Phase II/Limited Phase III Environmental Site Assessment

Former Meriden Hospital

1 King Place Meriden, Connecticut

City of Meriden

Economic Development Meriden, Connecticut

June 2016

146 Hartford Road Manchester, Connecticut 06040

June 16, 2016

Ms. Juliet Burdelski City of Meriden Economic Development 142 East Main Street Meriden, CT

RE: Phase II/Limited Phase III Environmental Site Assessment Report Former Meriden Hospital 1 King Place, Meriden, CT

Dear Ms. Burdelski:

We are pleased to submit the enclosed report of the Phase II/Limited Phase III Environmental Site Assessment for the above-referenced site. The assessment was conducted in accordance with the Connecticut Department of Energy and Environmental Protection's *Site Characterization Guidance Document* (CTDEP, 2010).

The results of our assessment are summarized in the attached report. Thank you for the opportunity to conduct this work. Please contact the undersigned if we can be of further assistance.

Sincerely,

hunschalek

Stefanic K. Wierszchalek Hydrogeologist

David Hurley, LEP

Vice President

146 Hartford Road Manchester, CT 06040 t 860.646.2469 800.286.2469 f 860.533.5143

www.fando.com

Connecticut Massachusetts Rhode Island

South Carolina

Table of Contents

Phase II/Limited Phase III Environmental Site Assessment Report Former Meriden Hospital

1	Intro	Introduction1									
•	1.1	Regula	atory Framework	1							
	1.2	Common RSR Alternatives									
2	Site	Site Overview									
	2.1	2.1 Physical Description									
	2.2	2.2 Site History									
	2.3	Enviro	onmental Setting								
		2.3.1	Topography								
		2.3.2	Geology								
		2.3.3	Hydrogeology								
		2.3.4	Water Quality Classifications	5							
		2.3.5	Potential Receptors	5							
3	Previous Investigations										
	3.1	Histor	rical Remediation	6							
4	Phase II/Limited Phase III Scope of Study										
	4.1	Data (9								
	4.2	Const	9								
	4.3	4.3 Investigative Procedures									
		4.3.1	Ground Penetrating Radar Survey	10							
		4.3.2	Floor Drain Dye Test	10							
		4.3.3	Direct-Push Soil Sampling	11							
		4.3.4	Monitoring Well Installation	11							
		4.3.5	Groundwater Sampling	11							
		4.3.6	Concrete Chip & Residual Material Sampling	11							
	4.4	QA/C	2C Review and Data Usability	12							
5	Phas	se II/Lim	nited Phase III Investigation Results	13							
	5.1	GPR S	Survey Results	13							
	5.2	Floor	Drain Dye Test Results	13							
	5.3	5.3 Soil Sampling Analytical Results									
		5.3.1	ETPH	14							
		5.3.2	Metals	15							
		5.3.3	PAHs	15							
		5.3.4	PCBs	16							
		5.3.5	VOCs	17							
	5.4	Grour	ndwater Sampling Analytical Results								

Table of Contents

Phase II/Limited Phase III Environmental Site Assessment Report Former Meriden Hospital

	5.5 5.6	Concrete Chip Sampling & Residual Material Analytical Results	17 18
6	Data	ı Gap Analysis	19
7	Con	clusions and Recommendations	19
8	Refe	erences	21
9	Limi	tations of Work Product	22

Tables

Table 1	Monitoring Well Construction & Groundwater Elevation Data
Table 2	Summary of Constituents Detected in Soil
Table 3	Summary of Constituents Detected in Groundwater
Table 4	Summary of Constituents Detected in Concrete
Table 5	Summary of Constituents Detected in Residual Ash & Oil Material

Figures

Figure 1	Site Location Map
Figure 2	Site Plan – Main Building
Figure 3	Site Plan – Entire Property & May 2016 Groundwater Contours

Appendices

- Appendix A Boring Logs and Monitoring Well Completion Reports
- Appendix B Groundwater Sampling Field Data Sheets
- Appendix C Laboratory Reports (on CD)
- Appendix D Summary of PCB Clean-up Regulatory Mandates

FUSS&O'NEILL

1 Introduction

Fuss & O'Neill, Inc. was retained by the City of Meriden to conduct a Phase II/Limited Phase III Environmental Site Assessment (ESA) of the former Meriden Hospital property located at 1 King Place in Meriden, Connecticut. The objectives of the Phase II investigation activities were to determine whether releases of hazardous substances or petroleum products have occurred at previously identified areas of concern (AOCs). Subsequently, the limited Phase III investigation objectives were to further characterize the degree and extent of releases identified.

The Phase II/Limited Phase III investigation activities were conducted in general conformance with Connecticut Department of Energy and Environmental Protection (DEEP) documents, including the Site Characterization Guidance Document (DEEP, 2010) and the Remediation Standard Regulations (DEEP, 1996, rev. 2013). It is our understanding that this assessment was conducted in an effort to evaluate the environmental conditions at the Site prior to a potential sale of the property for redevelopment and/or reuse; and that the Site is not currently entered into a formal regulatory cleanup program.

1.1 Regulatory Framework

Analytical results obtained from this investigation were reviewed and compared to the Connecticut Remediation Standard Regulations (RSRs) (Regulations of Connecticut State Agencies [RCSA] Section 22a-133k-1 through 3) numeric criteria. The Connecticut RSRs are the clean-up standards in the State of Connecticut and contain procedures to evaluate whether actions (e.g., remediation or institutional controls) will be required to address identified releases of hazardous substances.

It is our current understanding that the Site is not entered in a formal regulatory cleanup program, and, therefore, it is not required for the Site to achieve formal compliance with the CT RSRs. However, RSR numeric criteria were used to provide a general benchmark for the environmental quality at the site; the RSR criteria that would be specific to the Site are discussed in the table below.

RSR Soil Criteria	
Direct Exposure Criteria (DEC)	DEC are applicable to soil within 15 feet of the ground surface. Soil impacted by a release is typically compared to the residential (Res) DEC unless alternatives or variances are applied.
Pollutant Mobility Criteria (PMC)	The PMC protect groundwater from constituents leaching out of impacted soil and are dependent upon the groundwater quality classification of a site. Since the Site is located in a GB designated area, the GB pollutant PMC were used. The GB criteria apply only to soil located above the seasonal high water table.
RSR Groundwater Criteria	
Surface Water Protection Criteria (SWPC)	The SWPC ensure that surface water quality is not impaired by the discharge of contaminated groundwater into a surface water body. Groundwater at the Site discharges to Harbor Brook.

RSR Criteria Overview

Volatilization Criteria (VC)	Volatilization criteria protect human health from volatile substances (i.e. VOCs) in shallow groundwater that may migrate into overlying buildings and apply to groundwater within 15 feet of the ground surface (which is applicable at the Site) or a structure intended for human occupancy. The residential (Res) VC apply unless a land use restriction is recorded.
------------------------------	---

1.2 Common RSR Alternatives

The RSRs also define specific alternatives to compliance with the baseline numeric soil and groundwater criteria by including self-implementing options, exceptions, and variances such as:

- 1. Industrial/Commercial Criteria If a property is used exclusively for industrial or commercial activities and an Environmental Land Use Restriction (ELUR) is recorded to prohibit residential use of such property, the industrial/commercial criteria may be applied. This is applicable for both DEC and VC.
- 2. Inaccessible Soil The DEC for soil can be waived if the soil is considered inaccessible and an ELUR prohibiting disturbance of such soil is recorded. Inaccessible soil is defined follows:
 - More than four feet below the ground surface
 - More than two feet below a paved surface consisting of at least three-inches of bituminous concrete or concrete, which two feet may include the pavement sub-base
 - Polluted fill beneath a bituminous concrete or concrete surface consisting of at least three-inches of bituminous concrete or concrete if such fill meets the following criteria:
 - § Semi-volatile compounds or petroleum hydrocarbons in the fill exceeding the DEC are normal constituents of bituminous concrete
 - § Metals in the fill do not exceed two times the applicable DEC
 - § No other compounds exceed the DEC
 - o Beneath an existing building or DEEP-approved permanent structure
- 3. Engineered Controls Section 22a-133k-2(f)(2) of the RSRs provides a variance to the DEC if a DEEP-approved engineered control is installed to physically isolate the underlying soil, thereby minimizing the potential for contact with the soil. The RSRs also provide a variance to the PMC if the DEEP-approved impermeable engineered control is constructed to minimize the migration of liquids through the soil. With an engineered control in place and an ELUR prohibiting unauthorized disturbance of the engineered control recorded, the DEC and/or the PMC do not apply.
- 4. SPLP Analysis In order to evaluate the actual leaching potential of constituents of concern (COCs), samples can be analyzed using the synthetic precipitate leaching procedure (SPLP) and, for GB areas, compared to ten times the groundwater protection criteria (GWPC).

5. Environmentally Isolated Soil – Soil beneath buildings that contains contaminants other than VOCs can be considered environmentally isolated. The PMC do not apply to environmentally isolated soils, provided an appropriate ELUR is in place.

2 Site Overview

2.1 Physical Description

The Site, 1 King Place, is located on the west side of Cook Avenue in a commercial (C1A) zone of Meriden, Connecticut (New Haven County). A portion of a United States Geological Survey (USGS) topographic map showing the Site location is provided as *Figure 1* (USGS, 1992).

According to City records, the Site is a 5.64-acre irregularly-shaped parcel that has been owned by the City of Meriden since 2014. The Site consists of a vacant hospital building, a parking garage, an asphalt parking lot, and landscaped areas. A Site plan depicting the main building and the portion of the Site located east of King Place is provided as *Figure 2*. An aerial image depicting the entire property, including the parking lot located west of King Place is provided as *Figure 3*.

Since the Site has been vacant and abandoned, the Site utilities have been disconnected and electrical transformers were removed. Previously, however, when the Site was in operation, the property was connected to municipal sewer and water (provided by the City of Meriden Water Pollution Control Division and Water Division, respectively), natural gas (provided by Yankee Gas) and electricity provided by Connecticut Light and Power.

Based on observations made during Site visits and available mapping, properties surrounding the Site appeared primarily residential in nature. West Cemetery is located across Orange Street, north of the Site.

2.2 Site History

The central portion of the Site was developed with a small hospital as early as 1901, with residential structures occupying the remaining portions of the Site east of King Place, and a public school west of King Place. Since that time, the residential structures were razed and multiple iterations of building additions and extensive building expansions occurred at the Site from approximately the 1930s through the 1980s. The public school, formerly located in the southwest portion of the Site was razed in approximately 1979 and was replaced with a parking lot and later a three-tiered parking garage (*Figure 3*). The last remaining residential buildings on the Site, located at the southeast corner of the Site near the intersection of Cook Avenue and Bronson Avenue, were demolished in 2007.

The Site operated as the Meriden-Wallingford Hospital until it closed in approximately 1992. The property has remained vacant since that time.

2.3 Environmental Setting

2.3.1 Topography

The regional topography is hilly but generally slopes down to the south and west toward Harbor Brook and the Quinnipiac River (*Figure 1*). Similarly, the topography of the Site generally slopes down to the south towards Harbor Brook; located approximately 500 feet south of the Site (USGS, 1992).

2.3.2 Geology

Surficial Geology

Surficial material at the Site is mapped as valley train deposits, which are a stratified drift that generally consists of sand overlying fines, which include silt and clay (Hanshaw, 1962). Surficial materials consistent with those described above were identified during the advancement of soil borings at the Site. In addition, historic fill materials (containing brick, asphalt fragments, coal and ash) were observed at some locations to depths up to ten feet below grade.

Bedrock Geology

Bedrock beneath the Site is mapped as New Haven Arkose, a reddish medium- to coarse-grained sedimentary rock known locally as brownstone (Rodgers, 1985). Bedrock was not encountered during investigation activities and is estimated to be greater than 25 feet below grade.

2.3.3 Hydrogeology

Depth to groundwater at the Site ranges from approximately 8 to 17 feet below grade. Depth to groundwater measurements were used to calculate groundwater elevation and ultimately to determine groundwater flow across the Site. Refer to *Table 1* for a summary of groundwater elevation data and to *Figure 3* for a groundwater contour map. Groundwater elevation data indicates that groundwater at the Site generally flows to the east/southeast.

It is noted that several structures were formerly located in the southeastern corner of the Site. Although documentation of the demolition of these structures was not obtained as part of this investigation, the presence of foundations or other underground features related to these former structures may have the potential to affect groundwater flow in this portion of the Site.

2.3.4 Water Quality Classifications

Groundwater Classification

The quality of groundwater beneath the Site is classified by the CT DEEP as GB; which is identified as groundwater that may be not be suitable for human consumption without treatment due to waste discharges, spills, leaks of chemicals, or land use impacts (DEEP, 2011).

Surface Water Classification

The nearest surface water body, Harbor Brook, is located approximately 500 feet south of the Site (USGS, 1992). Harbor Brook is classified by the State of Connecticut as class B; which is identified as surface waters that are known or presumed to be suitable for the following designated uses: recreational use, fish and wildlife habitat, agricultural and industrial supply, and other legitimate uses (DEEP, 2011).

2.3.5 Potential Receptors

A preliminary assessment was conducted to evaluate whether sensitive human health or ecological receptors are present at or directly downgradient of the Site. The results of this evaluation are presented below:

- Endangered Species No potential threatened or endangered species habitats are present at the Site or within 0.25 miles of the Site (CTECO, 2016).
- Ecological Receptors An ecological risk assessment has not been conducted; however, the Site is located in a developed area of Meriden and is primarily surrounded by closely spaced residences. The potential for ecological receptors to be impacted by Site conditions is low.
- Wetlands According to State soil mapping (CTECO, 2016) and observations made during site visits, there are no mapped wetlands located on the Site.
- Surface Waters The nearest surface water body is Harbor Brook, located approximately 500
 feet south/west of the Site. Because of the distance and direction from the Site, Harbor Brook
 could be affected by potentially impacted groundwater migrating off the Site.
- Aquifer Protection Areas Two aquifer protection areas were identified within a 0.5-mile radius of the Site (CTECO, 2016); including the Mule Aquifer Protection Area (APA #94) and the Columbus Park Aquifer Protection Area (APA #95), both located approximately 2000 feet north of the Site.
- Public Water Supply Wells The Atlas of Public Water Supply Sources and Drainage Basins of Connecticut (CTDEEP, 1982) shows no public water supply wells within 0.5-mile radius of the Site.
- Private Water Supply Wells The Site is located in an urbanized area where municipal water is available to the Site and the surrounding area.
- Physical Contact with Soil The Site is primarily covered by the Site building or asphalt parking areas (west of King Place), so there is little potential for direct contact with the soil. The potential exists, however, for future Site occupants and visitors to be exposed to impacted soil or fill if redevelopment requires removal of the existing building or asphalt paving.

 Potential for Vapor Intrusion – VOCs are not present in site groundwater at concentrations that could result in potential vapor intrusion into buildings constructed over the groundwater contact plume. Note that additional rounds of groundwater monitoring will be required to evaluate groundwater quality over seasonal trends.

3 Previous Investigations

A Phase I ESA, conducted by VHB, was previously prepared for the Site in May 2014. The findings of this document identified the following interior and exterior recognized environmental conditions (RECs) at the property:

Interior RECs

- · Staining around elevator in former nurses building & within basement of main building
- Several transformers and other PCB containing equipment observed in the basement of the nurses building and within the main building
- An abundance of apparently leaking containers (of various sizes, conditions and contents) located throughout the basement of the building, specifically within the mechanical room, crib room and boiler room
- · Various floor drains (discharge location unknown)
- An x-ray processing area (basement)
- Solid waste, various containers and an "oil slick" in the loading dock

Exterior RECs

- One UST located in the northern courtyard
- Two USTs located near the smoke stack on the southern side of the Site
- Petroleum impacted groundwater (site wide)
- · Storm water catch basin adjacent to smoke stack on south side of the building

Additional RECs, related to the potential for hazardous building materials were also identified in the May 2014 Phase I ESA.

3.1 Historical Remediation

A review of the available historical documentation indicated the removal of a 5,000-gallon diesel UST from the northern courtyard in 1999. Although no visual or olfactory signs of petroleum impact were observed, evidence of vapor-phase volatile organic compounds was detected in the soil remaining along the east side of the excavation area. Approximately 8 cubic yards of soil was removed from along the east sidewall as a conservative measure, and confirmation samples were collected. While low level concentrations of petroleum hydrocarbons remained in soil, subsequent groundwater monitoring did not identify concentrations of constituents of concern.

4 Phase II/Limited Phase III Scope of Study

Phase II/Limited Phase III investigation activities were conducted at the Site between March 14, 2016 and May 12, 2016, and targeted the specific RECs and areas of concern (AOCs) identified in the 2014 Phase I ESA. Specifically, these areas included the following:

• Northern UST Area (Courtyard)

A 5,000-gallon #2 fuel oil UST was installed in 1982 on the north side of the hospital building and was connected to a back-up generator. The tank was removed in March 1999, at which time, polluted soil was also removed. Confirmatory soil samples were collected and indicated the presence of petroleum hydrocarbons at levels below applicable clean-up criteria. Conflicting information indicated that a 2,000-gallon #2 fuel oil UST was installed in the former tank grave, however, no evidence of a current UST was identified this location.

• Southern UST Area (South of Boiler Room)

A 20,000-gallon #6 fuel oil UST was installed in 1968 on the south side of the hospital building adjacent to the boiler room. Later, in 1982, a 2,000-gallon #2 fuel oil UST was installed in this area and connected to a back-up generator, located adjacent to the boiler room inside the Site building. In 1990, the 20,000-gallon UST was reportedly replaced with a 15,000-gallon #6 fuel oil UST; however no documentation of tank closure or sampling was identified. Releases of no. 6 fuel-oil releases were reported in this area in 1997 and 1998, during tank filling operations.

• Dry Well (adjacent to Southern UST Area)

A potential dry well was observed south of the boiler room within the southern UST area.

Interior Transformers/PCB Equipment (basement of nurses bldg. & main hospital)

The findings of the previous 2014 Phase I ESA and more recent Site walk identified several areas within the building interior which contained transformers and other potentially PCB-containing electrical equipment. While these areas were primarily located in the basement of the Site building, transformer rooms were also noted in select areas of the upper floors of the building.

• Loading Dock (evidence of interior releases)

Based on the past use of the Site and known shipments of hazardous wastes, the potential exists for a release to have occurred in the loading dock area. Additionally, a 1997 spill report from the fuel oil release indicates that no. 6 fuel oil may have migrated to a catch basin in the loading dock area.

Various Floor Drains & Sumps (discharge locations unknown)

Various floor drains and sumps were observed throughout the building; specifically within the former laundry area and areas within the southern portion of the building near the boiler room. The discharge location of these drains is unknown.

Boiler Room

Several leaking containers were observed within the boiler room within the southern portion of the Site building. The fuel lines from the exterior USTs were observed to be damaged where they entered the building which resulted in a significant release of oil to the interior floor surface.

