	4572 (BC	G15042, I	BG150	43, BG	15044)						
ICP Metals - Aqueous												
Antimony	BRL				95.4	90.1	5.7	93.0	85.9	7.9	75 - 125	20
Arsenic	BRL				89.0	84.7	5.0	86.9	81.1	6.9	75 - 125	20
Barium	BRL				97.0	91.5	5.8	94.8	88.8	6.5	75 - 125	20
Beryllium	BRL				91.6	86.8	5.4	90.4	81.8	10.0	75 - 125	20
Cadmium	BRL				90.0	84.4	6.4	81.8	78.5	4.1	75 - 125	20
Chromium	BRL				89.5	82.8	7.8	84.4	77.6	8.4	75 - 125	20
Copper	BRL				98.1	89.3	9.4	96.0	86.9	10.0	75 - 125	20
Lead	BRL				90.5	84.3	7.1	85.4	79.2	7.5	75 - 125	20
Nickel	BRL				93.5	86.5	7.8	88.1	81.2	8.2	75 - 125	20
Selenium	BRL				91.8	84.6	8.2	88.0	80.8	8.5	75 - 125	20
Silver	BRL				92.3	87.4	5.5	89.7	83.4	7.3	75 - 125	20
Vanadium	BRL				91.5	86.2	6.0	89.7	80.9	10.3	75 - 125	20
Zinc	BRL				90.6	84.4	7.1	85.9	79.4	7.9	75 - 125	20
Comment:												
No Duplicate analysis could be reporte	d with thi	s Batch.										
QA/QC Batch 268044, QC Sample	No: BG1	5042 (BC	G15042, I	BG150	43, BG	15044)						
Mercury - Water Comment:	BRL		<0.0002		114	105	8.2	109	107	1.9	70 - 130	20
Additional Mercury criteria: LCS accep	tance rar	ige for wat	ers is 80-1	120% ar	nd for so	ils is 70-1	30%.					

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

March 11, 2014

QA/QC Data

SDG I.D.: GBG15041

Parameter	Blank	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 267571, QC Sai	mple No: BG13157 (BG15	042, BG15043, BG	15044)							
TPH by GC (Extractable	Products) - Ground	<u>Water</u>								
Ext. Petroleum HC	ND	73	74	1.4				60 - 120	30	
% n-Pentacosane	103	110	NA	NC				50 - 150	20	
Comment:										
NA: Not applicable, surrogate wa	as not spiked into the LCSD.									
QA/QC Batch 268055, QC Sai	mple No: BG14756 (BG15	041, BG15042, BG	15043. E	3G1504	4)					
Volatiles - Ground Water	•	,			-,					
1,1,1,2-Tetrachloroethane	<u>L</u> ND	94	93	1.1	89	90	1.1	70 - 130	20	
1,1,1-Trichloroethane	ND	88	93 81	8.3	81	82	1.1	70 - 130	30 30	
1,1,2,2-Tetrachloroethane	ND	90	93	3.3	87	94	7.7	70 - 130	30	
1,1,2-Trichloroethane	ND	92	99	7.3	85	94	10.1	70 - 130	30	
1,1-Dichloroethane	ND	95	88	7.3 7.7	86	86	0.0	70 - 130	30	
1,1-Dichloroethene	ND	110	89	21.1	86	87	1.2	70 - 130	30	
1,1-Dichloropropene	ND	99	88	11.8	91	89	2.2	70 - 130	30	
1,2,3-Trichlorobenzene	ND	106	113	6.4	80	104	26.1	70 - 130	30	
1,2,3-Trichloropropane	ND	88	89	1.1	82	88	7.1	70 - 130	30	
1,2,4-Trichlorobenzene	ND	106	113	6.4	89	105	16.5	70 - 130	30	
1,2,4-Trimethylbenzene	ND	107	101	5.8	94	92	2.2	70 - 130	30	
1,2-Dibromo-3-chloropropane	ND	95	101	6.1	86	96	11.0	70 - 130	30	
1,2-Dibromoethane	ND	90	95	5.4	84	93	10.2	70 - 130	30	
1,2-Dichlorobenzene	ND	97	95	2.1	90	93	3.3	70 - 130	30	
1,2-Dichloroethane	ND	81	83	2.4	76	81	6.4	70 - 130	30	
1,2-Dichloropropane	ND	99	97	2.0	91	95	4.3	70 - 130	30	
1,3,5-Trimethylbenzene	ND	105	95	10.0	94	92	2.2	70 - 130	30	
1,3-Dichlorobenzene	ND	101	98	3.0	97	94	3.1	70 - 130	30	
1,3-Dichloropropane	ND	91	93	2.2	86	90	4.5	70 - 130	30	
1,4-Dichlorobenzene	ND	101	98	3.0	93	94	1.1	70 - 130	30	
2,2-Dichloropropane	ND	105	93	12.1	85	85	0.0	70 - 130	30	
2-Chlorotoluene	ND	107	98	8.8	100	98	2.0	70 - 130	30	
2-Hexanone	ND	88	98	10.8	80	93	15.0	70 - 130	30	
2-Isopropyltoluene	ND	103	97	6.0	94	94	0.0	70 - 130	30	
4-Chlorotoluene	ND	110	102	7.5	98	98	0.0	70 - 130	30	
4-Methyl-2-pentanone	ND	87	98	11.9	79	93	16.3	70 - 130	30	
Acetone	ND	91	78	15.4	65	79	19.4	70 - 130	30	m
Acrylonitrile	ND	91	95	4.3	85	93	9.0	70 - 130	30	
Benzene	ND	101	94	7.2	94	94	0.0	70 - 130	30	
Bromobenzene	ND	104	97	7.0	94	96	2.1	70 - 130	30	
Bromochloromethane	ND	90	94	4.3	87	95	8.8	70 - 130	30	
Bromodichloromethane	ND	84	83	1.2	80	83	3.7	70 - 130	30	
Bromoform	ND	92	98	6.3	85	91	6.8	70 - 130	30	
Bromomethane	ND	120	124	3.3	106	111	4.6	70 - 130	30	