During the implementation of Fuss & O'Neill's Phase II ESA scope of work, the following additional RECs/AOCs were also identified:

• Former Incinerators (2)

A review of historical Site plans identified at least two former incinerators. The first (presumably the original) was located north of the boiler room in a small area north of the current generator room, west of the former boiler room. The second incinerator was located in a standalone structure located to the east of the loading dock. This incinerator building was likely constructed to replace the former incinerator during an iteration of building renovations.

<u>Smoke Stack</u>

A large smoke stack related to the former incinerators is located south of the boiler room in the southern UST area. Residual ash and material was observed within the stack.

· Oil Trenches in Laundry Area (southwest portion of building)

A review of historical Site floor plans indicated a sub-slab "oil trench" was located within the laundry area in the southwestern portion of the building. According to the floor plans, this trench connected the laundry dryer units along the western side of the laundry area and potentially extended further east to other interior areas.

Chemical Storage Room in Laundry Area

A review of historical Site floor plans indicated a chemical storage room was located within the laundry area in the southwestern portion of the building. The specific chemicals and quantities previously stored in this area, however, are unknown.

Elevator Rooms

The locations of several elevator rooms were identified during a review of historical site plans. These rooms are enclosed areas in which the mechanics of the elevators, including oil reservoirs are located.

<u>Switchgear/Generator Room(near courtyard)</u>
 A backup generator/electrical switchgear room was identified adjacent to the northern courtyard. Access to this room is from the courtyard area only and therefore this area was not previously identified as an REC in the 2014 Phase I ESA.

• <u>Urban Fill</u>

As with any parcel, located in a heavily urbanized area where former structures have been razed, the potential exists for the presence of urban fill containing ash, coal, asphalt fragments, and demolition debris. Often urban fill materials are found to contain petroleum products and heavy metals due to the presence of ash, asphalt and coal fragments.

This section provides an overview of the methods used to investigate the Site and evaluate the data collected and describes data quality objectives, constituents of concern, laboratory methods used to analyze environmental samples, and field investigation methods.

4.1 Data Quality Objectives and Reasonable Confidence Protocols

Data quality objectives are used to ensure that data is collected in a manner that permits it to be used to evaluate a site and support decisions based on those evaluations. Procedures used to ensure that the DQOs for the project were met include:

- Development of preliminary conceptual models used to guide the selection of appropriate constituents of concern and sampling locations
- Selection of analytical methods with appropriate detection limits
- Use of pre-determined sample handling and custody procedures
- Use of pre-determined data management and documentation procedures
- Selection of sampling locations and constituents of concern appropriate to the potential release
 area
- Use of trip blanks, equipment blanks, duplicates, and laboratory matrix spikes (MS) for quality assurance/quality control (QA/QC)
- Use of Connecticut's Reasonable Confidence Protocols and laboratory QA/QC procedures

4.2 Constituents of Concern

A list of constituents of concern to be investigated was developed for each AOC. The constituent list comprises those compounds most likely to be released based on knowledge of site operations and results of the 2014 Phase I ESA. The constituents of concern at the Site include:

- Volatile organic compounds (VOCs)
- Petroleum hydrocarbons (ETPH)
- Polynuclear aromatic hydrocarbons (PAHs)

F:\P2012\0232\C40\Phase II-III Report\2016-06 Phase II-Limited Phase III ESA Report.doc

- Polychlorinated biphenyls (PCBs)
- Metals

The analytical methods presented in the following table were selected to identify and evaluate potential releases because they are capable of achieving analytical detection limits less than the baseline numeric RSR clean-up criteria.

Constituent of Concern	Analytical Method
VOCs	Field screening using a photoionization detector (PID). Where suspected, VOCs were confirmed with analysis by EPA Method 8260.
Petroleum hydrocarbons	Connecticut ETPH Method
PAHs	EPA Method 8270
PCBs	EPA Method 8082
Metals	SW6010 (arsenic, barium, cadmium, chromium, copper, lead, nickel, selenium, silver, and zinc).
	SW-7471 (mercury)

All soil, groundwater and concrete chip samples collected from the Site were submitted to Phoenix Environmental Laboratories of Manchester, Connecticut for laboratory analysis of one or more of the constituents of concern.

4.3 Investigative Procedures

The Phase II/Limited Phase III investigation can be broken down into the following general field methods used to develop lines of evidence for each AOC based on its initial conceptual model.

4.3.1 Ground Penetrating Radar Survey

On March 14, 2016, Fuss & O'Neill oversaw Underground Surveying, LLC of Brookfield, Connecticut as they completed a GPR survey of select areas at the Site. The GPR survey was conducted in exterior portions of the Site in an effort to confirm the location and orientation of USTs, subsurface piping, utilities, or other anomalies, which could indicate existing subsurface features such as former building foundations. The survey was conducted with the Geophysical Survey Systems, Inc. SIR-3000[™].

4.3.2 Floor Drain Dye Test

The May 2014 Phase I ESA identified various floor drains within the basement of the Site building. Although the discharge locations of these drains were not be confirmed, the Phase I ESA findings indicated that the discharge location was likely to Harbor Brook.

Fuss & O'Neill conducted a dye test on two accessible floor drains; one located in the generator room north of the boiler room and one in the laundry room area in the southwestern portion of the Site building. As part of the dye test and since the municipal water supply has been discontinued at the Site, Fuss & O'Neill introduced approximately 20-25 gallons of water per drain along with the dye.

4.3.3 Direct-Push Soil Sampling

Soil borings were drilled at select locations across the Site using Fuss & O'Neill's direct-push, Geoprobe® drill rig. Soil samples were collected continuously from the ground surface using a 60-inch, stainless steel sampler, and each soil core was inspected by a field scientist for physical evidence of contamination, such as staining or odors. Where VOCs were a potential constituent of concern, samples were also field-screened for vapor-phase VOCs using a photoionization detector (PID).

Soil samples were collected from depth intervals where evidence of a release occurred or, if visual inspection and field screening did not yield evidence of impacted soil, samples were selected for laboratory analysis from predetermined intervals based on the conceptual release model for each REC.

Field observations at each boring were recorded on the boring logs included as Appendix A.

4.3.4 Monitoring Well Installation

Four groundwater monitoring wells (MW-10, MW-11, MW-12, and MW-13) were installed at the Site using the direct-push Geoprobe® drill rig. The monitoring wells were completed between approximately 13 to 23 feet below grade and were constructed with standard 1-inch PVC riser and a ten-foot, pre-packed, PVC screened interval that intersected the water table at each location. Each monitoring well was finished with flush-mount curb boxes. The specific monitoring well construction details are provided on the well completion logs in *Appendix A* and are summarized on *Table 1*.

Following installation, the monitoring wells were developed using surge-and-purge techniques to remove suspended sediments from the well and to increase the hydraulic connection between the wells and the aquifer.

4.3.5 Groundwater Sampling

Fuss & O'Neill collected groundwater samples from the four newly installed monitoring wells (MW-10 through MW-14) and two previously existing monitoring wells (MW-01 and MW-02) between March 23, 2016 and May 12, 2016. Prior to groundwater sampling, the depth to water was measured at each well to provide data that could be used to establish water table elevation and groundwater flow direction (*Table 1*).

A Fuss & O'Neill hydrogeologist sampled each well using a peristaltic pump and dedicated tubing, and following low-flow sampling techniques. Groundwater quality parameters including pH, specific conductivity, dissolved oxygen, temperature, turbidity, and oxidation/reduction potential were monitored and recorded at 3 minute intervals until each had stabilize. The groundwater quality parameters were recorded on the field data sheets, provided as *Appendix B*.

4.3.6 Concrete Chip & Residual Material Sampling

A total of 22 concrete chip samples were collected from select locations across the Site. Concrete chip sampling locations targeted areas of the building floor where releases from RECs may have occurred or

potential low spots or floor drains in the floor. Of these 22 samples, 20 were collected from locations within the building interior where former equipment could have impacted the floor surface. In general, these areas included:

- former transformer rooms
- equipment rooms
- a chemical storage area
- elevator rooms
- generator rooms

The concrete chip samples were collected using an impact hammer drill and laboratory provided glassware.

Additionally, a sample of the residual ash material from the smoke stack and samples of residual oily product observed within the Site building were collected. The purpose of sampling these residual materials was to analyze them for preliminary waste characterization parameters in preparation for potential Site renovation/redevelopment.

4.4 QA/QC Review and Data Usability

The results for QA/QC samples submitted by Fuss & O'Neill (trip blanks and duplicate samples) and laboratory narratives provided with each lab report were reviewed to identify issues that could affect the usability of the data. The results of the review are summarized below.

Trip Blanks

Trip blanks for VOC analysis were provided by the laboratory to accompany each cooler of environmental samples to be analyzed for VOCs. Trip blank results were used to determine whether samples may have been compromised as a result of sample container handling or transport.

A total of 5 trip blanks were submitted between the Phase II/Limited Phase III investigation activities; 3 with the soil samples and 2 with the groundwater samples. VOCs were not detected above laboratory reporting limits in any of the trip blanks submitted.

Duplicates

Duplicate samples were generally submitted at a frequency of 1 per 20 soil samples. Each duplicate was collected at the same time as the corresponding primary sample and was analyzed for the same parameters.

Precision is measured by the relative percent difference (RPD) between the primary and duplicate sample results. RPD goals are \leq 50 percent for soil and \leq 30 percent for water. RPDs during the Phase II/Limited Phase III investigations were generally within the target range. Where RPDs were higher

than these ranges, the difference was typically attributed to sample heterogeneity and the presence of urban fill materials. Overall, the variation in RPDs is not expected to affect the interpretation of analytical results, but as a conservative measure, release areas were evaluated with respect to the greater of primary or duplicate analytical results.

Reasonable Confidence Protocols

The reasonable confidence protocol packages provided with laboratory reports were reviewed and Phoenix reported that "reasonable confidence" was achieved on all analyses conducted. A review of the narratives identified minor QA/QC issues regarding laboratory method controls/blanks that were considered in interpreting the data. These issues were reviewed and it was determined that the usability of the data was not affected

5 Phase II/Limited Phase III Investigation Results

The results from the Phase II/Limited Phase III Investigations, conducted between March 14 and May 12, 2016 are presented in the following subsections. The analytical data for samples collected during these investigations as compared to the baseline RSR criteria are summarized in *Tables 2 through 4*.

Copies of the laboratory analytical reports are provided on CD in Appendix C.

5.1 GPR Survey Results

Results from the March 14, 2016 GPR survey conducted by Underground Surveying, LLC confirmed the presence of two USTs in place, south of the boiler room (*Figure 2*). In the northern courtyard area, the GPR survey identified an anomaly consistent with a former UST grave, however no indication that a tank remained in place at this location.

The GPR survey did not indicate the presence of any other anomalies along the portion of the Site located east of King Place that would be indicative of any previously unknown subsurface features.

5.2 Floor Drain Dye Test Results

Fuss & O'Neill conducted a dye test on two accessible floor drains one located in the generator room north of the boiler room and one in the laundry room area in the southwestern portion of the Site building.

The dye test included the introduction of approximately 20-25 gallons of water per drain along with a green dye. After allowing at least 1 hour for water to travel drain system, Fuss & O'Neill field personnel assessed three potential discharge locations for visual evidence of dye. The potential discharge locations monitored included:

- · The dry well located outside the Boiler Room
- Catch basins along Bronson Avenue
- Sewer manhole covers located in the loading dock area

The results of the dye test remained inconclusive, as no evidence of the dye was visually observed in any of the potential discharge locations monitored. Due to the length of time that the building has been vacant and the evidence of interior flooding observed, it is likely that the floor drain systems are clogged with inert material and the dye may not have made it through the length of the drain systems.

During the Phase II/Limited Phase III investigation activities at the Site, however, historical floor plans were obtained which appeared to indicate that the floor drains in the southern portion of the building likely exit the building in the southwest corner and discharge to the municipal sanitary sewer system.

5.3 Soil Sampling Analytical Results

A total of 29 soil samples were collected and submitted to Phoenix for laboratory analysis of Metals, PCBs, ETPH, PAHs, and/or VOCs. A summary of the soil analytical results compared to the baseline RSR criteria is discussed below and is provided on *Table 2*. A copy of the soil laboratory analytical report is included on CD in *Appendix C*.

5.3.1 ETPH

A summary of the ETPH concentrations reported in Site soil is provided in the table below:

Compound	Number of	Number of	Concentration		
	Samples	Detections	Range (mg/kg)		
ETPH	25	4	150 – 810		

Of the 25 soil samples analyzed from across the Site, ETPH was only detected in four samples collected from two soil borings advanced in the area of the boiler room (SB-12 and SB-15) and in two borings advanced in the northern courtyard and UST area (SB-16 and SB-17). The concentrations detected in samples from the northern courtyard/UST area were below baseline RSR criteria and are likely attributable to the historical petroleum impacts identified during the 1999 UST removal in this area.

The concentration of ETPH reported in the sample from SB-12 (1.75-2'), located adjacent to the dry well south of the boiler room, exceeded the Res DEC. This detection could be indicative of a petroleum release to the adjacent drywell.

ETPH was not detected above laboratory reporting limits in any of the other samples analyzed.

5.3.2 Metals

Total Metals (including arsenic, barium, chromium, copper, lead, mercury, nickel, selenium, silver and zinc) were analyzed in fifteen soil samples collected from across the Site. Varying low level concentrations of metals were identified in each of the samples analyzed as summarized in the table below:

Compound	Number of Samples	Number of Detections	Concentration Range (ug/kg)
Arsenic	16	16	2 – 19.8
Barium	16	16	52.6 – 117
Cadmium	16	3	1.19 – 2.8
Chromium	16	16	9.08 – 24.3
Copper	5	5	28.2 - 6,940
Lead	16	16	6.73 – 1,010
Mercury	16	10	0.04 – 0.29
Nickel	5	5	13.1 – 101
Selenium	16	0	ND
Silver	16	4	0.51 – 17.8
Zinc	5	5	46.2 – 1,220

The highest concentrations of metals, specifically arsenic, cadmium and lead, were detected in borings advanced in the parking lot west of King Place at locations where observations of a thick urban fill material layer (coal, ash, concrete, etc.) was identified. At these locations (SB-28, SB-29, SB-30 and SB-31) concentrations of arsenic, cadmium, copper, lead and/or silver exceeded the baseline Res DEC.

Soil samples collected from borings advanced east of King Place had concentrations of metals detected that were generally consistent across the entirety of the eastern portion of the Site. It is noted that only limited observations of fill material were identified in borings on this portion of the Site; primarily in the area south of the boiler room and within the northern courtyard. These detections of metals were below the baseline RSR criteria and appear evident of background concentrations for an urban setting rather than indicative of a release.

Based on the mass metals results, 10 samples were analyzed for arsenic, cadmium, chromium, copper, lead and/or mercury by the synthetic precipitation leaching procedure (SPLP) to determine their potential to leach into groundwater. Of the samples analyzed, SPLP copper and/or lead were detected in three samples; SB-28 (0.3-1.5'), SB-29 (0.3-4') and a duplicate. Although the detection of SPLP metals indicates the potential for metals to leach into groundwater, all of these concentrations were below the baseline GB PMC.

5.3.3 PAHs

PAHs were analyzed in 25 of the 29 soil samples collected from across the Site. Concentrations of various PAH compounds were detected in six of the samples analyzed as summarized in the table below:

Compound	Number of	Number of	Concentration
Compound	Samples	Detections	Range (ug/kg)
2-Methylnaphthalene	29	2	860 – 11,000
Acenaphthene	29	2	270 – 560
Acenaphthylene	29	0	ND
Anthracene	29	1	780
Benzo(a)anthracene	29	4	320 – 1,200
Benzo(a)pyrene	29	4	270 – 1,100
Benzo(b)fluoranthene	29	4	260 – 1,000
Benzo(ghi)perylene	29	3	290 – 640
Benzo(k)fluoranthene	29	3	380 – 920
Chrysene	29	4	350 – 1,700
Dibenzo(a,h)anthracene	29	0	ND
Fluoranthene	29	5	260 – 2,800
Fluorene	29	1	480
Indeno(1,2,3-cd)pyrene	29	3	320 – 640
Naphthalene	29	2	380 – 1,700
Phenanthrene	29	4	460 - 3,500
Pyrene	29	4	580 – 2,900

Overall, the PAHs detected in Site soil are relatively low levels and consistent with background concentrations for an urban setting containing fill. Concentrations of PAHs were identified at levels exceeding baseline RSR criteria at two locations (SB-12 and SB-15) which also had other constituents of concern detected which would suggest these concentrations are related to petroleum releases.

5.3.4 PCBs

Eleven soil samples from across the Site were collected in select locations where PCBs were a constituent of concern. Of these 11 samples, PCBs were detected at an elevated concentration of 180 ppm in one shallow sample collected from below the concrete slab floor inside the boiler room (SB-15 [1-3]). Visual evidence of petroleum impacts were also observed within this sample. It is noted that PCBs were not detected in the soil sample collected from the deeper interval (3-6') at this location.

Based on the elevated mass concentration of PCBs identified, SPLP PCBs were also analyzed in this sample to determine the potential for the PCBs to leach into groundwater. SPLP PCBs were not detected above laboratory reporting limits.

PCBs were not detected above laboratory reporting limits in any of the other soil samples analyzed across the Site, including three borings (SB-20, SB-21 and SB-22) advanced within 5 feet of SB-15.

5.3.5 VOCs

Four soil samples were collected from areas on Site where a release of VOCs could have occurred and were submitted for laboratory analysis of VOCs. Select VOCs constituents, including 1,2,4 Trimethylbenzene and Naphthalene, which are typically associated with petroleum products, were detected in one sample collected from SB-15 (1-3') at concentrations well below the baseline RSR criteria. Considering visual evidence of petroleum impact was observed in the boring log at this location, these concentrations are likely attributable to a release beneath the slab floor of the boiler room.

VOCs were not detected above laboratory reporting limits in the other three samples analyzed.

5.4 Groundwater Sampling Analytical Results

Between March 23 and May 12, 2016, six groundwater samples were collected from the four newly installed monitoring wells and two previously existing monitoring wells. The samples were submitted to Phoenix for laboratory analysis of PAHs, Metals, VOCs and/or PCBs.

Low levels of barium, below the baseline GWPC were detected in each of the groundwater samples collected. A trace concentration of lead was also detected in the sample collected from MW-02. No other constituents of concern were detected above laboratory reporting limits in any of the groundwater samples.

Additionally, a sample of the water encountered in the basement tunnel located off the boiler room was collected and analyzed for metals, PCBs, VOCs and PAHs. Trace levels of barium, chromium and lead were identified in the sample at concentrations that were below the baseline RSR criteria. PCBs, VOCs and PAHs were not detected above laboratory reporting limits in the sample.

A summary of the groundwater analytical results compared to the baseline RSR criteria is provided on *Table 3.* A copy of the groundwater laboratory analytical report is included in *Appendix C.*

5.5 Concrete Chip Sampling & Residual Material Analytical Results

Two concrete chip samples were collected from the two exterior former transformer concrete pads; one located UST area south of the boiler room (CC-03) and on in the northern courtyard (CC-10). The remaining 20 concrete chip samples were collected from various locations throughout the interior of the Site building (*Figure 2*).