SDG I.D.: GBG15041

Parameter	Blank	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
Carbon Disulfide	ND	100	86	15.1	88	90	2.2	70 - 130	30	
Carbon tetrachloride	ND	87	82	5.9	81	81	0.0	70 - 130	30	
Chlorobenzene	ND	101	96	5.1	93	92	1.1	70 - 130	30	
Chloroethane	ND	103	103	0.0	86	84	2.4	70 - 130	30	
Chloroform	ND	84	80	4.9	82	83	1.2	70 - 130	30	
Chloromethane	ND	111	105	5.6	114	98	15.1	70 - 130	30	
cis-1,2-Dichloroethene	ND	100	93	7.3	94	96	2.1	70 - 130	30	
cis-1,3-Dichloropropene	ND	98	98	0.0	90	95	5.4	70 - 130	30	
Dibromochloromethane	ND	90	94	4.3	84	89	5.8	70 - 130	30	
Dibromomethane	ND	84	89	5.8	81	86	6.0	70 - 130	30	
Dichlorodifluoromethane	ND	87	81	7.1	74	75	1.3	70 - 130	30	
Ethylbenzene	ND	104	96	8.0	97	93	4.2	70 - 130	30	
Hexachlorobutadiene	ND	110	102	7.5	88	94	6.6	70 - 130	30	
Isopropylbenzene	ND	114	103	10.1	102	98	4.0	70 - 130	30	
m&p-Xylene	ND	105	96	9.0	97	94	3.1	70 - 130	30	
Methyl ethyl ketone	ND	69	78	12.2	73	86	16.4	70 - 130	30	ı
Methyl t-butyl ether (MTBE)	ND	91	91	0.0	77	97	23.0	70 - 130	30	
Methylene chloride	ND	113	86	27.1	84	84	0.0	70 - 130	30	
Naphthalene	ND	113	120	6.0	91	112	20.7	70 - 130	30	
n-Butylbenzene	ND	106	101	4.8	93	94	1.1	70 - 130	30	
n-Propylbenzene	ND	119	107	10.6	101	98	3.0	70 - 130	30	
o-Xylene	ND	100	94	6.2	96	94	2.1	70 - 130	30	
p-Isopropyltoluene	ND	109	102	6.6	97	96	1.0	70 - 130	30	
sec-Butylbenzene	ND	102	94	8.2	95	95	0.0	70 - 130	30	
Styrene	ND	100	97	3.0	94	93	1.1	70 - 130	30	
tert-Butylbenzene	ND	106	96	9.9	98	95	3.1	70 - 130	30	
Tetrachloroethene	ND	110	100	9.5	99	95	4.1	70 - 130	30	
Tetrahydrofuran (THF)	ND	85	93	9.0	77	89	14.5	70 - 130	30	
Toluene	ND	102	95	7.1	94	92	2.2	70 - 130	30	
trans-1,2-Dichloroethene	ND	114	91	22.4	85	92	7.9	70 - 130	30	
trans-1,3-Dichloropropene	ND	90	94	4.3	84	90	6.9	70 - 130	30	
trans-1,4-dichloro-2-butene	ND	120	126	4.9	102	111	8.5	70 - 130	30	
Trichloroethene	ND	109	97	11.7	100	95	5.1	70 - 130	30	
Trichlorofluoromethane	ND	79	82	3.7	68	71	4.3	70 - 130	30	m
Trichlorotrifluoroethane	ND	102	89	13.6	77	86	11.0	70 - 130	30	
Vinyl chloride	ND	94	94	0.0	105	87	18.8	70 - 130	30	
% 1,2-dichlorobenzene-d4	98	99	99	0.0	100	102	2.0	70 - 130	30	
% Bromofluorobenzene	92	93	94	1.1	94	96	2.1	70 - 130	30	
% Dibromofluoromethane	96	93	99	6.3	95	98	3.1	70 - 130	30	
% Toluene-d8	98	98	97	1.0	97	98	1.0	70 - 130	30	
Comment:										

A blank MS/MSD was analyzed with this batch.

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%.

QA/QC Batch 268011, QC Sample No: BG14844 (BG15042, BG15043)

Semivolatiles - Ground Water

Commedia Cround	TTUCO					
2-Methylnaphthalene	ND	85	82	3.6	30 - 130	20
Acenaphthene	ND	80	79	1.3	30 - 130	20
Acenaphthylene	ND	80	80	0.0	30 - 130	20
Anthracene	ND	79	79	0.0	30 - 130	20
Benz(a)anthracene	ND	86	84	2.4	30 - 130	20
Benzo(a)pyrene	ND	77	75	2.6	30 - 130	20
Benzo(b)fluoranthene	ND	86	84	2.4	30 - 130	2

QA/QC Data

% % RPD LCS LCSD LCS MS MSD MS Rec Blank RPD **RPD** Limits % % % Limits Parameter Benzo(ghi)perylene ND 76 78 2.6 30 - 130 20 30 - 130 Benzo(k)fluoranthene ND 81 80 1.2 20 30 - 130 Chrysene ND 87 84 3.5 20 Dibenz(a,h)anthracene ND 79 81 2.5 30 - 130 20 Fluoranthene ND 82 82 0.0 30 - 130 20 Fluorene ND 78 79 1.3 30 - 130 20 Indeno(1,2,3-cd)pyrene ND 80 81 1.2 30 - 130 20 Naphthalene ND 74 72 2.7 30 - 130 20 Phenanthrene ND 80 79 1.3 30 - 130 20 Pyrene ND 81 81 0.0 30 - 130 20 % 2-Fluorobiphenyl 78 78 78 0.0 30 - 130 20 94 % Nitrobenzene-d5 74 72 2.7 30 - 130 20 90 30 - 130 % Terphenyl-d14 1.2 20 Comment:

Additional 8270 criteria: 20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director

SDG I.D.: GBG15041

March 11, 2014

I = This parameter is outside laboratory lcs/lcsd specified recovery limits.

m = This parameter is outside laboratory ms/msd specified recovery limits.

Page 1 of 1

Analysis

RΙ

Tuesday, March 11, 2014 Criteria: CT: GWP, SWP

Sample Criteria Exceedences Report GBG15041 - TIGHE

State: CT

SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
BG15041	\$8260GWR	Acrylonitrile	CT / VOLATILE ORGANIC COMPOUND / GWPC (µg/L)	ND	5.0	0.5	0.5	ug/L
BG15041	\$8260GWR	1,2-Dibromoethane	CT / VOLATILE ORGANIC COMPOUND / GWPC (μ g/L)	ND	1.0	0.05	0.05	ug/L
BG15042	\$8260GWR	Acrylonitrile	CT / VOLATILE ORGANIC COMPOUND / GWPC (µg/L)	ND	5.0	0.5	0.5	ug/L
BG15042	\$8260GWR	1,2-Dibromoethane	CT / VOLATILE ORGANIC COMPOUND / GWPC (µg/L)	ND	1.0	0.05	0.05	ug/L
BG15043	\$8260GWR	Acrylonitrile	CT / VOLATILE ORGANIC COMPOUND / GWPC (µg/L)	ND	5.0	0.5	0.5	ug/L
BG15043	\$8260GWR	1,2-Dibromoethane	CT / VOLATILE ORGANIC COMPOUND / GWPC (µg/L)	ND	1.0	0.05	0.05	ug/L
BG15044	\$8260GWR	Acrylonitrile	CT / VOLATILE ORGANIC COMPOUND / GWPC (µg/L)	ND	5.0	0.5	0.5	ug/L
BG15044	\$8260GWR	1,2-Dibromoethane	CT / VOLATILE ORGANIC COMPOUND / GWPC ($\mu g/L$)	ND	1.0	0.05	0.05	ug/L

Phoenix Laboratories does not assume responsibility for the data contained in this report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