Each sample was submitted for laboratory analysis of PCBs to determine if a release of PCB-containing oil had occurred in these areas. Select samples were also submitted for laboratory analysis of ETPH and/or Metals based on the location where the sample was collected and potential for or evidence of release.

PCBs were detected in five of the concrete chip samples submitted at concentrations ranging from 0.81 mg/kg to 12 mg/kg. The highest concentration of 12 mg/kg was identified in the sample collected from an interior mechanical equipment storage room (CC-18) located in the north/central portion of the Site building. PCBs were also detected at concentrations greater than 1 mg/kg in samples CC-21 (collected from an elevator room in the first floor of the former nurses building in the north/central portion of the Site building) and in CC-19 (collected from an elevator equipment room in the north/central portion of the Site building).

Seven concrete chip samples also had concentrations of ETPH detected at levels which exceeded baseline direct exposure criteria.

The sample of residual ash material from the smoke stack was submitted for laboratory analysis of total metals, toxicity characterization leaching procedure (TCLP) metals, ETPH, PCBs, VOCs and SVOCs. Analytical results indicated that trace concentrations of metals (mass and TCLP) and SVOCs (primarily PAHs) were detected at levels that were below the baseline RSR criteria.

ETPH, PCBs and VOCs were not detected above laboratory reporting limits in this sample.

A summary of the concrete chip sampling results is included on *Table 4* and the summary of results from the residual stack material is summarized on *Table 5*.

5.6 Identified Releases

The Phase II/Limited Phase III sampling of environmental media identified releases of hazardous materials or petroleum products at the following areas on Site:

• Boiler Room

A release was identified within the boiler room located along the southern side of the Site building which impacted the shallow sub-slab soil at one boring location (SB-15).

- Dry Well South of Boiler Room
 A petroleum release was identified in shallow soil adjacent to the dry well located south of the boiler room (SB-12).
- Concrete Interior Floors Equipment/Elevator/Transformer Rooms
 Petroleum and PCB releases were identified to have impacted the concrete floors in several
 areas throughout the Site building. The source for the PCBs is inferred to be derived from leaks
 from former or current equipment such as transformers, elevators or electrical equipment.
 Severe oil staining or residual oil was not observed on the floor in these areas.
- Impacted Urban Fill Varying thicknesses of urban fill was identified across the Site. Fill material was identified to be impacted with concentrations of metals and PAHs.

6 Data Gap Analysis

A review of the results from the Phase II/Limited Phase III investigations conducted to date have revealed the following data gaps which should be evaluated prior to preparing a remedial action plan for the Site.

- · Degree and extent of urban fill layers in parking lot
- Degree and extent of PCBs in shallow soil in boiler room
- Historical building plans indicate "oil trenches" were present in the laundry room area and extended throughout additional portions of the building. The complete length of these trenches were unable to be traced and the origin of the oil is unknown.
- · Conditions of all floor drains was not able to be assessed due to accessibility
- All tunnel areas could not be accessed due to standing water

7 Conclusions and Recommendations

Fuss & O'Neill conducted the Phase II/Limited Phase III ESA investigation activities at the Site between March 14 and May 12, 2016. The investigation activities included advancing soil borings at select exterior and interior locations, completion of four borings as groundwater monitoring wells and the collection of soil, groundwater and concrete chip samples for laboratory analysis.

An evaluation of the data obtained during Fuss & O'Neill's investigation has indicated that releases have occurred along the southern portion of the Site, which resulted in PCBs and petroleum impacted soil. Specifically, shallow, sub-slab soil at one location within the boiler room was impacted with an elevated concentration of PCBs (180 ppm) and PAHs. The remediation of PCBs at these concentrations are subject to specific regulatory mandates from the State of Connecticut and the US Environmental Protection Agency, as summarized in *Appendix D*.

Additionally, south of the boiler room, shallow soil adjacent to a dry well had concentrations of ETPH over baseline RSR criteria, which is indicative of a petroleum release. While this could be related to a petroleum release from the boiler room, it is noted that PCBs were not detected in soil outside of the building in this area.

The investigation data also identified residual petroleum impacts around the former UST in the northern courtyard area, at concentrations that are below the baseline RSR criteria. Although contaminant concentrations detected in soil from this area do not exceed baseline RSR criteria, the presence of low level concentrations of petroleum constituents indicates that a historic petroleum release from the former UST may have occurred.

Additionally, the presence of urban fill material (brick, coal, coal ash, etc.) was identified across the Site at varying thicknesses with the thickest layer identified in the southwest corner of the parking lot. If future Site redevelopment plans include the disturbance of soils in the areas where the urban fill was identified, additional characterization of this material is recommended.

Recommendations

Additional sampling will be required to fully delineate release areas to focus remedial planning and to further define remediation costs. Sampling activities should be coordinated with a redevelopment plan for the Site. Additional sampling should occur in portions of the building selected for demolition or renovation that will expose the subsurface or provide access to areas that were not previously accessible. Historical building plans depict an extensive sub-slab utility drain and trench network. These subsurface features could serve as preferential contaminant migration pathways; that if exposed through demolition, could contain local areas of contamination that will require remediation planning. This is supported by the fact that the data collected from this investigation thus far did not reveal any apparent "hot spots" of contamination; rather, depicted only localized areas of contamination.

Furthermore, other development considerations including geotechnical and structural information need to be evaluated in context with the environmental data. For example, additional testing of the fill may be warranted in the portion of the Site west of King Street. However, testing should occur in the areas proposed to be disturbed by new development. In addition, considerations should be made by a qualified engineer if the fill is geotechnically suitable to remain in place for the proposed re-use.

At this time, without a defined development plan, we recommend, at a minimum, additional testing be performed at the following areas:

- Additional sampling in the Boiler Room to determine the degree and extent of the PCB impacts in soil.
- Identify and evaluate the full extent of the oil trenches that begin in the laundry room area and extend east through additional portions of the building.
- Collect additional concrete chip samples from within the interior of the Site building in an effort to fully characterize the extent of the PCB impacts to concrete. This sampling needs to be coordinated with demolition/renovation plans pertaining to the building floor slab.
- Additional rounds of groundwater monitoring to further assess Site groundwater quality compared to seasonal trends.

We assume that the Site will be remediated to formally comply with the clean-up requirements of the RSRs through participation in a State Voluntary Remediation program. Preparation of a Remedial Action Plan for a selected development option will be a required component of the program. To minimize environmental remediation costs, it is important that the Site remediation be integrated into the Site design.

8 References

Connecticut Department of Environmental Protection, 1982. *The Atlas of Public Water Supply Sources and Drainage Basins of Connecticut*. CTDEP Natural Resources Center.

Connecticut Department of Environmental Protection, 2002. *Water Quality Standards*; Surface Water Quality Standards Effective February 25, 2011; Ground Water Quality Standards Effective April 12, 1996.

Connecticut Environmental Conditions Online (CTECO). <u>http://www.cteco.uconn.edu/</u>. Databases including: Aquifer Protection Areas; Natural Diversity Database Areas; Surficial Materials, 1992; Quaternary Geology, 2005; Soils. Accessed May 2016.

Rodgers, J., 1985. *Bedrock Geological Map of Connecticut*. Connecticut Department of Environmental Protection, Natural Resources Center, Connecticut Geological and Natural History Survey, in cooperation with the United States Department of the Interior, U.S. Geological Survey.

Stone, J. R., Schafer, J. P., London, E. H. and Thompson, W. B., 1992. *Surficial Materials Map of Connecticut*. Prepared in cooperation with CTDEP, Geological and Natural History Survey.

United States Geological Survey, 1992. *Meriden Quadrangle Connecticut-New Haven County, 7.5-Minute Series Topographic Map.* United States Department of the Interior, U.S. Geological Survey. 1967, Photorevised 1992.

FUSS&O'NEILL

9 Limitations of Work Product

This document was prepared for the sole use of City of Meriden the only intended beneficiaries of our work. Those who may use or rely upon the report and the services (hereafter "work product") performed by Fuss & O'Neill, Inc. and/or its subsidiaries or independent professional associates, subconsultants and subcontractors (collectively the "Consultant") expressly accept the work product upon the following specific conditions.

- 1. Consultant represents that it prepared the work product in accordance with the professional and industry standards prevailing at the time such services were rendered.
- 2. The work product may contain information that is time sensitive. The work product was prepared by Consultant subject to the particular scope limitations, budgetary and time constraints and business objectives of the Client, which are detailed therein, or in the contract between Consultant and Client. Changes in use, tenants, work practices, storage, Federal, state or local laws, rules or regulations may affect the work product.
- 3. The observations described and upon which the work product was based were made under the conditions stated therein. Any conclusions presented in the work product were based solely upon the services described therein, and not on scientific or engineering tasks or procedures beyond the scope of described services.
- 4. In preparing its work product, Consultant may have relied on certain information provided by state and local officials and information and representations made by other parties referenced therein, and on information contained in the files of state and/or local agencies made available at the time of the project. To the extent that such files that may affect the conclusions of the work product are missing, incomplete, inaccurate or not provided, Consultant is not responsible. Although there may have been some degree of overlap in the information provided by these various sources, Consultant did not attempt to independently verify the accuracy or completeness of all information reviewed or received during the course of this project. Consultant assumes no responsibility or liability to discover or determine any defects in such information that could result in failure to identify contamination or other defect in, at or near the site. Unless specifically stated in the work product, Consultant assumes no responsibility or liability for the accuracy of drawings and reports obtained, received or reviewed.
- 5. If the purpose of this project was to assess the physical characteristics of the subject Site with respect to the presence in the environment of hazardous substances, waste or petroleum and chemical products and wastes as defined in the work product, unless otherwise noted, no specific attempt was made to check the compliance of present or past owners or operators of the subject Site with Federal, state, or local laws and regulations, environmental or otherwise.
- 6. If water level readings have been made, these observations were made at the times and under the conditions stated in the report. However, it must be noted that fluctuations in water levels may

occur due to variations in rainfall, passage of time and other factors and such fluctuations may affect the conclusions and recommendations presented herein.

- 7. Except as noted in the work product, no quantitative laboratory testing was performed as part of the project. Where such analyses have been conducted by an outside laboratory, Consultant has relied upon the data provided, and unless otherwise described in the work product has not conducted an independent evaluation of the reliability of these tests.
- 8. If the conclusions and recommendations contained in the work product are based, in part, upon various types of chemical data, then the conclusions and recommendations are contingent upon the validity of such data. These data (if obtained) have been reviewed and interpretations made by Consultant. If indicated in the work product, some of these data may be preliminary or screening-level data and should be confirmed with quantitative analyses if more specific information is necessary. Moreover, it should be noted that variations in the types and concentrations of contaminants and variations in their flow paths might occur due to seasonal water table fluctuations, past disposal practices, the passage of time and other factors.
- 9. Chemical analyses may have been performed for specific parameters during the course of this project, as described in the work product. However, it should be noted that additional chemical constituents not included in the analyses conducted for the project might be present in soil, groundwater, surface water, sediments or building materials at the subject site.
- 10. Ownership and property interests of all documents, including reports, electronic media, drawings and specifications, prepared or furnished by Consultant pursuant to this project are subject to the terms and conditions specified in the contract between the Consultant and Client, whether or not the project is completed.
- 11. Unless otherwise specifically noted in the work product or a requirement of the contract between the Consultant and Client, any reuse, modification or disbursement of documents to third parties will be at the sole risk of the third party and without liability or legal exposure to Consultant.
- 12. In the event that any questions arise with respect to the scope or meaning of Consultant's work product, immediately contact Consultant for clarification, explanation or to update the work product. In addition, Consultant has the right to verify, at the party's expense, the accuracy of the information contained in the work product, as deemed necessary by Consultant, based upon the passage of time or other material change in conditions since conducting the work.
- 13. Any use of or reliance on the work product shall constitute acceptance of the terms hereof.

Tables

Table 1 Monitoring Well Construction and Groundwater Elevation Data

Former Meriden Hospital 1 King Place, Meriden, CT

Monitoring Well ID	Completion Date	Well Diameter	Well Depth (fbg)	Screened Interval (fbg)	Measuring Point Elevation (ft)	Gauging Date	Depth to Water (ft)	Groundwater Elevation (ft)
MW-01	UNK	2"	25.87	UNK	132.82	3/23/2016	17.40	115.42
						5/12/2016	17.75	115.07
MW-02	UNK	2"	22	UNK	122.63	5/12/2016	8.10	114.53
MW-10	3/14/2016	1.5"	13	3-13	120.13	3/23/2016	5.92	114.21
						5/12/2016	5.88	114.25
MW-11	3/15/2016	1.5"	22.59	13-23	131.53	3/23/2016	16.70	114.83
						5/12/2016	NM	NM
MW-12	3/15/2016	1.5"	20.27	13-23	125.32	3/23/2016	11.16	114.16
						5/12/2016	11.05	114.27
MW-13	5/3/2016	1.5"	22.65	12.5-22.5	126.84	5/12/2016	12.11	114.73

Notes:

Monitoring well measuring point elevations are based on NGVD 29 NM - Not Measured UNK - Unknown fbg - feet below grade ft - feet

Table 2 Summary of Constitunets Detected in Soil

Former Meriden Hospital Meriden, Connecticut

		Sam	nple Location ID	S	B-10	SB-11	SB-12	SB-13	SB-14	SB	-15	SB-16	SB	-17	MW-10	MW-11	SB-18	SB-19
		Sam	nple Depth (feet)	7-8.5	12.5-13.5	12-13	1.75-2	5-6	0.5-1.5	1-3	3-5	7-8	3-3.5	3-3.5	0.5-1.5	7-8	1-3	1-3
			Sample Date	3/14/2016	3/14/2016	3/14/2016	3/14/2016	3/14/2016	3/14/2016	3/14/2016	3/14/2016	3/15/2016	3/15/2016	3/15/2016	3/14/2016	3/15/2016	5/2/2016	5/2/2016
			Sample ID	1170100314-01	11/0100314-0200	1170100314-0470	11/0100314-05	11/0100314-07	11/0100314-09	1170100314-11	1170100314-12	11/0100314-23	1170100314-24	11/0100314-23	1170100314-00	11/0100314-2/	1170100302-03	1176160502-05
CONSTITUENT	GB PMC	I/C DEC	RES DEC															
Metals, Total (mg/Kg)	(20x GB PMC)																	
Arsenic	10	10	10	3			2.7	4	2.6	4.1	2.9	3.3	2.2	2	3.7	2.6		
Barium	200	140,000	4,700	52.9			54.7	86.7	57.8	78.1	64.7	68.6	83.9	69.4	72.6	53.6		
Cadmium	1	1,000	34	< 0.35			< 0.36	< 0.33	< 0.32	< 0.31	< 0.35	< 0.34	< 0.33	< 0.33	< 0.33	< 0.36		
Chromium	10	100	NE 2 500	13.2			12.7	23.3	13.6	18.4	10.5	13.6	11.7	11.1	17.7	9.08		
copper	200	1 000	2,500	6.73			31.1	20.1	27.0	35.4	25.1	34.6	13.3	12.3	41.5	6.76		
Mercury	0.4	610	20	< 0.03			0.07	< 0.03	0.07	0.09	0.17	0.04	< 0.03	< 0.03	0.07	< 0.03		
Nickel	20	7.500	1.400															
Selenium	10	10,000	340	< 1.4			< 1.4	< 1.3	< 1.3	< 1.3	< 1.4	< 1.4	< 1.3	< 1.3	< 1.5	< 1.4		
Silver	7.2	10,000	340	< 0.35			< 0.36	< 0.33	< 0.32	0.63	0.51	< 0.34	< 0.33	< 0.33	< 0.33	< 0.36		
Zinc																		
Metals, SPLP (mg/L)	0.5	NI (A	NI / A															
Arsenic Cadmium	0.5	N/A	N/A															
Chromium	0.05	N/A N/A	N/A							< 0.010					< 0.010			
Copper	13	N/A	N/A							< 0.010					< 0.010			
ead	0.15	N/A	N/A				< 0.010			< 0.010		< 0.010			< 0.010			
Mercury	0.02	N/A	N/A								< 0.0005							
FTPH (mg/Kg)																		
ETPH (Hg/ Kg) Ext. Petroleum HC	2 500	2 500	500	< 57	< 58	< 58	810	< 54	< 54	230	< 53	330	150	< 110	< 54	< 54	< 53	< 55
Ext. Tetroledin Tic	2,500	2,300	500	< 57	< 50	< 50	010	< 54	< 54	230	< 33	330	150	< 110	< 54	< 54	< 35	< 55
PCBs (mg/Kg)										100								
PCB-1254	0.005**	10	1				< 0.35			180	< 0.35							
DCBs SDL D (ug/L)	(CIMPC)																	
PCB-1254	05	N/A	ΝΖΔ							< 0.55								
00 1234	0.5	11777	10770							0.55								
PAHs (ug/Kg)																		
2-Methylnaphthalene	5,600	1,000,000	270,000	< 260	< 270	< 270	< 240	< 260	< 250	11,000	860	< 260	< 250	< 250	< 250	< 250	< 250	< 260
Acenaphthene	84,000	2,500,000	1,000,000	< 260	< 270	< 2/0	560	< 260	< 250	270	< 240	< 260	< 250	< 250	< 250	< 250	< 250	< 260
Acenaphthylene	84,000	2,500,000	1,000,000	< 260	< 270	< 270	< 240	< 260	< 250	< 240	< 240	< 260	< 250	< 250	< 250	< 250	< 250	< 260
Anni duene Benz(a)anthracene	400,000	2,300,000	1,000,000	< 260	< 270	< 270	1 200	< 260	< 250	< 240	< 240	< 200	< 250	< 250	< 250	< 250	< 250	< 260
Benzo(a)pyrene	1,000	1,000	1,000	< 260	< 270	< 270	1,200	< 260	< 250	650	< 240	270	< 250	< 250	< 250	< 250	< 250	< 260
Benzo(b)fluoranthene	1,000	7,800	1,000	< 260	< 270	< 270	940	< 260	< 250	1 000	< 240	260	< 250	< 250	< 250	< 250	< 250	< 260
Benzo(ghi)pervlene	1,000	78.000	8,400	< 260	< 270	< 270	640	< 260	< 250	450	< 240	< 260	< 250	< 250	< 250	< 250	< 250	< 260
Benzo(k)fluoranthene	1.000	78.000	8.400	< 260	< 270	< 270	870	< 260	< 250	920	< 240	< 260	< 250	< 250	< 250	< 250	< 250	< 260
Chrysene	1,000	780,000	8,400	< 260	< 270	< 270	1,400	< 260	< 250	1,700	< 240	350	< 250	< 250	< 250	< 250	< 250	< 260
Dibenz(a,h)anthracene	1,000	1,000	1,000	< 260	< 270	< 270	< 240	< 260	< 250	< 240	< 240	< 260	< 250	< 250	< 250	< 250	< 250	< 260
Fluoranthene	56,000	2,500,000	1,000,000	< 260	< 270	< 270	2,800	< 260	< 250	850	< 240	720	< 250	< 250	< 250	< 250	< 250	< 260
Fluorene	56,000	2,500,000	1,000,000	< 260	< 270	< 270	480	< 260	< 250	< 240	< 240	< 260	< 250	< 250	< 250	< 250	< 250	< 260
Indeno(1,2,3-cd)pyrene	1,000	7,800	1,000	< 260	< 270	< 270	640	< 260	< 250	480	< 240	< 260	< 250	< 250	< 250	< 250	< 250	< 260
Naphthalene	56,000	2,500,000	1,000,000	< 260	< 270	< 270	380	< 260	< 250	1,700	< 240	< 260	< 250	< 250	< 250	< 250	< 250	< 260
Phenanthrene	40,000	2,500,000	1,000,000	< 260	< 270	< 270	3,500	< 260	< 250	460	< 240	520	< 250	< 250	< 250	< 250	< 250	< 260
Pyrene	40,000	2,500,000	1,000,000	< 260	< 270	< 270	2,900	< 260	< 250	860	< 240	580	< 250	< 250	< 250	< 250	< 250	< 260
PAHs SPLP (ug/L)	(GW/PC)																	
2-Methylnaphthalene	28	N/A	N/A							73								
Acenaphthene	420	N/A	N/A							1.9								
Acenaphthylene	420	N/A	N/A							0.34								
Anthracene	2,000	N/A	N/A							0.12								
Benz(a)anthracene	0.06	N/A	N/A							0.08								
Benzo(a)pyrene	0.2	N/A	N/A							< 0.02								
Benzo(b)fluoranthene	0.08	N/A	N/A							< 0.02								
Benzo(ghi)perylene	0.48	N/A	N/A							<0.10								
Benzo(k)fluoranthene	0.5	N/A	N/A							0.03								
Chrysene Dihanz(a h)anthrasa	4.8	N/A	N/A							0.07								
Dipenz(a,ri)anthracene	U. I 280	N/A	IN/A							< 0.01								
Fluorene	200	N/A N/Δ	N/A							U. IZ 11								
Indeno(1.2.3.cd)pyrepe	0 1	N/A	N/A							-0.02								
Naphthalene	280	N/A	N/A							23								
Phenanthrene	200	N/A	N/A							1								
Pyrene	200	N/A	N/A							0.16								
1.2.4-Trimethylbenzene	28,000	1 000 000	500.000						< 4.6	11		< 1 1			< 47			
Naphthalene	56,000	2,500.000	1,000.000						< 4.6	9,400		< 4.4			< 4.7			
- P. Concerne	,500	2,000,000	.,	8			1		. 110	.,								