Reasonable Confidence Protocol Laboratory Analysis QA/QC Certification Form

Laboratory Name: Phoenix Environmental Labs, Inc. Client: Tight												
Project Location: RECORD JOURNAL Project Number:												
Laboratory Sample ID(s): BG15041, BG15042, BG15043, BG15044												
Sam	pling Date(s):	3/1/2014										
RCP	Methods Use	d:										
13	311/1312 📝 60)10 🗸 7	7000 71	96	7470/7471	8081	☐ EPH		TO15			
<u> </u>	082 🗌 81	8151 ☑ 8260 ☑ 8270 ☑ ETPH ☐ 9010/9012 ☐ VPH										
1. For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria falling outside of acceptable guidelines, as specified in the CT DEP method-specific Reasonable Confidence Protocol documents? ✓ Yes □ No												
1a.	Were the metho	od specified p	ents met?	✓ Yes	\square No							
1b.	EPH and VPH methods only: Was the VPH or EPH method conducted without significant modifications (see section 11.3 of respective RCP methods) ☐ Yes ☐ No ✔ NA											
2.	Were all sample described on the	✓ Yes	□No									
3.	Were samples i	received at a	✓ Yes	□No	□NA							
	Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents acheived? See Section: VOA Narration. ☐ Yes ✓ No											
5a.	Were reporting	limits specifi	ed or reference	ed on the ch	ain-of-custo	dy?	✓ Yes	□No				
5b.	Were these rep	orting limits r	met?				□ Yes	✓ No	□NA			
	For each analyt results reported presented in the	for all consti	ituents identifie	ed in the met	thod-specific		☐ Yes	✓ No	□NA			
7.	Are project-spec	cific matrix sp	oikes and labo	ratory duplic	cates include	d in the data set?	✓ Yes	□No	□NA			
Note: For all questions to which the response was "No" (with the exception of question #5a, #7), additional information must be provided in an attached narrative. If the answer to question #1, #1A or 1B is "No", the data package does not meet the requirements for "Reasonable Confidence".												
and	belief and bas	sed upon n	ny personal i	inquiry of	those resp	rjury that, to the consible for pro ate and comple	viding the					
	horized	H	9		Printa	Date: Tueso	•	-	4			
Signature: Printed Name: Greg								tant Lah Director				

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

March 11, 2014

SDG I.D.: GBG15041

BG15042 - The client requested a short list for 8270 RCP Semivolatile.

BG15043 - The client requested a short list for 8270 RCP Semivolatile.

Volatile 8260 analysis:

The reporting level for Acrylonitrile is above the GWP criteria.

1,2-Dibromoethane does not meet GWP criteria, this compound is analyzed by GC/ECD to achieve this criteria.

Lead Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument: Zeeman 03/04/14-1 (BG15042, BG15043, BG15044)

The initial calibration met all criteria including a standard run at the reporting level.

All calibration verification standards (ICV, CCV) met criteria.

All calibration blank verification standards (ICB, CCB) met criteria.

The matrix spike sample is used to identify spectral interfernce for each batch of samples, if within 85-115%, no interference is observed and no further action is taken.

Printed Name Rick Schweitzer

Position: Chemist Date: 3/4/2014

Thallium Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

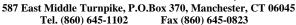
Instrument: Zeeman 03/04/14-1 (BG15042, BG15043, BG15044)

The initial calibration met all criteria including a standard run at the reporting level.

All calibration verification standards (ICV, CCV) met criteria.

All calibration blank verification standards (ICB, CCB) met criteria.

The matrix spike sample is used to identify spectral interfernce for each batch of samples, if within 85-115%, no interference is observed and no further action is taken.


Printed Name Rick Schweitzer

Position: Chemist Date: 3/4/2014

Instrument: Zeeman 03/07/14-1 (BG15042, BG15043, BG15044)

The initial calibration met all criteria including a standard run at the reporting level.

RCP Certification Report

March 11, 2014

SDG I.D.: GBG15041

All calibration verification standards (ICV, CCV) met criteria.

All calibration blank verification standards (ICB, CCB) met criteria.

The matrix spike sample is used to identify spectral interfernce for each batch of samples, if within 85-115%, no interference is observed and no further action is taken.

Printed Name Rick Schweitzer

Position: Chemist **Date:** 3/7/2014

QC (Batch Specific)

----- Sample No: BG12774, QA/QC Batch: 267567 -----

All LCS recoveries were within 75 - 125 with the following exceptions: None.

All LCSD recoveries were within 75 - 125 with the following exceptions: None.

All LCS/LCSD RPDs were less than 20% with the following exceptions: None.

ETPH Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument: Au-xl2 03/05/14-1 (BG15042, BG15043, BG15044)

Initial Calibration (FID1 - ETPH_1) - The initial calibration curve was within method criteria and had a %RSD less than 30%.

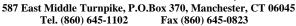
As per section 7.2.3, a discrimination check standard was run and contained the following outliers: None

Printed Name Jeff Bucko Position: Chemist Date: 3/5/2014

QC Comments: QC Batch 267571 02/26/14 (BG15042, BG15043, BG15044)

NA: Not applicable, surrogate was not spiked into the LCSD.

QC (Batch Specific)


----- Sample No: BG13157, QA/QC Batch: 267571 -----

All LCS recoveries were within 60 - 120 with the following exceptions: None.

All LCSD recoveries were within 60 - 120 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

RCP Certification Report

March 11, 2014

SDG I.D.: GBG15041

Mercury Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument: Merlin 03/05/14-1 (BG15042, BG15043, BG15044)

The method preparation blank contains all of the acids and reagents as the samples; the instrument blanks do not.

The initial calibration met all criteria including a standard run at or below the reporting level.

All calibration verification standards (ICV, CCV) met criteria.

All calibration blank verification standards (ICB, CCB) met criteria.

The matrix spike sample is used to identify spectral interfernce for each batch of samples, if within 85-115%, no interference is observed and no further action is taken.

Printed Name Rick Schweitzer

Position: Chemist **Date:** 3/5/2014

QC (Site Specific)

----- Sample No: BG15042, QA/QC Batch: 268044 -----

All LCS recoveries were within 70 - 130 with the following exceptions: None.

All LCSD recoveries were within 70 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 20% with the following exceptions: None.

All MS recoveries were within 75 - 125 with the following exceptions: None.

All MSD recoveries were within 75 - 125 with the following exceptions: None.

All MS/MSD RPDs were less than 20% with the following exceptions: None.

A matrix effect is suspected when a MS/MSD recovery is outside of criteria. No further action is required if LCS/LCSD compounds are within criteria.

ICP Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument: Arcos 03/04/14-1 (BG15042, BG15043, BG15044)

The initial calibration met criteria.

The continuing calibration standards met criteria for all the elements reported. The linear range is defined daily by the calibration range.

The continuing calibration blanks were less than the reporting level for the elements reported.

The ICSA and ICSAB were analyzed at the beginning and end of the run and were within criteria.

Printed Name Laura Kinnin Position: Chemist Date: 3/4/2014

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

March 11, 2014

SDG I.D.: GBG15041

QC Comments: QC Batch 267944 03/03/14 (BG15042, BG15043, BG15044)

No Duplicate analysis could be reported with this Batch.

QC (Batch Specific)

----- Sample No: BG14572, QA/QC Batch: 267944 -----

All LCS recoveries were within 75 - 125 with the following exceptions: None.

All LCSD recoveries were within 75 - 125 with the following exceptions: None.

All LCS/LCSD RPDs were less than 20% with the following exceptions: None.

SVOASIM Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument: Chem04 03/05/14-1 (BG15042, BG15043)

The DDT breakdown and pentachlorophenol & benzidine peak tailing were evaluated in the DFTPP tune and were found to be in control.

In the event that lower detection levels were requested, the samples may have been analyzed by selective ion monitoring (SIM) mode.

If PAH/base neutral were requested, Phoenix utilized a method that contained a shortened list, so some of the compounds in the narrative may be non-applicable. Initial Calibration Verification (CHEM04/SIM_0219):

98% of target compounds met criteria.

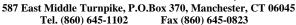
The following compounds had %RSDs >20%: 4,6-Dinitro-2-methylphenol (21%)

The following compounds did not meet a minimum response factor of 0.01: None.

Continuing Calibration Verification (CHEM04/0305_02-SIM_0219):

98% of target compounds met criteria. Internal standards were within the 50%-200% deviation from the initial calibration. The following compounds did not meet % deviation criteria: Pentachlorophenol (-64%)[30%]

The following compounds did not meet maximum % deviations: Pentachlorophenol (-64%)[40%]


The following compounds did not meet recommended response factors: 2-nitrophenol (.087)[0.1]

The following compounds did not meet minimum response factors: None.

Printed Name Damien Drobinski

Position: Chemist Date: 3/5/2014

RCP Certification Report

March 11, 2014

SDG I.D.: GBG15041

QC (Batch Specific)

----- Sample No: BG14844, QA/QC Batch: 268011 -----

All LCS recoveries were within 30 - 130 with the following exceptions: None.

All LCSD recoveries were within 30 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 20% with the following exceptions: None.

VOA Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? No.

QC Batch 268055 (Samples: BG15041, BG15042, BG15043, BG15044): -----

The LCS recovery is below the method criteria. All of the other QC is acceptable, therefore no significant bias is suspected. (Methyl ethyl ketone)

Instrument: Chem17 03/04/14-1 (BG15041, BG15042, BG15043, BG15044)

Initial Calibration Verification (CHEM17/RCPS_0227):

96% of target compounds met criteria.

The following compounds had %RSDs >20%: Bromomethane (28%), Naphthalene (24%), trans-1,4-Dichloro-2-butene (23%)

The following compounds did not meet a minimum response factor of 0.01: None.

Continuing Calibration Verification (CHEM17/0304S02-RCPS_0227):

100% of target compounds met criteria. Internal standards were within the 50%-200% deviation from the initial calibration. The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet minimum response factors: None.

Printed Name Harry Mullin Position: Chemist Date: 3/4/2014

QC Comments: QC Batch 268055 03/04/14 (BG15041, BG15042, BG15043, BG15044)

A blank MS/MSD was analyzed with this batch.

QC (Batch Specific)

----- Sample No: BG14756, QA/QC Batch: 268055 -----

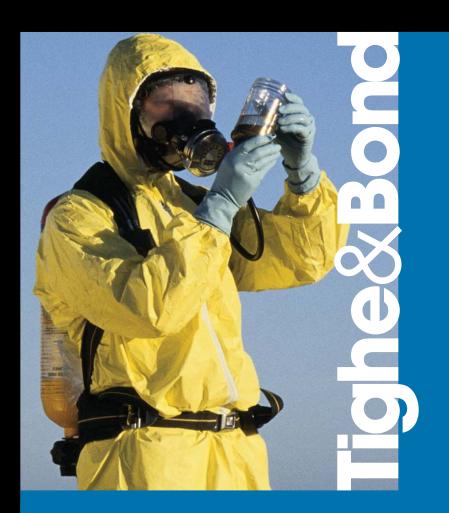
All LCS recoveries were within 70 - 130 with the following exceptions: Methyl ethyl ketone(69%)

All LCSD recoveries were within 70 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report


March 11, 2014

SDG I.D.: GBG15041

Temperature Narration

The samples in this delivery group were received at 6°C. (Note acceptance criteria is above freezing up to 6°C)

					$\overline{}$	/ /					1	_ +	s)
Yes No	_D	ions: 36-6060	ण्टम्हा <u>०</u> -	Inis section MUST be completed with Bottle Quantities.	Thomas in the second se	Allogo elles el lingo elles el lingo elles elles el lingo elles el					Data Format Excel PDF GIS/Key EQUIS	☐ Other Data Package ☐ Tier II Checklist ☐ Full Data Package* Rhoenix Std Report	* SURCHARGE APPLIES
Cooler:	္ (H3(section maple of the Q	343	Algoritation of the second			-		Data Form Excel PDF GIS/Ke] INS
Coolant: IPA	Temp	Contact (3 (5)	Project P.O:	oc co	\$\\\ \frac{\partial \text{\text{\$\frac{\partial \text{\$\frac{\partial \text{\$\frac{\eta}}}{\partial \text{\$\frac{\text{\$\frac{\epi}}{\partial \text{\$\frac{\epi}}{\partial \text	1000 100 100 100 100 100 100 100 100 10	정 전 전	MM			MA	S-1 S-2 S-3 MWRA eSMART	J
		Fax: Phone: Email:				1 3 10 15 15 15 15 15 15 15 15 15 15 15 15 15	¥ (, ,				MA MA MA MCP C GW-1 GW-2 GW-3 GW-	5. 2. 2. 2. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.	ted:
			Souriol	46,814		15 X X X X X X X X X X X X X X X X X X X					CT XRCP Cert XGW Protection XISW Protection	GB Mobility GB Mobility Residential DEC I/C DEC	State where samples were collected:
	CHAIN OF CUSTODY RECORD	587 East Middle Turnpike, P.O. Box 370, Manchester, CT 06040 Email: info@phoenixlabs.com Fax (860) 645-0823 Client Services (860) 645-8726	Record 7	1+13 westered	7								
	NOF CUSTO	East Middle Turnpike, P.O. Box 370, Mancheste Email: info@phoenixlabs.com Fax (860) 64 Client Services (860) 645-8726	\s 1 .	Invoice to:	Analysis Request		X X X	Χ × ×>			1/14 1/600 4/14 1/800		Other K Okwa
	HAII	Aiddle I: info@ Clie		lt.			$\times \times$	X7	X		3 W W		
	၁	587 East N Email		0645	3/1/14 aste Water	Time	150	190C				4/14	-
				りつ		Sampled	14 GW	। ₹				3/2	
		ss, Inc.	Bank	CANA	SW=Surface	Sample	ا ا ا ا	N M			led by:	That ions:	7
		// Soratorie	+ 72 + 72 - 72 - 72 - 72 - 72 - 72 - 72 - 72 -	S (ex	Client Sample - Information	id Customer Sample Identification	<u>. Ban</u> V- A	1-100	-		Accepted by	TRequirements or Regulations: That A 12 L	
		HIV ntal Lab	THE STATE OF THE S	N N	1 \	C = Liquid	Y E	O Die			Manage	A TON V	
	7 7 7	PHOKINIX STREET Environmental Laboratories, Inc	Customer:	900	Sampler's Signature Matrix Code: DW-Drinking Water GW-Ground Water SW=Surface Water W DW-Drinking Water G-Codings SI-Surface Water W	OIL=Oil B=Bulk L=Liquid PHOENIX USE ONLY SAMPLE#	15041	15043	7		Relinguished by	Confinents, Spara	

Table 1Summary of Phase II Soil Analytical Data Record Journal
11 Crown Street
Meriden, Connecticut