Notes: Bold indicates a result detected above laboratory reporting limit Bold and shaded cells indicate an exceedance of one or more of the listed criteria Du^p. Duplicate sample collected: the highest concentration of the samples is reported ug - micrograms / mg - milligrams / kg - kilograms < # - not detected above given laboratory detection limit NA = not applicable N/A - Not Applicable ETPH - Extractable Total Petroleum Hydrocarbons PAHs - Polynuclear Aromatic Hydrocarbons PCBs - Polychorinated Biphenyls SPLP - Synthetic Precipitation Leaching Procedure V/OCS - Volatile Organic Compounds

VOCs - Volatile Organic Compounds

F:\P2012\0232\C40\Phase II-III Report\Tables\Tables 2-5 Analytical Results

NE - Criteria Not Established
 GB PMC - GB Pollutant Mobility Criteria (PMC not applied to samples taken below the water table)
 20x GB PMC was used to evalute the potenial of total metals to leach into groundwater
 Res DEC - Residential Direct Exposure Criteria
 Red Text - DEEP fast-track approveable additional polluting substances and alternative criteria; DEEP approval required

Table 2 Summary of Constitunets Detected in Soil

Former Meriden Hospital Meriden, Connecticut

		San	nple Location ID	SB-20	SB-21	SB-23	SB-24	SB-25	SB-26	SB-27	MW-13	SB-28	SB-29	SB-30	SB-31	SB-32	SB-33
		San	nple Depth (feet)	1-3	1-3	0.3-3	0.3-1	0.3-1	1-2	1-2	1-2 ^{DUP}	0.3-1.5	0.3-4 ^{DUP}	2-3	2-3	1-3	1-3
			Sample Date	5/2/2016	5/2/2016	5/3/2016	5/3/2016	5/3/2016	5/3/2016	5/3/2016	5/3/2016	5/3/2016	5/3/2016	5/3/2016	5/3/2016	5/4/2016	5/4/2016
			Sample ID	1176160502-10	1176160502-11	1176160503-17	1176160503-19	1176160503-21	1176160503-24	1176160503-26	1176160503-28	1176160503-31	1176160503-33	1176160503-36	1176160503-38	1176160504-40	1176160504-42
	GB PMC	I/C DEC	RES DEC														
	0011110	# 0 BE0	ILLO D'L'O														
etals, Total (mg/Kg)	(20x GB PMC)																
senic	10	10	10									3	12.7	4	19.8		
irium	200	140,000	4,700									57.2	58.6	117	94.8		
ıdmium	1	1,000	34									< 0.38	2.8	1.19	< 0.36		
nromium	10	100	NE									13.8	24.3	23.2	12.5		
opper	260	76,000	2,500									65	6,940	28.2	35		
ad	3	1,000	400									74.2	1,010	29.5	12.5		
ercury	0.4	610	20									0.18	0.29	0.07	< 0.03		
ckel	20	7.500	1.400									13.3	101	18.1	13.1		
lenium	10	10,000	340									< 1.5	< 1.6	< 1.4	< 1.4		
ver	7.2	10.000	340									< 0.38	17.8	< 0.35	< 0.36		
nc												100	1.220	533	46.2		
												100	1,220	000	10.2		
etals SPLP (mg/L)																	
senic	0.5	NI/A	NI/A										< 0.004		< 0.004		
dmium	0.05		N/A										< 0.004		<0.004		
	0.05	N/A	IN/A										< 0.005				
ii omlum	0.5	IN/A	IN/A														
opper	13	N/A	N/A										0.045				
ad	0.15	N/A	N/A									0.011	0.028	<0.010	<0.010		
ercury	0.02	N/A	N/A														
TPH (ma/Ka)																	
t Petroleum HC	2 500	2 500	500			< 54	< 55	< 53				< 55	< 61	< 56	< 55	< 51	< 54
	2,000	2,000	000			101	1.00	100						100	100		
CBs (mg/Kg)																	
CB-1254	0.005**	10	1	< 0.35	< 0.35			< 0.36	< 0.35	< 0.35	< 0.36					< 0.35	< 0.36
CBs, SPLP (ug/L)	(GWPC)																
CB-1254	0.5	N/A	N/A														
AHs (ug/Kg)																	
Methylnaphthalene	5,600	1,000,000	270,000	< 250	< 240	< 260	< 260	< 250	< 250	< 250	< 250					< 240	< 250
cenaphthene	84,000	2,500,000	1,000,000	< 250	< 240	< 260	< 260	< 250	< 250	< 250	< 250					< 240	< 250
enaphthylene	84,000	2,500,000	1,000,000	< 250	< 240	< 260	< 260	< 250	< 250	< 250	< 250					< 240	< 250
nthracene	400,000	2,500,000	1,000,000	< 250	< 240	< 260	< 260	< 250	< 250	< 250	< 250					< 240	< 250
enz(a)anthracene	1,000	7,800	1,000	< 250	< 240	< 260	< 260	< 250	< 250	< 250	420					< 240	< 250
enzo(a)pyrene	1,000	1,000	1,000	< 250	< 240	< 260	< 260	< 250	< 250	< 250	430					< 240	< 250
enzo(b)fluoranthene	1,000	7,800	1,000	< 250	< 240	< 260	< 260	< 250	< 250	< 250	420					< 240	< 250
enzo(ghi)perylene	1,000	78,000	8,400	< 250	< 240	< 260	< 260	< 250	< 250	< 250	290					< 240	< 250
enzo(k)fluoranthene	1,000	78,000	8,400	< 250	< 240	< 260	< 260	< 250	< 250	< 250	380					< 240	< 250
nrysene	1,000	780,000	8,400	< 250	< 240	< 260	< 260	< 250	< 250	< 250	520					< 240	< 250
benz(a,h)anthracene	1,000	1,000	1,000	< 250	< 240	< 260	< 260	< 250	< 250	< 250	< 250					< 240	< 250
uoranthene	56.000	2.500.000	1.000.000	< 250	< 240	260	< 260	< 250	< 250	< 250	790					< 240	< 250
uorene	56.000	2,500,000	1.000.000	< 250	< 240	< 260	< 260	< 250	< 250	< 250	< 250					< 240	< 250
deno(1 2 3-cd)pyrene	1 000	7 800	1 000	< 250	< 240	< 260	< 260	< 250	< 250	< 250	320					< 240	< 250
aphthalene	56,000	2 500 000	1 000 000	< 250	< 240	< 260	< 260	< 250	< 250	< 250	< 250					< 240	< 250
enanthrene	40,000	2,500,000	1,000,000	< 250	< 240	< 260	< 260	< 250	< 250	< 250	570					< 240	< 250
rene	40,000	2,500,000	1,000,000	< 250	< 240	< 260	< 260	< 250	< 250	< 250	690					< 240	< 250
Teric	40,000	2,500,000	1,000,000	< 200	< 240	< 200	< 200	< 250	~ 200	< 200	070					< 240	< 250
AHs. SPLP (ug/L)	(GWPC)																
Methylnaphthalene	28	N/A	N/A														
renanhthene	420	N/A	N/A														
conaphthylono	420	NI/A	N/A														
athracana	2 000	N/A	N/A					=						- **			
innacene	2,000	N/A	N/A														
enz(a)anthracene	0.06	N/A	N/A														
enzo(a)pyrene	0.2	N/A	N/A														
enzo(b)fluoranthene	0.08	N/A	N/A														
enzo(ghi)perylene	0.48	N/A	N/A														
enzo(k)fluoranthene	0.5	N/A	N/A														
nrysene	4.8	N/A	N/A														
benz(a,h)anthracene	0.1	N/A	N/A														
uoranthene	280	N/A	N/A														
uorene	280	N/A	N/A														
deno(1,2,3-cd)pyrene	0.1	N/A	N/A														
aphthalene	280	N/A	N/A														
enanthrene	200	N/A	N/A														
rene	200	N/A	N/A														
2,4- i rimethylbenzene	28,000	1,000,000	500,000														
apntnalene	56,000	2,500,000	1,000,000														

Notes: Bold indicates a result detected above laboratory reporting limit Bold and shaded cells indicate an exceedance of one or more of the listed criteria ^{DUP} - Duplicate sample collected; the highest concentration of the samples is reported ug - micrograms / mg - milligrams / kg - kilograms < # - not detected above given laboratory detection limit NA = not applicable N/A - Not Applicable ETPH - Extractable Total Petroleum Hydrocarbons PAHs - Polynuclear Aromatic Hydrocarbons PCBs - Polychlorinated Biphenyls SPLP - Synthetic Precipitation Leaching Procedure VOCs - Volatile Organic Compounds

F:\P2012\0232\C40\Phase II-III Report\Tables\Tables 2-5 Analytical Results

NE - Criteria Not Established GB PMC - GB Pollutant Mobility Criteria (PMC not applied to samples taken below the water table) 20x GB PMC was used to evalute the potenial of total metals to leach into groundwater Res DEC - Residential Direct Exposure Criteria Red Text - DEEP fast-track approveable additional polluting substances and alternative criteria; DEEP approval required

Former Meriden Hospital Meriden, Connecticut

	Samp	le Location:	MW-01	MW-02	MM	V-10	MW-11	MW-12	MW-13	G-01*	
	S	ample Date:	3/23/2016	5/12/2016	3/23/2016	Duplicate	3/23/2016	3/23/2016	5/12/2016	3/25/2016	
		Sample ID:	1176160323-03	1176160512-02	1176160323-05	1176160323-06	1176160323-02	1176160323-04	1176160512-03	1176160325-01	
CONSTITUENT	GWPC	RES VC									
Metals (mg/L)											
Arsenic	0.01	N/A	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	< 0.004	
Barium	1	N/A	0.461	0.181	0.144	0.145	0.096	0.208	0.208	0.051	
Cadmium	0.005	N/A	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
Chromium	0.05	N/A	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.002	
Lead	0.015	N/A	< 0.002	0.003	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	0.002	
Mercury	0.002	N/A	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	
Selenium	0.05	N/A	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	
Silver	0.036	N/A	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
PCBs (ug/L)											
Total PCBs	0.5	N/A		< 0.50				<0.10	<0.50	ND	
VOCs (ug/L)											
VOCs	Varies	Varies	ND								
PAHs (ug/L)											
PAHs	Varies	Varies	ND								

Notes:

Bold indicates a detection above laboratory reporting limits

Bold and shaded cells indicate an exceedance of one or more of the listed criteria

ug/L - micrograms per liter

mg/L = milligrams per liter

< # - not detected above given laboratory detection limit

ND - Constituent not detected above laboratory reporting limits

N/A - Not Applicable

GWPC - Groundwater Protection Criteria

RES VC - Residential Volitilzation Criteria

*Sample G-01 was collected from water in the basement tunnel off the Boiler Room

PAHs - Polynuclear Aromatic Hydrocarbons

PCBs - Polychlorinated Biphenyls

VOCs - Volatile Organic Compounds

Table 4 Summary of Constituents Detected in Concrete

Former Meriden Hospital Meriden, Connecticut

	Sample Location:	CC-01	CC-02	CC-03	CC-04	CC-05	CC-06	CC-07	CC-08	CC-09	CC-10	CC-11	CC-12	CC-13	CC-14	CC-15	CC-16	CC-17	CC-18	CC-19	CC-20	CC-21	CC-22
	Interior Location:	2nd Fl Transformer (over Laundry Area)	Generator Rm (N of Boiler Rm)	Exterior Transformer Pad (Southern UST Area)	Loading Dock	Boiler Room	Transformer (Boiler Room Atrium)	Transformer (Basement - Nurses Bldg)	Elevator (1st Floor - Nurses Bldg)	Mechanical Room (NW portion of Building)	Exterior Transformer Pad (Northern Courtyard)	Basement Sump (Nurses Bldg)	Chemical Storage Room (Laundry Area)	Laundry Area	Boiler Room Transformer	Former Incinerator Room	Generator/ Switchgear Room	Basement Equipment Room (Tunnel)	mech. Equip rm 2nd flr	Elev. Equip. Rm. (2nd fl)	Elec. Equip Rm	Elev Rm - 1st fl (stain)	First Floor Dry Well (Southeast corner of Bldg)
	Lab Sample ID	BK79038	BK79039	BK79040	BK79041	BK79042	BK79043	BK79044	BK79045	BK79046	BK79047		BN25664	BN25665	BN25672	BN25673	BN25702	BN25703	BN25704	BN25705	BN25706	BN25707	BN25708
	Sample Date:	3/14/2016	3/14/2016	3/14/2016	3/14/2016	3/14/2016	3/14/2016	3/15/2016	3/15/2016	3/15/2016	3/15/2016	3/23/2016	5/2/2016	5/2/2016	5/2/2016	5/2/2016	5/4/2016	5/4/2016	5/4/2016	5/4/2016	5/4/2016	5/4/2016	5/4/2016
CONCLITUENT	Sample ID:	11/6160314-13	11/6160314-14	11/6160314-15	11/6160314-16	11/6160314-1/	11/6160314-20	11/6160314-29	11/6160314-30	11/6160314-31	11/6160314-32	11/6160323-0/	11/6160502-07	11/6160502-08	11/6160502-15	11/6160502-16	11/6160504-44	11/6160504-45	11/6160504-46	11/6160504-4/	11/6160504-48	11/6160504-49	11/6160504-50
Metals Total (mg/Kg	RESIDEC	-																					
Arsenic	10		21	4.2	4								4.1			4 4		17					
Barium	4.700		56.3	142	63								89.8			91		67.2					
Cadmium	34		3.84	0.32	< 0.31								0.72			0.5		0.52					
Chromium	NE		14.2	14.1	14.5								18.1			15.4		13.8					
Lead	400		12.9	34.8	8								18.8			31.2		4					
Mercury	20		0.92	0.13	0.13								0.55			0.04		0.7					
Selenium	340		< 1.3	< 1.2	< 1.3								< 1.2			< 1.2		< 1.4					
Silver	340		5.95	< 0.31	< 0.31								1.05			< 0.31		59.7					
ETPH (mg/Kg) ETPH	500		2,100	460	1,200			450		82				2,900	28,000		340		1,600	510		16,000	
PCBs (mg/Kg) PCB-1254	1	< 0.33	< 0.33	< 0.34	< 0.34	< 0.34	< 0.37	< 0.34	0.99	0.81	< 0.35	< 0.35		< 0.34	< 0.34	< 0.34	< 0.35	< 0.35	12	1.1	< 0.33	3.9	< 0.34

Notes: Bold inidcates reusit detected above laboratory reporting limit Bold and shaded indicates result detected above criteria mg/Kg - milligrams per kilogram ---- Constituent not analyzed Res DEC - Residential Direct Exposure Criteria NE - Criteria Not Established < # - not detected above given laboratory detection limit ETPH - Extractable Total Petroleum Hydrocarbons PCBs - Polychlorinated Biphenyls

Table 5 Summary of Constituents Detected in Residual Ash and Oil Material

Former Meriden Hospital Meriden, Connecticut

		Sample ID:	Stack Ash Material	Residual Oil Product (Boiler Room)	Residual Oil Product (2nd Floor)
		Lab Sample ID Sample Date: Sample ID:	BN25666 5/2/2016 1176160502-09	BN38453 5/17/2016 1176160517-01	BN38454 5/17/2016 1176160517-02
CONSTITUENT	RES DEC	40 CFR 261.24			
Metals, Total (mg/Kg) Arsenic Barium Cadmium Chromium Lead Mercury Selenium Silver Metals, TCLP (mg/L) TCLP Arsenic	10 4,700 34 NE 400 20 340 340 340	N/A N/A N/A N/A N/A N/A N/A	9.9 59.3 2.48 81.7 103 0.28 < 1.7 < 0.41 0.07	 	
TCLP Barium TCLP Cadmium TCLP Chromium TCLP Lead TCLP Mercury TCLP Selenium TCLP Silver	N/A N/A N/A N/A N/A N/A	100 1 5 0.2 1 5	0.04 0.06 0.024 < 0.010 0.0003 < 0.01 < 0.010	 	
ETPH (mg/Kg) Ext. Petroleum HC	500	N/A	< 59		
PCBs (mg/Kg) Total PCBs	1	N/A	< 0.4	<0.99	<0.99
VOCs (ug/Kg) 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene Naphthalene Toluene	500,000 500,000 1,000,000 500,000	N/A N/A N/A N/A	< 8.5 < 8.5 < 8.5 < 8.5		
SVOCs (ug/Kg) Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Fluoranthene	1,000 1,000 8,400 8,400 8,400 1,000,000	N/A N/A N/A N/A N/A	300 410 290 370 410 740 220		
Pyrene	1,000,000	N/A N/A	520 570		

Notes:

Bold indicates result detected above laboratory reporting limit Bold and shaded indicates result detected above criteria mg/Kg - milligrams per kilogram N/A - not applicable

--- - not analyzed

ETPH - Extractable Total Petroleum Hydrocarbons

PCBs - Polychlorinated Biphenyls

SVOCs - Semi Volatile Organic Compounds

TCLP - Toxicity Characteristic Leaching Procedure

VOCs - Volatile Organic Compounds

Res DEC - Residential Direct Exposure Criteria

40 CFR 261.24 - EPA's Maximum Concentration of Contaminants for the Toxicity Characteristic

NE - Not Established

Red Text - DEEP fast-track approveable additional polluting substances and alternative criteria; **DEEP** approval required

Figures

No.