											Phase II ESA	Soil Result	5					
Parameter Depth		СТ	RSRs		B-1 (0-2 ft)	B-2 (4-6 ft)	DUP (B-2)	B-3 (4-6 ft)	B-4 (0-2 ft)	B-5 (0-6 in)	B-6 (0-6 in)	B-7 (0-10 in)	B-8 (4.5-5.5 ft)	B-9 (6-7 ft)	B-10 (0-2 ft)	SS-1 (0-6 in)	SS-2 (0-8 in)	Trip Blank
Date	RES DEC	I/C DEC	GB PMC	10X GWPC	10/18/2013	10/18/2013			10/18/2013	10/18/2013		10/18/2013	10/18/2013	10/18/2013				10/18/2013
Total Metals (mg/Kg) Arsenic Barium Beryllium Cadmium Chromium Copper Lead	10 4,700 2 34 NE 2,500 400	10 140,000 2 1,000 NE 76,000 1,000	NE NE NE NE NE NE	NA NA NA NA NA NA	3 77.1 1.57 0.58 20.4 5.98 20.6	2.5 68.9 0.77 ND<0.38 10.9 8.24 8.83	2.2 70.7 0.79 0.41 14.4 10.7 9.52	5.4 161 0.8 0.69 15 90.5 317	5.3 157 1.33 0.7 16.9 37.5 1,290	- - - - - - -	- - - - - -	ND<0.8 63.5 0.95 ND<0.40 11.7 2.47 10.4	3.1 94.9 1.02 0.56 15.5 23.8 130	ND<0.7 62 0.54 0.69 11.2 8 18	2.3 87.4 0.84 0.64 20.4 27.4 36.9	2.4 59.5 0.69 0.54 15.4 27.2 55.5	2.8 126 0.68 0.75 15.8 40.3 266	- - - - -
Mercury Nickel Vanadium Zinc	20 1,400 470 20,000	610 7,500 14000 610,000	NE NE NE NE	NA NA NA NA	ND<0.09 16.5 33 47.5	ND<0.08 8.84 24 25.4	ND<0.08 9.57 28.6 27.4	0.71 12.4 27.1 216	0.85 12.2 22.4 115	- - - -	- - -	ND<0.08 8.83 18.9 29	0.2 13.4 26.8 70.8	ND<0.07 5.98 24.01 55.4	ND<0.08 16.8 42.7 54.5	0.1 14.7 33 48.1	0.28 17 45.2 132	- - -
SPLP Metals (ug/L) Lead	NA	NA	0.15	NA	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CT ETPH (mg/Kg)	500	2,500	2,500	NA	ND<63	ND<56	ND<54	ND<64	ND<55	-	-	ND<58	ND<53	ND<52	580	ND<55	ND<54	-
VOCs (mg/kg) Acetone	500	1,000	140	NA	-	-	-	0.077	-	-	-	-	-	-	-	-	-	ND
PAHs (mg/Kg) 2-Methylnaphthalene Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene	NE NE 1,000 1,000 1 1 1 1 NE 8.4 NE NE 1,000 1,000 1,000 1,000	NE NE 2500 2,500 7.8 1 7.8 NE 78 NE NE 02,500 2,500 NE 2,500 2,500 2,500	NE NE 84 400 1 1 1 NE 1 NE NE 56 56 NE 56 40 40	NA N	ND<0.29 ND<0.29 ND<0.29 ND<0.29 ND<0.29 ND<0.29 ND<0.29 ND<0.29 ND<0.29 ND<0.29 ND<0.29 ND<0.29 ND<0.29 ND<0.29 ND<0.29	ND<0.26 ND<0.26 ND<0.26 ND<0.26 ND<0.26 ND<0.26 ND<0.26 ND<0.26 ND<0.26 ND<0.26 ND<0.26 ND<0.26 ND<0.26 ND<0.26 ND<0.26 ND<0.26	ND<0.25 ND<0.25 ND<0.25 ND<0.25 ND<0.25 ND<0.25 ND<0.25 ND<0.25 ND<0.25 ND<0.25 ND<0.25 ND<0.25 ND<0.25 ND<0.25 ND<0.25 ND<0.25	ND<0.3 ND<0.3 ND<0.3 ND<0.3 1.1 0.99 1.3 0.38 0.45 1.1 ND<0.3 2.1 ND<0.3 0.38 ND<0.3 1.3	ND<0.26 ND<0.26 ND<0.26 ND<0.26 ND<0.26 ND<0.26 ND<0.26 ND<0.26 ND<0.26 ND<0.26 ND<0.26 ND<0.26 ND<0.26 ND<0.26 ND<0.26 ND<0.26 ND<0.26 ND<0.26			ND<0.28 ND<0.28 ND<0.28 ND<0.28 ND<0.28 ND<0.28 ND<0.28 ND<0.28 ND<0.28 ND<0.28 ND<0.28 ND<0.28 ND<0.28 ND<0.28 ND<0.28 ND<0.28 ND<0.28 ND<0.28 ND<0.28	ND<0.25 ND<0.25 ND<0.25 ND<0.25 1.4 1.2 1.6 0.42 0.53 1.4 ND<0.25 1.9 ND<0.25 0.44 ND<0.25 0.79	ND<0.24 ND<0.24 ND<0.24 ND<0.24 ND<0.24 ND<0.24 ND<0.24 ND<0.24 ND<0.24 ND<0.24 ND<0.24 ND<0.24 ND<0.24 ND<0.24 ND<0.24 ND<0.24 ND<0.24	ND<6.5 ND<6.5 ND<6.5 8.2 39 32 51 10 15 29 ND<6.5 56 ND<6.5 9.4 ND<6.5 36	ND<0.25 ND<0.25 ND<0.25 ND<0.25 ND<0.25 ND<0.25 ND<0.25 ND<0.25 ND<0.25 ND<0.25 ND<0.25 ND<0.25 ND<0.25 ND<0.25 ND<0.25 ND<0.25 ND<0.25 ND<0.25	ND<0.25 ND<0.25 ND<0.25 0.29 0.91 0.57 0.79 ND<0.25 1.2 ND<0.25 1.2 ND<0.25 ND<0.25 ND<0.25 ND<0.25	- - - - - - - - - - - - - - - - - - -
SPLP PAHs (ug/L) 2-Methylnaphthalene Acenaphthene Benz(a)anthracene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenz(a,h)anthracene Fluoranthene Indeno(1,2,3-cd)pyrene Naphthalene Phenanthrene Pyrene	NA NA NA NA NA NA NA NA NA NA	NA	NA N	NE NE 0.6 2.0 0.8 NE 5.0 NE NE 2,800 2,000 2,000		- - - - - - - - - - - - -	- - - - - - - - - - -	-	- - - - - - - - - - -			- - - - - - - - - - - -	- - - - - - - - - - -	- - - - - - - - - - - -				-
Total PCBs (mg/Kg)	1	10	NE	NA	_	_	_	-	-	BRL	BRL	_	-	_	_	_	_	-
Notes: ND - Not detected above laborat NE - Criteria Not Established NA - Not Applicable ppm - parts per million SPLP - Synthetic Precipitation Le PAHs - Polynuclear Aromatic Hyc ETPH - Extractable total petroleu RES DEC - Residential Direct Exp I/C DEC - Industrial/Commercial BB PMC - Potential Mobility Crite GWPC - Groundwater Protection CT RSRs - Connecticut Remediat PCB - Polychlorinated bi-phenyl BRL - Below reporting limits Bolded and boxed results exceed	aching Proc drocarbons m hydrocar posure Crite Direct Expr ria for a GB Criteria ion Standar	rbon ria osure Criteria groundwate d Regulation	er class es															

Table 2Summary of Phase III Soil Analytical Data Record Journal
11 Crown Street
Meriden, Connecticut