DATE

XX/XX

DESIGNER REVIEWE

DESCRIPTION

XX

MERIDEN

CONNECTICUT

1 KING PLACE

GENERAL NOTES

- 1. SYMBOLS AND LEGENDS OF PROJECT FEATURES ARE GRAPHIC REPRESENTATIONS AND ARE NOT NECESSARILY SHOWN ON THE DRAWINGS TO SCALE OR TO THEIR ACTUAL DIMENSION OR LOCATION.
- 2. DO NOT RELY SOLELY ON ELECTRONIC VERSIONS OF DRAWINGS, SPECIFICATIONS, AND DATA FILES THAT ARE PROVIDED BY THE ENGINEER. FIELD VERIFY LOCATION OF PROJECT FEATURES.
- 3. BASE PLAN: AERIAL PHOTOGRAPH WAS OBTAINED FROM GOOGLE EARTH IMAGERY ACCESSED ON MAY 2016, IMAGERY DATE 10/24/2014. AERIAL IMAGE PROVIDES RELATIVE LAYOUT OF THE BUILDING FEATURES IN RELATION TO SAMPLE LOCATIONS.
- 4. MONITORING WELL MEASURING POINT ELEVATIONS ARE BASED NGVD 29.
- 5. DATA INCLUDING BORING LOCATIONS AND MEASURING POINT ELEVATIONS WERE OBTAINED FROM FUSS & O'NEILL PERSONNEL DURING MARCH 2016 MAY 2016.

* GROUNDWATER ELEVATION FOR MW-11 WAS OBTAINED DURING THE MARCH 2016 GAUGING EVENT,

T	UT
SCALE:	
HORZ.: 1" - 50'	
VERT.:	
DATUM:	
HORZ.:	

VERT.:

0 25

GRAPHIC SCALE

E E

FUSS&O'NEILL

MERIDEN

146 HARTFORD ROAD MANCHESTER, CONNECTICUT 06040 860.646.2469 www.fando.com

CITY OF MERIDEN SITE PLAN - PROPERTY BOUNDARY & MAY 2016 GROUNDWATER ELEVATION CONTOURS FORMER MERIDEN HOSPITAL 1 KING PLACE

FIGURE 3

CONNECTICUT

Appendix A

Soil Boring Logs & Monitoring Well Completion Reports

0	4			Section 1		BOR	ING LOG		SITE ID:_	MW	(-10	
	F	USS	&O'N	IEILL	PROJE	ECT: Meric	len Hospital		SHEET: PROJECT	1 'NO:	of 2012023	1 2 C40
~					LOCA	TION:			WEATHE	R: P	LIN YOUS	2.040
CONT OPER F&O I DRILI SAMP HAMN	TRACTO ATOR:_ REPRES LING M LING M MER WI	DR: ENTAT ETHOI ETHOI ETHOI	<u>FnO</u> <u>D. Lev</u> IVE: D: D:	esque D. Cook Direct Pr 5, Macro HAMMER	ush 2 Core FALL (IN)		BORING LOCAT DATE STARTED DATE & TIME C DEPTH TO SATU SAMPLE PREFIX	ION: OMPLE JRATEI	3/10 TED: D ZONE: 0160314	4))6 ↓ ~5		
DRI	LLING DET	TAILS REC/	DEPTH	1		MATERIAL DES	CRIPTION				NALYTICALS	AMPLES
(FT)	6"	PEN (IN)	RANGE (FT)		1	DESCRIPTION		PID	LITHO- LOGIC CODE	SAMPLE NO. & TIME	DEPTH INTERVAL (FT)	JARS & PRESER
ю	MA	36/	0,5	Concret	e			MA				
7		1	0.5-	F-m SK dry, 1005c	AND: 5m, no odo	sin, , ,	h brown	ND	Sm	-08 1230	0.5-	1000 (7807
5	1	160	5-8	Same a	i abo	one, he	-t at 5	NO	Sm			
BO DIAN 2.5	RING METER	I d	BORING N	1ETHOD	BORING DEPTH	REMARK Field Instru PID/OVM	S ment = If r	refusal is er	acountered, des	scribe all eff	forts used to c	confirm.
PORTIO (tr) (ltl)	ONS USED: 0 to 10% 10 to 20%		Some (sm) And	20 to 35% 35 to 50%		Field Deco	TGEL #2 n: Yes/No/Dedicated	Device				
EXAMPLE DESCRIPTION: SAND, F-M; sm F angular gravel; ltl silt; tr clay; (10R 5/4), wet at 7 ft. Loose. No odor. Reviewed by Staff:					Asphalt / Concrete To See Monitoring Well Bentonite Grout/Chips To Cuttings/Native Material To Other To							

GENERAL INFORMATION

Project Name: Meriden Hospitas	Site ID (Boring/Well ID): MW-10
Project Location: Meriden, CT	Project No.:20120232.C40
F&O Engineer/Geologist:D. Cook	Ground Surface Elevation:
Date of Completion:	Permit #:
Boring Location: South loading doct	E1 Top of Steel Casing:
Drilling Contractor/Name:FnO	E1 Top of PVC Casing:
Drilling Method: Direct Push	Measuring Point: TPS / PVC
WELL CONSTRUCTION	Well Cover (see codes):
WELL CASING/RISER SUMP (below screen)	PROTECTIVE CASING
Diameter: 1.5 in. Diameter: 1.5 in.	Diameter:in. Type: Road Box / Stand Pipe
Туре: Туре:	Stick-up:ft Depth to Bottom: 0, 75ft
Stick-up:ft. Length:in.	Seal Material:
Screen Intervals	
Screen Interval: 3-13 ft Diameter: 1.5	in. Slot Size: 👌 🔿 l
Description: PVC/ Other:	·
Type: Perforated / Slotted / Wire-Wrap / Other: te pach	
BOREHOLE	
Diameter: <u>3.5</u> in. Total Boring Depth: <u>13</u> ft.	Refusal: y / Depth:ft.
ANNULAR FILL	
SURFACE SEAL (Approximate volumes if avail	lable)
Interval: 0.50 ft. Tremied: Y / N Volume: 1/2 bags	Description Concrete / Other:
BACKFILL	
Interval:ft. Tremied: Y / N Volume:bags	Description: Bentonite Grout / Cuttings / Sand / Other:
LOWER SEAL	
Interval: 1.0.5 ft. Tremied: Y / N Volume: 19 bags	Description: Bentonite Pellets / Other:
FILTER	
Interval: 13-1 ft. Tremied: Y / N Volume: 1/2 bags	Description: Sand Filter (type:) / Other:
Lower Backfill	
Interval:ft. Tremied: Y / N Volume:bags	Description: Bentonite Grout / Cuttingsl / Sand / Other:
MONITORING WELL DEVELOPMENT*	
Development Method: Surge Block / Submersible Pump / Peristaltic Pump / W	atera / Bailer / Other
Date: 2/14/16	

G		TICC	0-02	ILLI I		BOR	ING LOG		SITE ID:	ę	B-10	
V		033	aur	NEILL	PROJE	ECT: Meric	len Hospital		PROJECT	'NO:	of 201202:	1 32.C40
CON' OPEF F&O DRIL SAMP HAMI	TRACTO RATOR:_ REPRES LING M LING M MER WT	DR: ENTAT ETHOI IETHOI	<u>FnO</u> <u>D. Lev</u> IVE: D: D:	esque D. Cook Direct P 5, Macr HAMMER	ush o Core FALL (IN)		BORING LOCAT DATE STARTED: DATE & TIME CO DEPTH TO SATU SAMPLE PREFIX:	ION: DMPLE IRATEI	TED: DZONE:	3/14/1 V ~ 13	φ ι	
START	BLOWS	TAILS REC/	DEPTH		1	MATERIAL DES	CRIPTION	_	LIMILO		ANALYTICAL	AMPLES
(FT)	6"	PEN (IN)	RANGE (FT)		1	DESCRIPTION		PID	LITHO- LOGIC CODE	SAMPLE NO. & TIME	DEPTH INTERVAL (FT)	JARS & PRESERV.
6	MA	40/60	0- 3,25	F-C SAI dry, 1005	vo: ltl e, no od	or, redd	the from gravel	NC	sw			
5		42/60	5- 8.5	F-C SANI reddirk)	D: Sm 5. Noun	es, dry,	loose, no odar	NO	Sm	-01	7-85	W2 6802
10		42/60	13,5	Same as	above,	ret o	+ 13'	ND	Sm	- 02 1015	12.5 - 13.5	1000 (1802
BC DIA 2.5	ORING METER	H d	BORING N rey y	METHOD Rush	BORING DEPTH	REMARK Field Instru PID/OVM	$\frac{S}{T}$ If real T	efusal is er	ncountered, des	scribe all ef	forts used to e	confirm.
ROPORTIC ace (tr) ttle (ltl)	ONS USED: 0 to 10% 10 to 20%		Some (sm) And	20 to 35% a 35 to 50% a		Field Deco	n: Yes / No / Dedicated I	Device				
And 35 to 50%. AND, F-M; sm F angular gravel; ltl silt; tr clay; (10R 5/4), wet at 7 ft. oose. No odor. eviewed by Staff:					BACKFILL Asphalt / Concrete To See Monitoring Well Bentonite Grout/Chips To Completion Report Cuttings/Native Material O To Other To To							

	M					BOR	ING LOG		SITE ID:	SB	-11		
	F	USS	&O'N	VEILL	PROJE	ECT: Merid	len Hospital		SHEET:	1	of	1	
~				1814	LOCA	TION:			WEATHE	ER:	2012023 415 40	32.C40	
CON' OPEF F&O DRIL SAMF HAM	IRACTO REPRES LING M PLING N MER WT	DR: ENTAT ETHOI IETHOI	<u>FnO</u> <u>D. Lev</u> IVE: D: D:	D. Cook Direct Pu 5, Macro HAMMER	nsh o Core FALL (IN)		BORING LOCAT DATE STARTED DATE & TIME C DEPTH TO SATU SAMPLE PREFIX	ION: OMPLE': JRATED	1'ED: ZONE:_ 61603	3/14/14			
DR	ILLING DET	TAILS			1	MATERIAL DES	CRIPTION			T			
START DEPTH (FT)	BLOWS 6"	REC/ PEN (IN)	DEPTH RANGE (FT)		I	DESCRIPTION		PID	LITHO- LOGIC	SAMPLE NO. &	DEPTH	JAMPLES	
0	NA	24/60	0-013	Asphalt			,		CODE	TIME	(FT)	PRESERV.	
\uparrow		1	0,3-2	SILT; SM no odor r	eddish b	and, moin	it, Compact,	ND	mL				
5		24/5- F-C SAND; s 607 reddish boun 36/10- Same as a					iry, no odar	NO	Sm	-03	6-7	V00 6802	
0	36/ 10- Same as a) 160 12 - Same as a)					ve		ND	SM				
7	Ţ	7	12- 13	F-M SANI No odor, 1	0; tr 5 reddish	tus, hes brown	+ C 12.5;	NO	SW	-04 1100	12- 13	V02 6002	
BC DIA 2.4	DRING METER		BORING N Arect P	UETHOD	BORING DEPTH	REMARK Field Instru PID/OVM	S ment = If r	refusal is en	countered, de	scribe all eff	forts used to o	confirm.	
						- TIGER #2							
OPORTIONS USED: Some (sm) 20 to 35% de (til) 10 to 20% And 35 to 50%						BACKFIL	L	Device					
AMPLE I ND, F-1 ose. No viewed t	And 35 to 50% MPLE DESCRIPTION: D, F-M; sm F angular gravel; ltl silt; tr clay; (10R 5/4), wet at 7 ft. se. No odor. ewed by Staff:						Asphalt / Concrete 0,3 To See Monitoring Well Bentonite Grout/Chips To Completion Report Cuttings/Native Material 15 To Completion Report Other To To To						

0	2					BOR	ING LOG	s	SITE ID:	S	B-12		
	F	USS	&O'N	VEILL	PROJI	ECT: Merid	len Hospital	S	HEET:_	1	of	1	
~					LOCA	TION:			VEATHE	NO: R:2	2012023 2 AIN 4	0'>	
CONT OPER F&O I DRILI SAMP HAMP	IRACTOR:_ LATOR:_ REPRES LING M LING M MER WT	DR: ENTAT ETHOI ETHO ':	FnO D. Ley CIVE: D: D:	Zesque D. Cook Direct P 5, Macro HAMMER	ush o Core FALL (IN)		BORING LOCAT DATE STARTED: DATE & TIME CO DEPTH TO SATU SAMPLE PREFIX:	ION: DMPLET RATED	ED: ZONE: \60314	3/14/1	- 13		
START DEPTH	BLOWS	REC/ PEN	DEPTH			MATERIAL DES	CRIPTION	1	LITHO-	A	NALYTICAL S	AMPLES	
(FI)	6"	(IN)	(FT)			DESCRIPTION		PID	LOGIC	NO. & TIME	INTERVAL (FT)	JARS & PRESERV	
0	MA	24/60	0-	Asphal	1+			NA					
			0.3-	dry loose,	ND; Sm No odor	reddish	tr F. m gravel, brown	NI	Sm/ FI				
		1	2	Loal #	C091 0	ish, dr	1, black,	NB	FI	05 1115	1.75-2	V04 61857	
5	24/ 5- F-C SAND; 7 no odor, redo 48/ 10- Some es					sils, mi	1st, Compact,	MD	Sm				
10	48/ 10- 560 14 Same as about					e, wet	97 13	NO	Sm	06 1120	12.5-	104 50807	
BO	RING	F	BORING	METHOD	BORING	REMARK	S						
2.5	2.5 direct push 15						Image: Pield Instrument = PID/OVM If refusal is encountered, describe all efforts used to confirm. Image: Pield Instrument = PID/OVM Image: Pield Instrument = PID/OVM						
OPORTIONS USED						Field Decon: Yes / No / Dedicated Device							
$\begin{array}{llllllllllllllllllllllllllllllllllll$						BACKFILL Asphale/ Concrete To See Monitoring Well Bentonite Grout/Chips To							
viewed by	y Staff:					Cuttings/Na Other	ntive Material3		To 15 To		- supretion K	chore	

e		LICC				BOR	ING LOG		SITE ID:_	S	8-13	
	F	035	&O'N	VEILL	PROJE	ECT: Merio	len Hospital		SHEET: PROJECT	1 NO:	of 2012023	1 32.C40
					LOCA	TION:			WEATHE	R: <u>LA</u>	N 403	
CON OPER F&O DRILL SAMP HAM	IRACTO AATOR:_ REPRES LING M LING M MER WT	DR: ENTAT ETHOI ETHOI	FnO D. Lev TIVE: D:	esque D. Cook Direct Pr 5, Macro HAMMER	ush 2 Core FALL (IN).		BORING LOCAT DATE STARTED DATE & TIME C DEPTH TO SATU SAMPLE PREFIX	ION: OMPLE JRATEI	TED: D ZONE: 216 03/4	<u>3/14/11</u> ↓ ~13	6	
START	BLOWS	AILS REC/	DEPTH	1	1	MATERIAL DES	CRIPTION			A	NALYTICAL	SAMPLES
(FT)	619	PEN (IN)	RANGE (FT)		1	DESCRIPTION		PIE	LITHO- LOGIC CODE	SAMPLE NO. & TIME	DEPTH INTERVAL (FT)	JARS & PRESERV.
0 5 10 10	NA	48/60 36/60	8/ 0- 60 4 1005-, reddish brown 6/ 5- 60 6 r- 1 6- 1 8 reddish brown 1 0- 60 13 10- 60 13 10- 10- 10- 10- 10- 10- 10- 10-				10032, no odor, 14 7 95h, 10052 0852, no odor 24 92 131	ND NO NO	SWH SWH SY SY	-07	5-6	VU2 G1802
BO DIAI	PRING METER	E	BORINGN	AETHOD	BORING DEPTH	REMARK Field Instru	S ment = If r	refusal is e	ncountered, des	cribe all eff	orts used to o	confirm.
6.	arcar yush D					PID/OVM						
ROPORTIC	COPORTIONS USED: Some (sm) 20 to 35% the (th) 0 to 10% Some (sm) 20 to 35%						ii: 1 es / No / Dedicated	Device				
ittle (h) 10 to 20% And 35 to 50% XAMPLE DESCRIPTION: AND, F-M; sm F angular gravel; ltl silt; tr clay; (10R 5/4), wet at 7 ft. soose. No odor. Reviewed by Staff:					BACKFILL Asphalt / Concrete To See Monitoring Well Bentonite Grout/Chips To Completion Report Cuttings/Native Material Oi To Completion Report Other To To To Completion Report							

	4					BOR	ING LOG	S	ITE ID:_	SB	-14	
	F	USS	&O'N	JEILL	PROJE	ECT: Meric	len Hospital	S	HEET:_	1 'NO.	of	1
					LOCA	TION:		v	VEATHE	R: LA	N 403	52.C40
CON OPER F&O DRILI SAMP HAM	IRACTO ATOR:_ REPRES LING M LING M MER WI	DR: ENTAT ETHOI ETHOI T:	FnO D. Lev IVE: D: D:	esque D. Cook Direct P 5, Macro HAMMER	ush o Core FALL (IN)		BORING LOCATI DATE STARTED: DATE & TIME CC DEPTH TO SATU SAMPLE PREFIX:	ON: DMPLET RATED	ED: ZONE: 016 031	3/14/11 V ~5 Y-	(e	
DR	ILLING DET	AILS				MATERIAL DES	CRIPTION				NALYTICAL	AMPLES
DEPTH (FT)	BLOWS 6"	PEN (IN)	DEPTH RANGE (FT)		1	DESCRIPTION		PID	LITHO- LOGIC CODE	SAMPLE NO. & TIME	DEPTH INTERVAL (FT)	JARS & PRESERV.
0	AN	24/60	0-	Aspha	1+			MA				
7		\downarrow	013-2	F-C SA reddish b	NO; tr rown	Silt, la	ose, dry, no odor	ND	SW	-09 1330	0.5-	VU2 (7802
5		36/	5-8	Same a	is abou	re het	975'	NO	SW	-10	5-6	1500
					4		*					24
BO DIAI 2.1	PRING METER	E	ORINGN	1ETHOD PJSh	BORING DEPTH	REMARK Field Instru PID/OVM	S ment = If re	fusal is enc	ountered, des	scribe all eff	orts used to c	onfirm.
						Field Decor	TGR Yes/No/Dedicated D	R H	2			
ROPORTIC race (tr) ttle (ltl)	0 to 10% 10 to 20%		Some (sm) And	20 to 35%		DUC						
XAMPLE D AND, F-M Dose. No eviewed b	e (tr) 0 to 10% Some (sm) 20 to 35% (tl) 10 to 20% And 35 to 50% MPLE DESCRIPTION: ND, F-M; sm F angular gravel; ltl silt; tr clay; (10R 5/4), wet at 7 ft. se. No odor.						BACKFILL O To 0/3 See Monitoring Well Asphart / Concrete To Completion Report Bentonite Grout/Chips To Completion Report Cuttings/Native Material To Completion Report Other To To					