10 1,700	СТ							Phase III 9	Soil Results				
10		RSRs		B-100	B-101	B-102	DUP	B-103	B-104	B-105	B-106	B-107	SS-101
10	T/C DEC	CD DMC	10V CWDC	0-2'	0-2'	0-2'	(B-102)	0-1.5'	0-2.5'	0-2'	6-7.5'	0-2'	8-12"
	I/C DEC	GB PMC	10X GWPC	2/20/2014	2/20/2014	2/20/2014	2/20/2014	2/20/2014	2/21/2014	2/21/2014	2/21/2014	2/21/2014	2/21/2014
1,700	10	NE	NA	-	-	-	-	-	-	-	-	-	-
	140,000	NE	NA	-	-	-	-	-	-	-	-	-	-
2	2	NE	NA	-	-	-	-	-	-	-	-	-	-
34 NE	1,000	NE	NA	-	-	-	-	-	-	-	-	-	-
NE 2,500	NE 76,000	NE NE	NA NA	_	_	_	_	_	_	_	_	-	_
400	1,000	NE	NA	7,070	62.2	8.58	7.86	_	13.3	13.5	44.9	_	_
20	610	NE	NA	-	-	-	-	-	-	-	-	-	-
,400	7,500	NE	NA	-	-	-	-	-	-	-	-	-	-
470			NA	-	-	-	-	-	-	-	-	-	-
0,000	610,000	NE	NA	-	-	-	-	-	-	-	-	-	-
NA	NA	0.15	NA	ND<0.01	ND<0.01	ND<0.01	ND<0.01	-	ND<0.01	ND<0.01	0.036	-	-
500	2,500	2,500	NA	-	-	ND<55	ND<55	ND<58	-	-	-	ND<59	ND<56
500	1,000	140	NA	-	-	-	-	-	-	-	-	-	-
NE	NE	NE	NA	ND<0.25	ND<0.25	ND<0.26	ND<0.25	ND<0.27	-	-	0.44	ND<0.27	-
NE	NE	NE	NA	ND<0.25	ND<0.25	ND<0.26	ND<0.25	ND<0.27	-	-	1.2	ND<0.27	-
,000									-	-			-
									-				-
									-				-
									_	_			_
NE	NE	ΝĒ	NA	ND<0.25	ND<0.25	ND<0.26	ND<0.25	ND<0.27	_	-	1.4	ND<0.27	-
8.4	78	1	NA	ND<0.25	ND<0.25	ND<0.26	ND<0.25	ND<0.27	-	-	4.1	ND<0.27	-
NE		NE	NA	ND<0.25	ND<0.25	ND<0.26	ND<0.25	ND<0.27	-	-	2.8	ND<0.27	-
									-	-			-
									-	-			-
									_	_			_
,000									_	_			_
,000	2,500	40	NA	ND<0.25	ND<0.25	ND<0.26	ND<0.25	ND<0.27	-	-	9.6	ND<0.27	-
,000	2,500	40	NA	ND<0.25	ND<0.25	ND<0.26	ND<0.25	ND<0.27	-	-	4.1	ND<0.27	-
NA	NA	NA	NE	ND<0.10	ND<0.10	ND<0.10	ND<0.10	ND<0.1	-	-	0.12	ND<0.10	-
NA	NA	NA	NE	ND<0.10	ND<0.10	ND<0.10	ND<0.10	0.15	-	-	0.1	ND<0.10	-
									-	-			-
									-				-
									-	-			-
NA		NA							-	_			-
NA	NA	NA	NE	0.03	0.02	0.02	ND<0.02	0.02	-	-	0.05	ND<0.02	-
NA	NA	NA	NE	0.01	ND<0.01	ND<0.01	ND<0.01	ND<0.01	-	-	ND<0.01	ND<0.01	-
NA	NA	NA	2,800	ND<0.10	ND<0.10	ND<0.10	ND<0.10	ND<0.1	-	-	0.11	ND<0.10	-
NA	NA	NA	NE 2.000	0.04	ND<0.02	ND<0.02	ND<0.02	ND<0.02	-	-	0.02	ND<0.02	-
	NA NA	NA NA	2,800 2,000	ND<0.10 0.09	ND<0.10 ND<0.07	ND<0.10 ND<0.07	ND<0.10 ND<0.07	ND<0.1 0.25	-	-	0.68 0.2	ND<0.10 ND<0.07	_
NA NA		NA	2,000	0.13	ND<0.07	ND<0.07	ND<0.07	ND<0.1	-	-	ND<0.10	ND<0.07	-
NA NA NA	NA												
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	170 1,000 NA 500 NE NE 0000 0000 1 1 1 NE 8.4 NE NE 0000 0000 NE NO 0000 NO NO 0000 NO 0000 NO 0000 NO 0000 NO 0000 NO 0000 NO 0000 NO NO 0000 NO NO NO NO NO NO NO NO NO NO NO NO NO	14000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 2,500 1,000 1,000 1,000 2,500 1,000 1,000 1,000 1,000 1,000 2,500 1,000 1,000 1,000 1,000 2,500 1,000	14000 NE 14000 NE 14000 NE 14000 NE 14000 NE 14000 NE 15000 2,500 2,500 140 140 140 140 140 140 140 140 140 1	170 14000 NE NA 1,000 610,000 NE NA NA NA 0.15 NA 500 2,500 2,500 NA NE NE NE NE NA NA NE NE NE NE NA 0.000 2,500 84 NA 0.000 2,500 400 NA 1 7.8 1 NA 1 1 1 NA 1 7.8 1 NA 1 7.8 1 NA NE NE NE NE NA NE NE NE NA NE NE NE NA N	14000	NA	NA	170	NA	NA	170 14000 NE NA	14000 NE	14000 NE

Table 3Summary of Groundwater Analytical Data Record Journal
11 Crown Street
Meriden, Connecticut

Parameter		CT DEEP RSR	5	MW-1	MW-2	Dup	Trip	
rarameter	SWPC	C RES GWVC I/C		14144-1	1-144-2	Бар	Blank	
Date Sampled				3/1/14	3/1/14	3/1/14	3/1/14	
VOCs (ug/L)	Varies	Varies	Vaires	BRL	BRL	BRL	BRL	
PAHs (ug/L)	Varies	NA	NA	BRL	BRL	BRL	-	
CT ETPH (mg/L)	0.25	NA	NA	ND<0.07	ND<0.07	ND<0.07	-	
RCP Metals (ug/L)								
Barium	NE	NA	NA	450	527	539		
Nickel	880	NA	NA	1	ND<1	ND<1	-	
Zinc	123	NA	NA	3	ND<2	ND<2	-	

Notes:

Only compounds detected are summarized in the table (compounds that are not listed were not detected)

Bold and outlined cells indicate the concentration exceeds one or more of the listed standards

CT DEEP RSRs - Connecticut Department of Energy & Environmental Protection Remedation Standard Regulations

RES GWVC - Residential Groundwater Volatilization Criteria

I/C GWVC - Industrial/Commercial Groundwater Volatilization Criteria

SWPC - Surface Water Protection Criteria

ug/L - micrograms per Liter

mg/L - milligrams per Liter

ND - Not detected above listed laboratory reporting limit

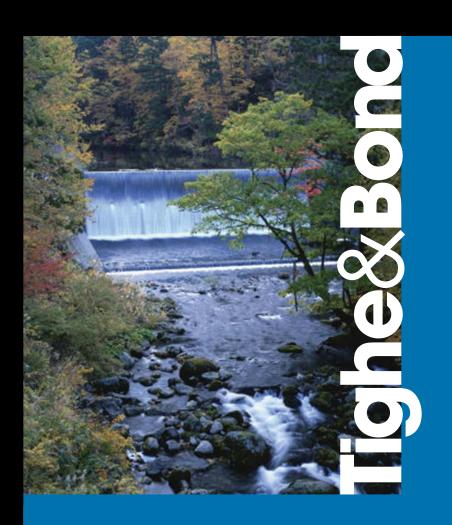
BRL - Below laboratory established reporting limit

NA - RSR criteria not applicable

VOCs - Volatile Organic Compounds

PAHs - Polycyclic aromatic hydrocarbons

ETPH - Extractable Total Petroleum Hydrocarbons


- Sample not analyzed

RCP metals include: Silver, Arsenic, Barium, Beryllium, Cadmium, Chromium, Copper, Mercury

Nickel, Lead, Antimony, Selenium, Thallium, Vanadium, Zinc

Table 4Conceptual Site Model
Phase III ESA
11 Crown Street
Meriden, Connecticut

AOC	AOC Description	Potential COCs	Confirmed COCs	Potential Release Mechanisms and Pathways	Potential Receptors	Status	Sampling Locations Soil Borings	Rationale
1	Northern Portion of Building	VOCs, PAHs, Metals	None	Releases onto the ground surface. Migration through building slab to sub-slab soils.	Direct human exposure through construction activities or demolition. Areas currently capped with asphalt or buildings as noted. Ecological Receptors	No Significant Release was Identified, Fill Material Identified	SS-1 and SS-2	Significant releases of COCs to the environment as a results of former chemical storage and the printing press located in the northern portion of the building were not identified. However, fill material was identified beneath the building slab in these areas and is likely the cause of elevated PAHs and lead concentrations.
2	Central and Southern Portion of Building	VOCs, PAHs, Metals	None	Releases onto the ground surface. Migration through building slab to sub-slab soils.	Direct human exposure through construction activities or demolition. Areas currently capped with asphalt or buildings as noted. Ecological Receptors	No Significant Release was Identified	SS-101 and SS-102	Significant release of COCs to the environment as a result of former paper storage and print press located in the southern and central portion of the building were not identified.
3	Loading Dock A (South of Building)	ETPH, VOCs, PAHs, Metals	None	Releases onto the ground surface. Migration through asphalt to soils.	Direct human exposure through construction activities or demolition. Areas currently capped with asphalt or buildings as noted. Ecological Receptors	No Significant Release was Identified	SB-1 and SB-2	Significant releases related to chemical or petroleum releases were not identified at loading dock A. However, fill material 2 feet thick was identified with elevated COCs.
4	Loading Dock B (West of Building)	ETPH, VOCs, PAHs, Metals	None	Releases onto the ground surface. Migration through asphalt to soils.	Direct human exposure through construction activities or demolition. Areas currently capped with asphalt or buildings as noted. Ecological Receptors	No Significant Release was Identified, Fill Material Identified	SB-9	Significant releases related to chemical or petroleum releases were not identified at loading dock B. However, 8 feet of gravel and 1 foot of fill material was identified but did not result in elevated COCs.
5	Former Automotive Repair Shop	ETPH, VOCs, PAHs, Metals	None	Releases onto the ground surface. Migration through asphalt or building slab to soils.	Direct human exposure through construction activities or demolition. Areas currently capped with asphalt or buildings as noted. Ecological Receptors	No Significant Release was Identified, Impacted Fill Material Identified	SB-3, SB-8, B-100, B-101, and B-104	Significant releases related to the former automotive repair shop were not identified during site activities. Two types of fill from 0 to 2 feet and 4 to 6 feet was identified during site activities that resulted in elevated concentrations of PAHs and lead.
6	Former Press Manufacturing	VOCs, PAHs, Metals	None	Releases onto the ground surface. Migration through asphalt or building slab to soils.	Direct human exposure through construction activities or demolition. Areas currently capped with asphalt or buildings as noted. Ecological Receptors	No Significant Release was Identified, Fill Material Identified	SB-4, SB-7, B-105, and B-106	No significant releases related to the former Press Manufacturing buildings were identified. Fill material was identified in the borings from 0 to 2 feet that resulted in an elevated concentration of lead.
7	Transformer Pads	PCBs	None	Releases onto the ground surface.	Direct human exposure through construction activities or demolition. Areas currently capped with asphalt or buildings as noted. Ecological Receptors	No Significant Release was Identified	SB-5 and SB-6	No significant releases were identified from transformer leaks.
8	Southwestern Parking Lot	ETPH, VOCs, PAHs	None	Releases onto the ground surface. Migration through asphalt to soils.	Direct human exposure through construction activities or demolition. Areas currently capped with asphalt or buildings as noted. Ecological Receptors	No Significant Release was Identified, Impacted Fill Material Identified	108	Significant releases related to a former release on Crown Street were not identified during site activities. Fill material limited to B-10 was identified during site activities that resulted in elevated concentrations of ETPH and PAHs.
9	Site-Wide Fill Material	VOCs, PAHs, ETPH, and metals	PAHs, ETPH, and metals	Deposition of Fill Material	Direct human exposure through construction activities or demolition. Areas currently capped with asphalt or buildings as noted. Ecological Receptors	Impacted Fill Material Identified	All Borings	Site-wide impacted fill was identified that resulted in elevated levels of PAHs and lead. Two types of impacted fill material were identified in the northern and western portions of the site, fill material from 4 to 6 feet resulted in elevated PAHs and fill material from 0 to 2 feet resulted in elevated concentrations of lead. In the southeastern portion of the site fill material from 0 to 2 feet of fill material resulted in elevated concentrations of PAHs and ETPH.

The Quality Assurance/Quality Control (QA/QC) procedures for field work and laboratory analyses during the Phase III ESA were evaluated as part a Data Quality Assessment/Data Usability Evaluation (DQA/DUE) that was conducted during the preparation of this Phase III ESA report. The following CTDEEP Guidance Documents were used in this evaluation:

Laboratory Quality Assurance and Quality Control, Reasonable Confidence Protocols Guidance Document, November 2007

Laboratory Quality Assurance and Quality Control, Data Quality Assessment and Data Usability Evaluation Guidance Document (May 2009, Revised December 2010)

Quality Assurance and Quality Control Requirements for various analytical methods

Results of the QA/QC evaluation and DQA/DUE for field work and laboratory analyses are provided in the next sections and are organized by investigation.

Tighe & Bond - Phase III ESA

The following subsections provide discussion on QA/QC procedures and methods that were utilized during the subsurface investigation activities for the Phase III ESA completed by Tighe & Bond in February 2014.

Field Sampling Procedures and Methods Soil

Soil samples collected during this investigation were obtained utilizing hollow-stem auger and direct-push drilling methodologies. Samples were analyzed for at least one of the following parameters:

- Extractable Total Petroleum Hydrocarbons (ETPH) (CT ETPH Method and EPA Method 1312)
- Total and SPLP Lead (EPA Methods 6010)
- Total and SPLP Polynuclear Aromatic Compounds (PAHs) (EPA Method 8270 and 8270SIM)

Groundwater

Groundwater sampling was conducted in accordance with the EPA's "Low Stress (low flow) Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells (January 19, 2010, Revision 3).

Turbidity in MW-1 was between 300 and 400 NTU at the time of sample collection. All other parameters were stabilized before sampling. The groundwater sample for MW-1 was filtered with a 0.45μ field filter during sampling. The groundwater sample for MW-2 was collected after all parameters were stabilized and turbidity was below 3 NTU.

QA/QC Assessment and Conformances

The samples were collected in accordance with RCP protocols.

Phase III ESA Laboratory Reports

Phoenix Environmental Laboratories Inc., Lab No. GBG12137

Soil samples were collected February 20 and 21, and included the following soil samples:

- B-100
- B-101
- B-102
- B-103
- B-104
- B-105
- B-106
- B-107
- B-108
- SS-101
- Duplicate

Standard RCP Deliverables: The RCP Laboratory Analysis QA/QC Certification Form and RCP Certification Report were supplied by Phoenix for this laboratory report.