	4]	BOR	ING LOG		SITE ID:	SB-	5	
1	FI	JSS 8	kO'N	EILL	PROJECT	Г: Merid	en Hospital		PROJECT	1 NO:	of 2012023	1 2.C40
			1000		LOCATIO	DN:			WEATHE	R: Cloud	14 40"	
CONT DPER S&O R DRILL SAMPI HAMN	RACTOR: EPRESE ING ME LING MI IER WT	R: ENTAT ETHOE ETHOI	<u>FnO</u> D. Leve IVE: D: D:	D. Cook Direct Pu 25, Macro HAMMER	sh Core FALL (IN)		BORING LOCAT DATE STARTED DATE & TIME C DEPTH TO SATU SAMPLE PREFIX	CION: COMPLE URATEI	DED: DZONE: 0160314 -	51 ler (1 3/14 J NE	00m (sun 116	o 51ab)
DRI	LLING DET	AILS			MA	TERIAL DES	CRIPTION			Α	NALYTICAL S	AMPLES
FART EPTH (FT)	BLOWS 6"	REC/ PEN (IN)	DEPTH RANGE (FT)		DES	CRIPTION		PID	LITHO- LOGIC CODE	SAMPLE NO. & TIME	DEPTH INTERVAL (FT)	JARS & PRESERV
0	NA	MA	0-	Concret	re							
1		24/24	1-3	F-C SAN brown on trace p	D', Slight , loose, roduct ste	petrol	odar, reddich on stere	0.5	SPE	-11 1406	1-3	G 802
5		24/	3-5	Fic SAND dry, 10030	; tr Coal no odar	A Co	11 ashaty;	NO	FI	12 1420	3-5	G 807
E	ORING		BORING	METHOD	BORING	REMAI	RKS				G	
DI 2	AMETER		hand ge	opor	DEPTH 5	Field Ins	TIGER	If refusal is	encountered,	describe all o	efforts used t	o confirm.
tOPORT ace (tr) tle (ltl) CAMPLI AND, 1 Dose. N	TIONS USED 0 to 10% 10 to 20% E DESCRIPT F-M; sm F 4 lo odor. d by Staff:	i: ION: angular gr	Some (sr And avel; Itl silt;	n) 20 to 35% 35 to 50% tr clay; (10R 5/4),	wet at 7 ft.	Field De BACKF Asphalt Bentonit Cuttings Other	ILL / Concrete Grout/Chips /Native Material	ed Device	To To To To		See Monite Completio	oring Well n Report

-	4		1280	0	J	BOR	ING LOG	1	SITE ID:_	MAL	1 5B	-14
	FI	USS	&O'N	EILL	PROJECT	T: Merid	en Hospital		PROJECT	1 NO:	of 2012023	1 2.C40
					LOCATIO	ON:			WEATHE	R: c).	ndy 40.	\$
CONT OPER F&O F DRILI SAMPI HAMN	RACTO ATOR: REPRESI ING MI LING M MER WT	R: ENTAT ETHOI ETHO	FnO D. Leve TIVE: D: D:	esque D. Cook Direct Pu 5, Macro HAMMER	ash o Core FALL (IN)		BORING LOCATI DATE STARTED: DATE & TIME CC DEPTH TO SATU SAMPLE PREFIX:	ON: DMPLE' RATEL	Corty TED: ZONE: 160315	erd 3/15/1	6	
DRI	LLING DET.	AILS	1		МА	TERIAL DES	SCRIPTION	_			NALYTICALS	AMPLES
START DEPTH	BLOWS	REC/ PEN	DEPTH RANGE		DES	CRIPTION	States of the states of the	PID	LITHO- LOGIC	SAMPLE NO. &	DEPTH INTERVAL	JARS &
(F1)	0	(IN)	(FT)						CODE	TIME	(FT)	FRESERV.
0	MA	30/40	013	asphal	+			MA		Ð		
	1	1	013-215	Silt, the odd redd	rfsend n lish brown	no.st	Compace, no	ND	ML			
5		3%	5- 8	Silt, 5m from 7.	F-C Send B' reddish	tr c.	el ash t coel	NO	FI	-23	7-8	ULA 6 802
	-	9/24	10- 12	refusel,	offset	4'. G	nonete in tip	-				
_	_	0/18	10- 11.5	Musal	a Conse	ese						
	AMETER		BORING	METHOD	BORING DEPTH	REMAI Field Ins PID/O	<u>RKS</u> strument = If √M	f refusal is	encountered,	describe all	efforts used to	o confirm.
			411 (54	1	14	Field De	TGER J	2 d Device				
PROPOR Trace (tr) Little (tt) EXAMPLI SAND, I Loose, N Reviewe	PROPORTIONS USED: Trace (tr) 0 to 10% Some (sm) 20 to 35% Little (tl) 10 to 20% And 35 to 50% EXAMPLE DESCRIPTION: SAND, F-M; sm F angular gravel; ltl silt; tr clay; (10R 5/4), wet at 7 ft. Loose. No odor. Reviewed by Staff:				BACKFILL Asphalt / Concrete 6 To 3.3 See Monitoring Well Bentonite Grout/Chips To To Completion Report Cuttings/Native Material 0.3 To Completion Report						oring Well n Report	

-	24				1	BOR	NG LOG		SITE ID:		58-17	1.1.1.5
	F	USS	&O'N	EILL	PROJEC	T: Merid	en Hospital		SHEET:	1 NO:	of 2012023	1 2 C40
V					LOCATI	ON:			WEATHE	R: clou	dy 40'r	5.040
CONT OPER F&O I	RACTO ATOR:_ REPRES	R: ENTAT	FnO D. Leve TVE:	D. Cook	neh		BORING LOCATI DATE STARTED: DATE & TIME CO	ON:	Corr	tyard 3/15/	19	
SAMP. HAMI	LING M MER WI	ETHO	D:	5, Macro HAMMER	o Core FALL (IN)		SAMPLE PREFIX:	_1170	0160315	5		
DRI	LUNC DET	ATLS	1		MA	TEDIAL DES	CRIPTION	_			NALVEICAL	AMBIEC
START	BLOWS	REC/	DEPTH		DE	SCRIPTION	CRIPTION	PID	LITHO-	SAMPLE NO &	DEPTH INTERVAL	JARS &
(FT)	6"	(IN)	(FT)		<i>DE</i> .	SCRIPTION		FID	CODE	TIME	(FT)	PRESERV.
0	MA	42/60	013	asphal	t			N	4			
			0.3* 3.	s.ca, to odor, red	fine send	- me	y (smrait, m	NO	ML			
L	Ji 3- Coal ash t C 3.5 odar 42/ 5- 5.04, tr Fsend,					54	icr, dry no	NO	PT	24	3-3.5	104 G,02
5	42/ 5- 5,64, tr F Send, 160 8.5 reddish brown 142/ 10- 7-00 1 111 51					omyert	t day no ob	ND	ML	1215	3:-7.5 due	6 202
16		42/48	10- 14	F Sand , " reddish 1 weg there	lth s, lt, brown. R d sedroc	dry lo fusel k in	ose no oder at 141 hP	M	sm	1230	7-8	6 807
I DI	BORING AMETER 2,5	<u>ا</u>	BORING	METHOD PUSh	BORING DEPTH	REMAN Field Ins PID/OV	RKS trument = If M M TGFR ± con: Yes / No / Dedicated	refusal is	encountered, o	describe all	efforts used to	o confirm.
PROPORTIONS USED: Trace (tr) 0 to 10% Some (sm) 20 to 35% Little (ltl) 10 to 20% And 35 to 50% EXAMPLE DESCRIPTION: SAND, F-M; sm F angular gravel; ltl silt; tr clay; (10R 5/4), wet at 7 ft. Loose. No odor. Reviewed by Staff:				BACKFILL Concrete Concret Concrete Concrete Concre								

	-]	BOR	ING LOG	1	SITE ID:		BEI	9
	F	USS	&O'N	EILL	PROJEC	T: Merid	en Hospital		SHEET: PROIECT	1 NO:	of 2012023	1 2.C40
~		_			LOCATI	ON:			WEATHE	R:		
CONT OPER F&O I DRILI SAMP HAMP	TACTO ATOR:_ REPRES LING M LING M MER WI	DR: ENTA' ETHO ETHC	FnO D. Leve TIVE: D: DD:	esque D. Cook Direct P 5, Macr _HAMMER	Push ro Core & FALL (IN)		BORING LOCA DATE STARTEL DATE & TIME O DEPTH TO SAT SAMPLE PREFIN	TION:	Cortya TED: ZONE: 6/603/5	rd		
DRI	LLING DET	AILS			МА	TERIAL DES	CRIPTION				NALYTICAL S	AMPLES
START DEPTH (FT)	BLOWS 6"	REC/ PEN (IN)	DEPTH RANGE (FT)		DES	SCRIPTION		PID	LITHO- LOGIC CODE	SAMPLE NO. & TIME	DEPTH INTERVAL (FT)	JARS & PRESERV.
0	MA	24/6.	0-	asphal +				MA	As			
1		1	0,3-2	Silt, to	fsand, n edding br	own	Compacy no	No	M-			anna an an Anna an Ann
5		36/60	5-8	F-m sa odor, rec	ad, lthes	sat, dr	y 1.0054, no	MO	Sm	-27-1245	7-8	104 G 857
10		48/	10-14	same a	s above			NO	Sm			ms/
15		48/60	15- 19	game q	s grane,	net q	17 15,5	NO	sn	-20 1300	16	Gove /n
E DI 2.	ORING AMETER		BORING	METHOD	BORING DEPTH	REMAR Field Ins PID/OV	E <u>KS</u> trument = 'M	If refusal is	encountered, o	describe all o	efforts used to	confirm.
						Field De	con: Yes / No / Dedica	ted Device				
PROPORTIONS USED: Trace (rr) 0 to 10% Some (sm) 20 to 35% Little (lth) 10 to 20% And 35 to 50% EXAMPLE DESCRIPTION: SAND, F-M; sm F angular gravel; ltl silt; tr clay; (10R 5/4), wet at 7 ft. Loose. No odor. Reviewed by Staff: Staff: Staff: Staff:					BACKFILL To See Monitoring Weil Bentonite Grout/Chips To Completion Report Cuttings/Native Material To To							

GENERAL INFORMATION

Project Name:	Meriden	Hospitas	Site ID (Boring/Well ID): MW-1)
Project Location:	Meriden,	СТ	Project No.:20120232.C40
F&O Engineer/Geologist:	D. Cook		Ground Surface Elevation:
Date of Completion:	3	15/16	Permit #:
Boring Location:	lourtya	rd	E1 Top of Steel Casing:
Drilling Contractor/Name: _	FnO		E1 Top of PVC Casing:
Drilling Method:	Direct Pu	sh	Measuring Point: TPS / PVC
WELL CONSTRUCTION	ſ		Well Cover (see codes):
WELL CASING/RISER		SUMP (below screen)	PROTECTIVE CASING
Diameter: 1,5	_in.	Diameter:in.	Diameter:in. Type: Road Box / Stand Pipe
Type:		Туре:	Stick-up:ft Depth to Bottom: 0.75_ft
Stick-up:ft.		Length: <u>2.5</u> in.	Seal Material:
SCREEN INTERVALS			
Screen Interval:	23	ft Diameter:5	in. Slot Size:
Description: RVC Pother: _			
Type: Perforated / Slotted	d/Wire-W	/rap / Other:	
BOREHOLE			
Diameter: <u>3.5</u> in.		Total Boring Depth: 27_ft.	Refusal: y n Depth:ft.
ANNULAR FILL			
SURFACE SEAL		(Approximate volumes if avail	ilable)
Interval: _/- >ft.	Tremied:	Y / Y Volume: <u>//</u> bags	Description: Concrete / Other:
BACKFILL		1/	
Interval: <u>/o -)</u> ft.	Tremied:	Y N Volume:bags	Description: Bentonite Grout / Cuttings Sand
LOWER SEAL //-/ 5		1/ .	
Interval: 226_ft.	Tremied:	Y N Volume: <u>19</u> bags	Description: Bentonite Pellers / Other:
FILTER <u>[</u>]		11	
Interval: 23~2 ft.	Tremied:	Y / Volume:bags	Description: Sand Filter (type:) / Other:
Lower Backfill			
Interval:ft.	Tremied:	Y / N Volume:bags	Description: Bentonite Grout / Cuttingsl / Sand / Other:

MONITORING WELL DEVELOPMENT*

Development Method: Surge Block / Submersible Pump / Peristaltic Pump / Watera / Bailer / Other_

Date:__

	1		1	E	BORI	NG LOG	S	ITE ID:	N	IW-12	
	FUSS	8&O'N	EILL	PROJECT	': Merid	en Hospital	S. P	HEET: ROJECT	1 NO:	of 1 20120232	.C40
-			_	LOCATIO	DN:		W	EATHEI	R:		
CONT OPER F&O I DRILI SAMP HAMN	RACTOR: ATOR: REPRESENTA ING METHO LING METHO MER WT:	FnO D. Leve ATIVE: DD: OD: OD:	Esque D. Cook Direct Pu 5, Macro HAMMER	ish o Core FALL (IN)		BORING LOCATI DATE STARTED: DATE & TIME CO DEPTH TO SATU SAMPLE PREFIX:	ION: DMPLET IRATED	ED: ZONE: [& Ø315	-3/15 ~	15	
DRI	LUNG DETAILS			MAT	EDIAL DES	CRIPTION	_			NALVEICAL CA	MBIES
TART	BLOWS REC	/ DEPTH		DESC	PIPTION	CRIPTION	RID	LITHO-	SAMPLE	DEPTH	JARS &
(FT)	6" (IN) (FT)		DESC	KIP HON		FID	CODE	TIME	(FT)	PRESERV.
0	NTA 24/6	0-	Asph.	417			m				
]	1 1	0,3- 2	Silt, 5- no odar	reddish	ad d	my loose	200	Ame			
5	36/	0 5-	Silt, 51 no odo,	n f san	d of brow	my Compat	ND	ml			
5	42/	10-	Same a	s above	wet	- at 131	NO	me			
I	BORING AMETER	BORING	METHOD	BORING DEPTH	REMAH Field Ins	RKS trument = I	f refusal is e	r.	lescribe all o	efforts used to	confirm.
1	1,5	dires	Bron	15	PID/OV	/M					
COPORTIONS USED: ace (tr) 0 to 10% Some (sm) 20 to 35% ace (tr) 0 to 20% And 35 to 50% KAMPLE DESCRIPTION: AND, F-M; sm F angular gravel; ltl silt; tr clay; (10R 5/4), wet at 7 ft. pose. No odor. eviewed by Staff:				, wet at 7 ft.	Field Decon: Yes / No / Dedicated Device BACKFILL Asphalt / Concrete To Bentonite Grout/Chips To Cuttings/Native Material To Other To						

GENERAL INFORMATION

Project Name: Meriden Hospitas	Site ID (Boring/Well ID): MW-12
Project Location: Meriden, CT'	Project No.:20120232.C40
F&O Engineer/Geologist:D. Cook	Ground Surface Elevation:
Date of Completion:	Permit #:
Boring Location: Tank + Bile on	E1 Top of Steel Casing:
Drilling Contractor/Name: FnO	E1 Top of PVC Casing:
Drilling Method: Direct Push	Measuring Point: TPS / PVC
WELL CONSTRUCTION	Well Cover (see codes):
WELL CASING/RISER SUMP (below screen)	PROTECTIVE CASING
Diameter: <u>1.5</u> in. Diameter: <u>1.5</u> in.	Diameter:
Туре: Туре:	Stick-up: 0 ft Depth to Bottom 7 ft
Stick-up:ft. Length:in.	Seal Material: Concept
SCREEN INTERVALS	
Screen Interval:ft Diameter:	1.5 in. Slot Size: 0, 8(
Description PVC Other:	
Type: Perforated Slotted Wire-Wrap / Other:	
Borehole	
Diameter: <u>3.5</u> in. Total Boring Depth: <u>2.3</u> ft.	Refusal: y n Depth:ft.
ANNULAR FILL	
SURFACE SEAL (Approximate volumes i	f available)
Interval: 1-0 ft. Tremied: Y / 🕅 Volume: 12 bag	s Description: Concrete/ Other:
BACKFILL	
Interval: 10-1 ft. Tremied: Y / N Volume: 12 bag	s Description: Bentonite Grout (Contings / Sand)
Lower Seal	
Interval: 11-10 ft. Tremied: Y / N Volume: 14 hag	s Description: Bentonite Pellers / Other
FILTER	Sescription Schonne Fends / Other.
Interval: 23-11 ft. Tremied: Y / W Volume: 1/2 bag	s Description: Sand Filter (type: 7)/ Other
Lower Backfill	/ Otner:// Otner:/
Interval:ft. Tremied: Y / N Volume:bags	Description: Bentonite Grout / Cuttingsl / Sand / Other:

MONITORING WELL DEVELOPMENT*

Development Method: Surge Block / Submersible Pump / Peristaltic Pump / Watera / Bailer / Other_

Date:_

0	4				I	BORI	NG LOG	S	ITE ID:_	50-1	6	
	F	USS 8	хO'N	EILL	PROJECT	Г: Meride	n Hospital	P	ROJECT	NO:	20120232	.C40
~	-	1.10	3 2 2		LOCATIO	DN: Mer	iden, CT	W	EATHE	R: 1950	he	_
CONT OPER F&O I DRILI SAMP HAMT	TRACTO ATOR: REPRESI LING MI LING M MER WT	R: ENTAT ETHOD ETHOI	FnO D. Leve IVE: <u>D. (</u>):):	esque/D. Cool Cook Direct Pu 5'Macro Co HAMMER	k 1sh Dre FALL (IN)		BORING LOCA DATE STARTE DATE & TIME DEPTH TO SA SAMPLE PREF	ATION: LA COMPLET TURATED IX: 1176160	ED:	Bom	1>+	58
DR	ILLING DET	AILS			МАТ	FERIAL DESC	RIPTION			A	NALYTICAL SA	MPLES
START DEPTH (FT)	BLOWS 6"	REC/ PEN (IN)	DEPTH RANGE (FT)		DESC	CRIPTION		PID	LITHO- LOGIC CODE	SAMPLE NO. & TIME	DEPTH INTERVAL (FT)	JARS & PRESERV.
0	NA	%	0-1	Conset	e	0.21						
1	-	2-/21	1-3	SILT & F	Am no	sder	eddon	M		03	1-3	
3		20/21	3- 5	Jame .	as show	-		MO	~	-07 1050	3-5	
				20 4.					2			
											٤	
	boring iameter 75		BORING	METHOD	BORING DEPTH	REMARI Field Instr PID/OVM	<u>CS</u> ument = A	If refusal is e	ncountered, o	describe all e	fforts used to	confirm.
PROPOR Trace (tr) Little (lt) EXAMPL SAND, Loose. I Reviewe	TIONS USEI 0 to 10% 10 to 20% E DESCRIPI F-M; sm F No odor. ed by Staff:	D: TION: angular gr:	Some (sr And avel; ltl silt; 1	n) 20 to 35% 35 to 50% tr clay; (10R 5/4),	, wet at 7 ft.	Field Deco BACKFII Asphalt Bentonite Cuttings/I Other	on: Yes / No / Dedi L Concrete Grout/Chips Native Material		To To To		See Monitor Completion	ing Well Report