Data Package Inspection: No issues were identified.

Reasonable Confidence Evaluation:

The RCP Laboratory Analysis QA/QC Certification Form identified a "no" response to question 4. Not all QA/QC performance criteria specified in the RCP documents was achieved. The MSD recovery was below the acceptable lower limit for ETPH. The Relative Percent Difference (RDP) between the MS and MSD was above the acceptable upper limit for one of the ETPH surrogates (% n-Pentacosane). Surrogate recoveries were all within specified limits. The initial and daily continuing calibrations were within range and the ETPH recoveries were within acceptable range. There is no suspected bias for ETPH.

The Laboratory Duplicate RDP was above the method critieria for lead. The initial and daily continuing calibrations were within range and lead recoveries were within acceptable range; therefore, ther is no suspected bias for lead.

The RCP Laboratory Analysis QA/QC Certification Form also identified a "no" response to question 6. Not all constituents identified in each method referenced in the lab report were reported. RCP Metals (Method 6010) was limited to lead for all samples as requested by Tighe & Bond. Method 8270 covers all Semi-Volatile Organic Compounds (SVOCs) but the requested analysis was limited to PAH compounds only. All constituents requested on the chain of custody were reported.

Benzo(a)anthracene and Chrysene were detected in the Laboratory Blank sample for SPLP PAHs. A high bias for Benzo(a)anthracene is suspected in B-100, B-101, B-102, B-106, B-107 and the duplicate. A high bias for Chrysene is suspected in B-100, B-101, B-102, and B-106. Chrysene was not detected in B-107 and the duplicate, thus a high bias is not suspected.

Chain of Custody Evaluation: Samples were received by Phoenix on February 24, 2014 at 1640. Each sample collected included one 8-oz glass soil container. B-100 and SS-101 included two 8-oz glass soil containers.

Sample Preservation and Holding Time Evaluation: All parameters were analyzed within holding times.

Blank Evaluation: A blank was not provided in this report

Duplicate Evaluation: A duplicate sample was provided in this report.

Laboratory Blank Samples: Lab blank analysis was below detection limits for all listed compounds except SPLP Benz(a)anthracene (0.03 µg/L) and SPLP Chrysene (0.02 µg/L).

Laboratory Control Samples: Laboratory control samples were all within acceptable recovery limits

Surrogates: The LCS RPD and MS RPD for ETPH were outside the specified recovery limits. The MS RPD for ETPH surrogate (% n-Pentacosane) was outside the specified recovery limits for ETPH. The LCS/LCSD and MS/MSD were all within the acceptable range and surrogate recovery was within limits for all samples. There is no suspected bias for ETPH.

All PAH surrogates were within limits and QA/QC data was within acceptance criteria. There is no suspected bias for PAHs.

Site Specific Matrix Spikes and Matrix Spike Duplicates: Site specific matrix spikes and laboratory duplicates were included in the data sets. Matrix spikes and matrix spike duplicates were all within acceptable recovery limits except for total lead which was outside of the RDP specified laboratory limits.

Tentatively Identified Compounds: Tentatively Identified Compounds were not requested for this laboratory report

Other QC Data: All other QC data is within acceptable limits

Continuing Calibration Blank or Initial Calibration Blank Evaluation: All parameters had a relative standard deviation of less than 20% in the initial and continuing calibration.

The relative standard deviations for select Semivolatile Organic Compounds (SVOCs) were found to be above 20% in the initial and continuing calibration. These compounds were not included in the list of requested constituents therefore the exceedance is not expected to influence the data quality.

Data Quality Objectives: The soil samples in this laboratory report were analyzed as part of the investigation of AOC-2, AOC-4, AOC-5, AOC-6 and AOC-8 and were collected at locations that were identified as data gaps in the previous Phase II investigations by Tighe & Bond.

Based on the review of the soil data, it was determined to be analytically usable for the

Phoenix Environmental Laboratories, Inc. Lab No. GBG15041

Groundwater samples were collected on August 20, 2012 and included the following samples:

- MW-1
- MW-2
- MW-Duplicate
- Trip Blank

Standard RCP Deliverables: The RCP Laboratory Analysis QA/QC Certification Form and RCP Certification Report were supplied by Phoenix for this laboratory report.

Data Package Inspection: No issues were identified.

Reasonable Confidence Evaluation: Question 4 on the RCP Laboratory Analysis QA/QC Certification Form identified a "no", stating that the QA/QC performance criteria specified in the CT DEEP Reasonable Confidence Protocol documents was not achieved. Methyl ethyl ketone is below the acceptable range for the LCS but was not detected in any of the samples. There is no suspected bias for methyl ethyl ketone. The MS recovery for acetone and trichlorofluoromethane were below acceptable range but were not detected in any of the samples, there is no suspected bias.

The RCP Laboratory Analysis QA/QC Certification Form identified a "no" response to question 5b. Not all reporting limits identified in each method were met. Acrylonitrile and 1,2-Dibromoethane had reporting limits of 5 ug/L and 1 ug/L, respectively. The required criteria reporting limit for Acrylonitrile and 1,2-Dibromoethane are 0.5 ug/L and 0.05 ug/L, respectively. Since no VOCs were detected in the samples, there is no suspected bias.

The RCP Laboratory Analysis QA/QC Certification Form identified a "no" response to question 6. Not all constituents identified in each method referenced in the lab report were reported. Only PAHs were requested and reported in the laboratory report for EPA method 8270.

Chain of Custody Evaluation: Samples were received by Phoenix August 21, 2012 at 0813. All samples were analyzed for ETPH, VOCs, PAHs, and RCP Metals with the exception of the Trip blank which was just analyzed for VOCs. All samples were collected in three 1-liter amber jars, three HCl 40-mL vials, and one 250 mL plastic HNO3 bottle. The Trip Blank sample was collected in three HCl 40-mL vials.

Sample Preservation and Holding Time Evaluation: Samples were received by Phoenix below 6°C which is within the acceptable temperature range. All samples were analyzed within holding times.

Blank Evaluation: A trip blank was analyzed for VOCs and was below laboratory reporting limits for all parameters.

Duplicate Evaluation: A field duplicate sample was collected as a duplicate sample for MW-2. All parameters were within acceptable range from each other.

Laboratory Blank Samples: Lab blank analysis was below detection limits for all listed compounds.

Laboratory Control Samples: Laboratory control samples were all within acceptable recovery limits with the exception of VOC Acetone and trichlorofluoromethane which had a recovery of 65% and 68% in the MS, respectively. Methyl ethyl ketone had a recovery of 69% in the LCS.

Surrogates: The surrogate recoveries for the all of the groundwater samples were within acceptable ranges.

Site Specific Matrix Spikes and Matrix Spike Duplicates: Site specific matrix spikes and laboratory duplicates were within acceptable ranges.

Tentatively Identified Compounds: Tentatively Identified Compounds were not requested for this laboratory report

Other QC Data: All other QC data is within acceptable limits

Continuing Calibration Blank or Initial Calibration Blank Evaluation: SVOCs pentachlorophenol, 2-nitrophenol did not meet percent divation criteria, only PAHs were reported; therefore, there is no suspected bias.

Data Quality Objectives: The groundwater samples were collected at newly installed bedrock monitoring wells at the western boundary of the property, a location identified as a data gap in the previous Phase II investigation.

Data Usability

Based on the review of the laboratory QA/QC sample results, the data was determined to be analytically usable for the investigation