	24				1.2.2	BOR	NG LOG	SI	TE ID:	B-	19	
	F	USS	&O'N	EILL	PROJEC	T: Merid	en Hospital	SI PI	ROJECT	1 NO:	of 1 20120232	C40
					LOCATI	ON: Me	riden, CT	W	EATHE	R: 1750	n	
CONT OPER F&O I DRILI SAMP HAMI	TACTO ATOR: REPRESI LING MI LING M MER WT	R: ENTAT ETHOI ETHOI	<u>FnO</u> D. Leve TIVE: <u>D. (</u>): D:	esque/D. Coo Cook Direct Pr 5'Macro C HAMMER	k 18h ore FALL (IN)		BORING LOCA DATE STARTE DATE & TIME DEPTH TO SAT SAMPLE PREFI	TION: / G D: COMPLETI TURATED 2 X: 1176160	ED: ZONE:	5/2/11	s 2	JSM
DR	LLING DET	AILS			MA	ATERIAL DES	CRIPTION			A	NALYTICAL SA	MPLES
START DEPTH (FT)	BLOWS 6"	REC/ PEN (IN)	DEPTH RANGE (FT)		DE	SCRIPTION		PID	LITHO- LOGIC CODE	SAMPLE NO. & TIME	DEPTH INTERVAL (FT)	JARS & PRESERV.
0	MA	ma	0-1	Cons	ese							
1		21/24	3	Bonn	frest olmy los	in no	2 dd see	M		05	1-3	
7	1	20/24	3- 5	5	-2/ 9	iban		Nb		06 (15×	7-5	
 	BORING		BORING	METHOD	BORING DEPTH	REMAI Field Ins PID/OV	RKS trument = 'M	If refusal is en	countered, c	describe all 6	efforts used to	confirm.
						-	N /N /N "	15				
PROPOR Trace (tr) Little (td) EXAMPL SAND, Loose. N Reviewe	TIONS USEI 0 to 10% 10 to 20% E DESCRIPT F-M; sm F No odor. d by Staff:): TON: angular gr	Some (sr And ravel; Itl silt;	n) 20 to 35% 35 to 50% tr clay; (10R 5/4)	, wet at 7 ft.	BACKF Asphalt Bentonit Cuttings Other	con: Yes / No / Dedic ILL / Concrete e Grout/Chips /Native Material	Ated Device	To To To To		See Monitor Completion	ring Well Report

-	2		and and		1	BORI	NG LOG	5	SITE ID:	58-2	0	
(1	F	USS	&O'N	EILL	PROJEC	T: Merid	en Hospital		SHEET: PROJECT	1 NO:	of 1 20120232	.C40
N.	/				LOCATI	ON: Me	riden, CT	1	WEATHE	R:	HO XHO HO H	
CON'I OPER F&O F DRILI SAMP HAMN	RACTO ATOR: REPRESI LING MI LING M MER WT	R: ENTA' ETHO ETHC :	FnO D. Leve TIVE: D. e D: DD:	esque/D. Coo Cook Direct Pu 5'Macro Co _HAMMER	k 1sh pre FALL (IN)		BORING LOCAT DATE STARTED DATE & TIME CO DEPTH TO SATU SAMPLE PREFIX	ION: OMPLE JRATED : 117616	Bs. le red: zone:	121 5121	om 16	
DRI START	LLING DET	AILS REC/	DEPTH		MA	TERIAL DES	CRIPTION		LITHO-	A	NALYTICAL SA	MPLES
DEPTH (FT)	6"	PEN (IN)	RANGE (FT)	1	DES	SCRIPTION	الشريقية	PID	LOGIC CODE	NO. & TIME	INTERVAL (FT)	PRESERV.
0		NA 29/24 0/0	5	Concr Sict 2 t reddin Petusa	cte Fe san hound L C 7	ro R S'	y no adar	Ng		-10		
E DI (, ?	BORING AMETER		boring dregt	METHOD	BORING DEPTH	REMAR Field Ins PID/OV Field De	trument = I M con: Yes / No / Dedicate	f refusal is	encountered, o	describe all e	fforts used to	confirm.
PROPORTIONS USED: Trace (tr) 0 to 10% Some (sm) 20 to 35% Little (ltl) 10 to 20% And 35 to 50% EXAMPLE DESCRIPTION: SAND, F-M; sm F angular gravel; ltl silt; tr clay; (10R 5/4), wet at 7 ft. Loose. No odor. Reviewed by Staff:				Field Decon: Yes / No / Dedicated Device BACKFILL Asphalt / concrete Bentonite Grout/Chips Cuttings/Native Material Other To See Monitoring Well See Monitoring Well Cuttings/Native Material To To								

	1					BORI	NG LOG	SIT	re id:	SB	~1	1
1	F	USS	&O'N	EILL	PROJEC	T: Merid	en Hospital	SH	EET:	1 NO:	of 1 20120232	.C40
					LOCATI	ON: Me	riden, CT	WI	EATHEI	R:		
CONT OPER F&O F DRILI SAMPI HAMI	RACTO ATOR: REPRESI JNG MI LING M MER WT	R: ENTAT ETHOI ETHOI :	<u>FnO</u> <u>D. Leve</u> TVE: <u>D. (</u>): D:	esque/D. Cool Cook Direct Pu 5'Macro Co HAMMER	k 1sh pre FALL (IN)		BORING LOCAT DATE STARTED DATE & TIME CO DEPTH TO SATU SAMPLE PREFIX	ION: BO OMPLETE JRATED Z	D: CONE:	600 5/2/	14	
DRI	LLING DET	AILS			MA	ATERIAL DES	CRIPTION			A	NALYTICAL SA	MPLES
START DEPTH (FT)	BLOWS 6"	REC/ PEN (IN)	DEPTH RANGE (FT)		DE	SCRIPTION		PID	LITHO- LOGIC CODE	SAMPLE NO. & TIME	DEPTH INTERVAL (FT)	JARS & PRESERV.
0	MA	MA	0-	Concre	se			MA				
		18/	1-3	Silt &	fielsa	rd, dr	ny redda	M		11 1330	1-3	
3		19/2	2-	Same	5 5 9	bore	2	NO		-12 1340	3-5	
E DI (,	ORING AMETER		BORING	METHOD	BORING DEPTH	REMAR Field Inst PID/OV	KS trument =] M	If refusal is end	countered, c	describe all e	fforts used to	confirm.
PROPORT Trace (tr) Little (ltl) EXAMPLI SAND, I Loose, N	TIONS USED 0 to 10% 10 to 20% E DESCRIPT 7-M; sm F a to odor.	i: ION: angular gr	Some (sr And avel; Itl silt; t	n) 20 to 35% 35 to 50% er clay; (10R 5/4),	wet at 7 ft.	Field Decon: Yes / No / Dedicated Device BACKFILL Asphalt / Concrete Bentonite Grout/Chips Cuttings/Native Material See Monitoring Well Completion Report To To						ing Well Report

	~				· ·]	BOR	NG LOG	SIT	ΓE ID:	B-2	R	
(1	F	USS	&O'N	EILL	PROJEC	T: Merid	en Hospital	SH	IEET:	1	of 1 20120232	C40
					LOCATI	ON: Me	riden, CT	WI	EATHEI	R:	20120252.	
CON OPEF F&O DRIL SAMF HAM	IRACTO ATOR: REPRESI LING MI PLING M MER WT	R: ENTAT ETHOI ETHOI :	FnO D. Leve IVE: D. (): D:	esque/D. Cook Cook Direct Pu 5'Macro Co HAMMER 1	sh re FALL (IN)	NTERIAL DES	BORING LOCATION DATE STARTED: DATE & TIME CO DEPTH TO SATUR SAMPLE PREFIX:	ON: OMPLETE RATED Z 11761604	Bo, W ED: CONE:	room sill	C.	MPI ES
START DEPTH	BLOWS	REC/ PEN	DEPTH RANGE		DE	SCRIPTION		PID	LITHO- LOGIC	SAMPLE NO. &	DEPTH	JARS &
(FI) 8 1 3	AVA J	(IN) NA 2-/24 15/4	(FD) 0- 1- 3- 5- 5-	Canon Selt 84 brom 10 Sam	ete ficsa 10 odr 9, 9	u dr 1500	m reddia	ND NO	CODE	1930 1930 1940	(FT) (FT)	PRESERV.
D 7	BORING IAMETER 75		BORING	METHOD	BORING DEPTH 5	REMAR Field Ins PID/OV	EKS trument = If 'M con: Yes / No / Dedicated	refusal is eno	countered, d	lescribe all e	fforts used to	confirm.
PROPOR Trace (tr) Little (lt) EXAMPL SAND, Loose. I Reviewe	TIONS USED 0 to 10% 10 to 20% E DESCRIPTI F-M; sm F a No odor. ed by Staff:	: ION: ungular gr	Some (sn And avel; ltl silt; 1	n) 20 to 35% 35 to 50% er clay; (10R 5/4),	wet at 7 ft.	BACKF Asphalt / Bentonit Cuttings/ Other	UL Concreto e Grout/Chips /Native Material	-	To To To		See Monitori Completion	ing Well Report

	-					BOR	ING LOG	SI	TE ID:	SB-	23	
	FI	JSS	&O'N	EILL	PROJEC	T: Merid	len Hospital	P	ROJECT	1 NO:	of 1 20120232	
	-				LOCATI	ON: Me	eriden, CT	W	EATHE	R:		
CONT OPER F&O I DRILI SAMP HAM	RACTOI ATOR: REPRESE LING ME LING MI MER WT:	R: ENTA ETHO ETHO	FnO D. Leve TIVE: D. (D:)D:	esque/D. Coo Cook Direct Pr 5'Macro C HAMMER	k ush ore FALL (IN)		BORING LOCATIC DATE STARTED: _ DATE & TIME CO DEPTH TO SATUR SAMPLE PREFIX:	DN: MPLETI ATED : 1176160	ED: ZONE:	de 20 513/11	inder he	use
DRI	LLING DETA	AILS			МА	TERIAL DES	SCRIPTION			A	NALYTICAL SA	MPLES
START DEPTH (FT)	BLOWS 6"	REC/ PEN (IN)	DEPTH RANGE (FT)		DES	SCRIPTION		PID	LITHO- LOGIC CODE	SAMPLE NO. & TIME	DEPTH INTERVAL (FT)	JARS & PRESERV.
6	M	10/3	0-	Asph	slY		1	AM	As	12		
		1	3	dry loos	e no od	lar	reddish brown	M	FX	0900	3	arr
3		20/	3-5	Same	23 4	e sore		NO	FI			
7		Ţ	3.5- 4,75	F-m SI reddish	AND; li	no o	t must dor	NO	SM	-18 0910	3,5 4.75	Geor
5.	4	30/	5-	Same	as a	bove		NO	3M			
		~										
I	BORING				BORING	REMAR	2 K S					
ומ	AMETER		BORING freeps	METHOD	DEPTH	Field Ins PID/OV	strument = If r /M	refusal is er	ncountered, c	lescribe all o	efforts used to	confirm.
BEAL	motor					Field De	con: Yes / No / Dedicated	Device				9
PROPOR' Trace (tr) Little (tl) EXAMPLI SAND, Loose. N Reviewe	e Descripti F-M; sm F a Jo by Staff:	: ION: ingular (Some (sn And gravel; ltl silt; t	n) 20 to 35% 35 to 50% ar clay; (10R 5/4)	, wet at 7 ft.	BACKF Asphalt Bentonit Cuttings Other	ILL / Concrete te Grout/Chips /Native Material		To To To To	3	See Monitor Completion	ring Well Report

-	-]	BORI	NG LOG	S	ITE ID:_	58	5-24	
	FU	SS8	cO'N	EILL	PROJECT	T: Merid	en Hospital	S	ROJECT	NO:	2012023	1 2.C40
-				1.	LOCATIO	ON: Me	riden, CT	V	EATHE	R:	n bos	
CONT OPER F&O I DRILL SAMP HAMI	IRACTOR: REPRESEN LING MET LING MET MER WT:	VTATI HOD THOD	FnO D. Leve VE: <u>D. (</u>	esque/D. Coo Cook Direct P 5'Macro C HAMMER	k ush ore FALL (IN)		BORING LOCA DATE STARTEI DATE & TIME (DEPTH TO SAT SAMPLE PREFI	TION: D; COMPLET TURATED X: 1176160	ED: ZONE: 533	s(z)//s	2	
DR	ILLING DETAIL	s			MA	TERIAL DES	CRIPTION			А	NALYTICAL S	AMPLES
START DEPTH (FI)	BLOWS 6"	REC/ PEN (IN)	DEPTH RANGE (FT)		DES	CRIPTION	16	PID	LITHO- LOGIC CODE	SAMPLE NO. & TIME	DEPTH INTERVAL (FT)	JARS & PRESERV.
0	MA	2/36	0- 0,3	Aspha	1× 4MO. 121	Cost	rediss	MA	As	_19	0.2-	
2	Υ.		1	brow 1	60 x, n.	odo	5	M	FI	0930	1	hon
3	1	2/24	3-4	F-M SA. 1008, 13	mo, l+k odar	. silt	, moist	MO	sm	-20 0940	3- 4	6887
5		560	7-8 1	Jame .				₩¢				
	BORING IAMETER	6	BORING	METHOD	BORING DEPTH 10	REMAR Field Ins PID/OV	rument = M	If refusal is e	ncountered, o	describe all e	efforts used to	o confirm.
Field Decor Field Decor Field Decor Trace (tr) 0 to 10% Some (sm) 20 to 35% Little (ift) 10 to 20% And 35 to 50% BACKFILL EXAMPLE DESCRIPTION: SAND, F-M; sm F angular gravel; ltl silt; tr clay; (10R 5/4), wet at 7 ft. Loose. No odor. Other Reviewed by Staff:					con: Yes / No / Dedict	ated Device حرج ال	To To To To	3	See Monito Completion	oring Well 1 Report		

111

					T	BORI	NGLOG	S	TE ID.	58-2	5	PEBRAG
4	EI	2211	& O'N	FILI	PROIECT	C: Merid	en Hospital	S	HEET:	1	of	1
		033	aun	LILL	LOCATIO	DNI Mo	ridon CT	P	ROJECT	NO: R·	20120232	2.C40
			-		LUCAIL	JIN: Me	Inden, CI	n	BATTIE.			
CONT DPER 5&O I DRILI AMP IAMP	RACTO ATOR:_ REPRES LING M LING M MER WI	R: ENTAT ETHOI ETHO	<u>FnO</u> <u>D. Leve</u> TIVE: <u>D. (</u> D: D:	esque/D. Coo Cook Direct Pr 5'Macro C HAMMER	k ush ore FALL (IN)		BORING LOCATI DATE STARTED: DATE & TIME CO DEPTH TO SATU SAMPLE PREFIX:	ON: DMPLET RATED 1176160	ED: ZONE: \$03	5/3/ NG	4	
	_		-			_		_		1		
DRI	LLING DET	AILS REC/	DEPTH		MAT	FERIAL DES	CRIPTION	-	LITHO-	SAMPLE	DEPTH	MPLES
EPTH (FT)	BLOWS 6"	PEN (IN)	RANGE (FT)		DES	CRIPTION		PID	LOGIC CODE	NO. & TIME	INTERVAL (FT)	PRESERV.
6	MA	12/36	0-	ASPI	halt			MA	As			
		1	0.3- 1	F-m 51 + 5.1+. H= odo	redd.sh	h Conk brom	- thrick, - dry loos	ND	FJ	-21	0.3-	Group
		12/24	3-4	Same a	5 93.00	n	oda	NO	FI	-22	3- 4	Good
		48/	5-9	F-m SI dry m	and redd.	silt, ish br	tr sloss	NO	FI	-23	8- 9	6 Box
	BORING		BORING	METHOD	BORING DEPTH	REMAR Field Ins	RKS trument = If	Frefusal is e	ncountered,	describe all	efforts used to	o confirm.
2.	5		Gresp.	or	18	PID/OV	M ⁻ M	i i ci usai is c	neountereu,	desende an	enorts used in	Commu
OPOP	TIONS LIEP					Field De	con: Yes / No / Dedicated	d Device				
Trace (tr) 0 to 10% Some (sm) 20 to 35% Little (tl) 10 to 20% And 35 to 50% EXAMPLE DESCRIPTION: SAND, F-M; sm F angular gravel; ltl silt; tr clay; (10R 5/4), wet at 7 ft. Loose. No odor.					BACKFILL S.3 To See Monitoring Well Asphalt / Concrete S.3 To Completion Report Bentonite Grout/Chips To Completion Report Completion Report Cuttings/Native Material To To Completion Report Other To To To							

-	24		1. 11.	No. Service	1	BORI	NG LOG	SI	TE ID:	148.0	SB	-24
1	F	USS	&O'N	EILL	PROJEC	T: Meride	en Hospital	SI P	HEET: ROJECT	1 NO:	of 1 20120232	
	-				LOCATI	ON: Mer	iden, CT	w	EATHE	R:		
CONT DPER 5&O F DRILL SAMP LAMN	RACTO ATOR:_ EPRESI ING MI LING M MER WT	R: ENTAT ETHOI ETHOI	<u>FnO</u> <u>D. Levo</u> IVE: <u>D. (</u>): D:	esque/D. Coo Cook Direct Pr 5'Macro C HAMMER	k ush ore FALL (IN)		BORING LOCAT DATE STARTED DATE & TIME CO DEPTH TO SATU SAMPLE PREFIX	ION: OMPLET JRATED : 1176160	ED: ZONE: 14			
DRI	BLOWS	AILS REC/	DEPTH	1	MA	ATERIAL DESC	RIPTION	-	LITHO-	A SAMPLE	DEPTH	MPLES
EPTH (FT)	6"	PEN (IN)	RANGE (FT)		DE	SCRIPTION		PID	LOGIC CODE	NO. & TIME	INTERVAL (FT)	PRESERV
0	MA	24/35	0-3	Aspha	11-			ma	AS			
		Í	0.3- 2	F-n Sai loose no	nd, l+l odar r	Frank eddish	brom	M	5W	-24	1-2	
3		13/24	3- 4.5	Same a	15 9 300	e		NO	SW	-25	3- 4	
2	J.	42/ 5- Same as as						Mo	56			
E DI	ORING		BORING	METHOD	BORING DEPTH	REMAR Field Instr PID/OVI	<u>KS</u> ument = I	f refusal is er	ncountered, o	describe all o	efforts used to	confirm.
27 Friderica 10						MI	15					
PROPORTIONS USED: Trace (tr) 0 to 10% Some (sm) 20 to 35% Little (tl) 10 to 20% And 35 to 50% EXAMPLE DESCRIPTION: SAND, F-M; sm F angular gravel; ltl silt; tr clay; (10R 5/4), wet at 7 ft. Loose. No odor. Reviewed by Staff:				Field Decon: Yes / No / Dedicated Device BACKFILL Ø.7 To See Monitoring Well Bentonite Grout/Chips To To Completion Report Cuttings/Native Material IO To Completion Report Other To To To Completion Report								

	-		216	11122-22	1	BORI	NG LOG	SI	TE ID:	SB-	27	1027
	F	USS	&O'N	EILL	PROJECT	Г: Merid	en Hospital	SI	HEET:	1 NO:	of 1 20120232	.C40
W.	-				LOCATIO	ON: Me	riden, CT	w	EATHE	R: 63	N Got	3
CONT OPER F&O I DRILI SAMP HAMI	TRACTO ATOR: REPRESI LING MI LING M MER WT	R: ENTA ETHO ETHO :	FnO D. Leve TIVE: D. (D: DD:	esque/D. Cool Cook Direct Pu 5'Macro Co HAMMER	k 1sh pre FALL (IN)		BORING LOCATIO DATE STARTED: DATE & TIME CO DEPTH TO SATUP SAMPLE PREFIX:	ON: PMPLETI RATED : 1176160	ED: ZONE: £03	strii+ Ne		
DR	ILLING DET.	AILS	T		MAT	TERIAL DES	CRIPTION			A	NALYTICAL SA	MPLES
TART EPTH (FI)	BLOWS 6"	REC/ PEN (IN)	DEPTH RANGE (FT)		DES	CRIPTION		PID	LITHO- LOGIC CODE	SAMPLE NO. & TIME	DEPTH INTERVAL (FT)	JARS & PRESERV.
0	M	24/36	0,5	Silt & or lusseno	ode rea	eth f	t send moust	m	TS			
J	1	1	0,5-2	F-C SA n. odor	noo, tr reddish	Form	at dry loose	M	รบ	-26 1040	1-2	
3		22/24	3-5	Same	as abo	re		N	Sw	27	4-5	
5	7	48/40	5-9	Same	as amn	æ	a D	Mo	50		1.00	
		э.		x								
I Di	BORING AMETER 2.5		BORING	METHOD	BORING DEPTH	REMAR Field Inst PID/OV	KS rument = If M	refusal is er	ncountered, o	describe all e	efforts used to	confirm.
ROPOR ace (tr) tile (lt) AND, Dose. N	DPORTIONS USED: 20 to 35% ie (tr) 0 to 10% Some (sm) 20 to 35% e (tl) 10 to 20% And 35 to 50% AMPLE DESCRIPTION: ND, F-M; sm F angular gravel; ltl silt; tr clay; (10R 5/4), wet at 7 ft. ose. No odor. viewed by Staff:						con: Yes / No / Dedicated	Device	To To To	20	See Monitor Completion	ing Well Report

-				-	T	BORING LOG				SITE ID: MW- 14					
1	F	USS	&O'N	EILL	PROJEC	T: Merid	en Hospital	SI	SHEET: 1 of 1 PROJECT NO: 20120222 C40						
J.					LOCATI	ON: Me	riden, CT	W	EATHE	R:	BN 63	2. <u>C40</u>			
CONT OPER F&O I DRILI SAMP HAMN	RACTO ATOR:_ REPRES JING M LING M MER WI	PR: ENTAT ETHOI ETHO	FnO D. Lev TIVE: D. (D: D:	esque/D. Coo Cook Direct P 5'Macro C HAMMER	ok Core 2 FALL (IN)	BORING LOCATION: daw grad est of base DATE STARTED:									
DRI	LLING DET	AILS			MA	ATERIAL DES	CRIPTION			ANALYTICAL SAMPLES					
START DEPTH (FT)	BLOWS 6"	REC/ PEN (IN)	DEPTH RANGE (FT)		DE	SCRIPTION		PID	LITHO- LOGIC CODE	SAMPLE NO. & TIME	DEPTH INTERVAL (FT)	JARS & PRESERV.			
6	MA	27/32	0-1	311+ 40 monst, 1	159-1-5, 1035 N- 0	, dor re	ddish brow	M							
	1	1	1-2	F-C SAI	ode rea	torn b	i dry	Mo	5-	28 1150 29	1-2	600			
Ţ	22/ 3- Same as					bore	3 .(No	sw	1105	3-4	cros			
2		48/60	5-	Same	95 SB	the									
0	1	4%	10 - 14	F-CSF Silt, M	twD, ltl et at 13	L Fg	and, tr odar				*				
									×.						
						t;									
E DI 7.)	ORING AMETER	2	BORING	METHOD	BORING DEPTH 15	Field Ins PID/OV	KS trument = M	If refusal is en	countered, o	describe all	efforts used to	o confirm.			
						Field Dev	con: Yes / No / Dedicat	ed Device							
PROPOR frace (tr) ittle (ltl) EXAMPLI SAND, 1 Loose. N Reviewe	PPORTIONS USED: e (tr) 0 to 10% Some (sm) 20 to 35% (tt) 10 to 20% And 35 to 50% MPLE DESCRIPTION: ND, F-M; sm F angular gravel; ltl silt; tr clay; (10R 5/4), wet at 7 ft. ise. No odor.						Field Decon: Yes / No / Dedicated Device BACKFILL Asphalt / Concrete To Bentonite Grout/Chips To Cuttings/Native Material To Other To								

177

GENERAL INFORMATION

Project Name:	Meriden Hospitas	Site ID (Boring/Well ID): MW - 19
Project Location:	Meriden, CT	Project No.: 20120232.C40
F&O Engineer/Geologist:	D. Cook	Ground Surface Elevation:
Date of Completion:		Permit #:
Boring Location:		E1 Top of Steel Casing:
Drilling Contractor/Name:	FnO	E1 Top of PVC Casing:
Drilling Method:	Direct Push	Measuring Point: TPS / PVC
WELL CONSTRUCTION		Well Cover (see codes):
WELL CASING/RISER Diameter: 1.5 Type: 177 Stick-up:ft.	in. Diameter: 7.5 1.5 in. Type: 7.5 in. Length: 2.5 in.	PROTECTIVE CASING Diameter: in. Type: Road Boy / Stand Pipe Stick-up: ft Depth to Bottom: 7.5_ft Seal Material: Concerk
Screen Intervals Screen Interval: 20,5	-10,5 ft Diameter: 1,	5in. Slot Size: 0, 01
Description: PVC / Other:		-
Type: Perforated / Slotted	/Wire-Wrap / Other: <u>Pre-PACK</u>	£D
BOREHOLE Diameter: <u>3.5</u> in. ANNULAR FILL	Total Boring Depth: 20,5 ft.	Refusal: y m Depth:ft.
SURFACE SEAL	(Approximate volumes if avail	able)
Interval: 1.5-0 ft.	Tremied: Y / W Volume: <u>14</u> bags	Description: Concrete / Other:
BACKFILL Interval: <u>5.5-1.5</u> ft.	Tremied: Y / N Volume:bags	Description: Bentonite Grout / Cuttings / Sand / Other:
LOWER SEAL Interval: 6,5-5.5 ft.	Tremied: Y / 🖓 Volume:bags	Description: Bentonite Pellets/ Other:
FILTER Interval: 20,5-8,5	Tremied: Y / Wolume: 1/2_bags	Description: Sand Filter (type:) / Other:
LOWER BACKFILL		
Interval:ft.	Tremied: Y / N Volume:bags	Description: Bentonite Grout / Cuttingsl / Sand / Other:
MONITORING WELL DE	EVELOPMENT*	

Development Method: Surge Block Submersible Pump Peristaltic Pump Watera / Bailer / Other_ Date: 5/3/16

-	A.			12-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		BOR	ING LOG		SITE ID:	5B-2	28			
	F	USS	&O'N	EILL	PROJEC	CT: Merid	en Hospital		SHEET: <u>1 of 1</u> PROJECT NO: 20120232 C40					
N.					LOCATI	ION: Me	riden, CT		WEATHER	R: RA	N 60:	2.040		
CONT OPER F&O I DRILI SAMP HAMI	RACTO ATOR:_ REPRES LING M LING M MER WI	PR: ENTA ETHO ETHO ETHC	FnO D. Leve TIVE: D. (D: DD:	esque/D. Coc Cook Direct P 5'Macro C HAMMER	ush Core FALL (IN)_		BORING LOCATI DATE STARTED: DATE & TIME CC DEPTH TO SATU SAMPLE PREFIX:	ON: DMPLE RATEI 117610	: Mear 5 B-24 5/3/14 LETED: 4 TED ZONE: ~7 76160503					
DRI	ILLING DET	AILS	1		M	ATERIAL DES	CRIPTION			A	NALYTICAL S	MPLES		
START DEPTH (FT)	BLOWS 6"	REC/ PEN (IN)	DEPTH RANGE (FT)		DF	ESCRIPTION		PID	LITHO- LOGIC CODE	SAMPLE NO. & TIME	DEPTH INTERVAL (FT)	JARS & PRESERV.		
0	M	42/60	0-	Asp	helt			MA	A		196.49			
		1	Q 3- 1	Silt, dry m	smf-m odar gra	sad,	lyl game	NY	FI	-3-1236	013- 15	600		
1			1-14	Color	charge	to rue	Iden brown	m	m					
5		48/60	577	Same	as abo	n, n	et~7'	MO	m.	-31	6-7	Gor		
Ţ	1		7-9	S. ct, s dark b	m f sa	ind, tr ionic i	arganes Dav	M	m			2		
												5		
				8										
	BORING		BORING	METHOD	BORING DEPTH	REMAR Field Ins PID/OV	trument = If 'M	refusal is	encountered, de	escribe all e	fforts used to	confirm.		
						Field De	con: Yes / No / Dedicated	d Device						
PROPOR Trace (tr) Little (tl) EXAMPL SAND, Loose. N Reviewe	TIONS USEI 0 to 10% 10 to 20% E DESCRIPT F-M; sm F No odor. d by Staff:	D: TION: angular g	Some (sn And gravel; ltl silt; t	1) 20 to 35% 35 to 50% r clay; (10R 5/4)), wet at 7 ft.	BACKF Asphalt Bentonite Cuttings/ Other	ILL Image: Concrete Image: Concrete c Grout/Chips Image: Concrete Image: Concrete /Native Material Image: Concrete Image: Concrete		To To To		See Monitor Completion	ing Well Report		

9	24					BOR	ING LOG	S	ITE ID:_	513-27	9	
(1	F	USS	&O'N	EILL	PROJEC	T: Merid	en Hospital	S. P	HEET:	1 NO:	of 1 20120232	C40
W.					LOCATI	ON: Me	riden, CT	W	EATHE	R: MAin	1603	
CONT OPER F&O I DRILI SAMP HAMP	RACTO ATOR:_ REPRES: LING M LING M MER WI	PR: ENTAT ETHOI ETHO	FnO D. Leve TIVE: D. (D: D:	esque/D. Coo Cook Direct Pr 5'Macro C _HAMMER	k 1sh ore FALL (IN)_	13	BORING LOCAT DATE STARTED DATE & TIME C DEPTH TO SATU SAMPLE PREFIX	ION: OMPLET JRATED C: 1176160	Mea 57: ED: ZONE: 0503	v st.	3-06 7.	
DRI	LLING DET	AILS			M/	ATERIAL DES	CRIPTION			A	NALYTICAL SA	MPLES
START DEPTH (FT)	BLOWS 6"	REC/ PEN (IN)	DEPTH RANGE (FT)		DE	SCRIPTION		PID	LITHO- LOGIC CODE	SAMPLE NO. & TIME	DEPTH INTERVAL (FT)	JARS & PRESERV.
0	MA	18/60	0-0,7	Aspha	m			M	As	27	ns/meh	
		1	013-4	S.UT S.	n Eoal, Co pairs, no e	oder y.	ellow brown	NG	F	1320	duy 013	y Gan
5	5 24 5 - Same as							M	F	1,500		
	1	1	57	sit, l no odar	th f.m - redd	Sand Lish bro	we4 at 7 '	MO	the	34 1340	6-7	6202
					SB. Bran	06 5 10 5m	0-28					
H DI	BORING AMETER 2.5	l	BORING	METHOD	BORING DEPTH	REMAR Field Ins PID/OV	trument =] /M	If refusal is e	ncountered, d	lescribe all e	fforts used to	confirm.
				5		Field De	con: Yes / No / Dedicate	ed Device				
Trace (tr) 0 to 10% Some (sm) 20 to 35% Little (it) 10 to 20% And 35 to 50% EXAMPLE DESCRIPTION: SAND, F-M; sm F angular gravel; ltl silt; tr clay; (10R 5/4), wet at 7 ft. Loose. No odor. Reviewed by Staff:						BACKE Asphale Bentonite Cuttings Other	LL / Concrete e Grout/Chips /Native Material	3	To To To	3	See Monitor Completion	ing Well Report

	24	-		-		BOR	ING LOG	SI	TE ID:	SB-3	6		
	F	USS	&O'N	EILL	PROJEC	T: Merid	en Hospital	SI	HEET:	1 NO:	of 2012023	1	
W.					LOCATI	ON: Me	riden, CT	W	EATHE	R: RA	- Ge	**	
CONT OPER F&O I DRILI SAMP HAMP	RACTO ATOR:_ REPRES LING MI LING M MER WI	PR: ENTAT ETHOI ETHOI ':	<u>FnO</u> D. Leve IVE: <u>D. (</u>): D:	esque/D. Coo Cook Direct Pu 5'Macro Co _HAMMER	k ush ore FALL (IN)_		BORING LOCATIO DATE STARTED: DATE & TIME CO DEPTH TO SATUI SAMPLE PREFIX:	ON: OMPLETI RATED 2 1176160	ED:	5B-02 5/3/10			
DRI	LUNG DET	AUS	1	_	ма	TERIAL DES					NALVICAL	MDIEC	
START	BLOWS	REC/ PEN	DEPTH RANGE		DES	SCRIPTION		PID	LITHO-	SAMPLE NO. &	DEPTH	JARS &	
(FT)	6"	(IN)	(FT)						CODE	TIME	(FT)	PRESERV.	
		160	0-	Aspha.	r x			MA	As				
		1	0.3- 7.5	Jut 3. dry Con	n Fic g nfeir, n	o odor	lat fic sond	NO	sp	-36 1400	2-3	6802	
		48/	5-9	Sam	e as	abor	e	MO	51	-37	6-7	6.902	
					256 30 26-0	-30	7						
DI	BORING		BORING	METHOD	BORING DEPTH	REMAR Field Ins	trument = If	refusal is en	countered, d	lescribe all e	fforts used to	confirm.	
	25		nop	Ope	10	- PID/OV		n					
						1	11.01						
PROPORTIONS USED: Trace (tr) 0 to 10% Some (sm) 20 to 35% Little (ltl) 10 to 20% And 35 to 50% EXAMPLE DESCRIPTION: SAND, F-M; sm F angular gravel; ltl silt; tr clay; (10R 5/4), wet at 7 ft. Loose. No odor. Reviewed by Staff:						BACKF Asphalt Bentonite Cuttings/ Other	Concrete Concrete e Grout/Chips /Native Material	1 Device	To To To	3	See Monitor Completion	ing Well Report	

TAN					BORI	NG LOG	SI	TE ID:	SB-3	31	
	FUSS	&O'N	EILL	PROJEC	T: Merid	en Hospital	SH	HEET:	1 NO:	of 20120232	1 2 C40
				LOCATI	ON: Me	riden, CT	W	EATHE	R:	+1~ 60	2
CONTRAC OPERATO F&O REPI DRILLINO SAMPLIN HAMMER	CTOR: DR: G METHO G METHO WT:	FnO D. Leve ATIVE: D. (DD: DD: DD:	esque/D. Cool Cook Direct Pu 5'Macro Co HAMMER	sh sh FALL (IN)		BORING LOCATI DATE STARTED: DATE & TIME CC DEPTH TO SATU SAMPLE PREFIX:	ON: PMPLETE RATED Z 11761602	ear ED: ZONE:	58-0 5/3]	2	
DRILLIN	G DETAILS			MA	ATERIAL DES	CRIPTION			A	NALYTICAL SA	MPLES
START DEPTH (FT) BL	OWS REC 6" (IN	/ DEPTH RANGE (FT)		DE	SCRIPTION	1.1.17534.00	PID	LITHO- LOGIC CODE	SAMPLE NO. & TIME	DEPTH INTERVAL (FT)	JARS & PRESERV.
D N	A P	10-	Asph	« <i>λ</i> γ		8.246 C. 111	M	As			
	1	0.3- 3.5	F-C SA Ltd siza redd.	NO: 51 , dM 10 12 60	n f-n oose r	spared 20 oda	No	sp	-38 1440	2-3	6 802
5	19/6	0 9	same	95 9	bow	-	ND	SP	-39 1450	6-7	Gere
			SBO3	H	3.º 58-31						
BORI DIAME 2.5	ING ETER	BORING	METHOD	BORING DEPTH	REMAR Field Ins PID/OV	The second secon	refusal is end	l countered, d	lescribe all e	fforts used to	confirm.
					Field De	con: Yes / No / Dedicated	Device				
PROPORTIONS Trace (tr) 0 tr Little (th) 10 EXAMPLE DES SAND, F-M; Loose. No od Reviewed by S	S USED: to 10% to 20% SCRIPTION: sm F angular dor. Staff:	Some (sn And gravel; ltl silt; t) 20 to 35% 35 to 50% r clay; (10R 5/4),	wet at 7 ft.	BACKET Asphatt / Bentonitu Cuttings/ Other	LL C. Concrete Grout/Chips // Native Material / C	3	To To To	5	See Monitor Completion	ing Well Report

-	4		177		80	BOR	ING LOG	SI	TE ID:	5B-32	_	
	FI	JSS 8	xO'N	EILL	PROJEC	CT: Merid	en Hospital	PI	ROJECT	NO:	01 2012023	1 2.C40
~					LOCAT	ION: Me	riden, CT	W	EATHE	R: Clos	any 50	2
CONT OPERA F&O R DRILL SAMPI HAMN	RACTO: ATOR:_ EPRESI ING ME ING M IER WT	R: ENTAT ETHOE ETHOI	FnO D. Leve IVE: <u>D. (</u>):):	esque/D. Cool Cook Direct Pu 5'Macro Co HAMMER	sh ore FALL (IN)_	BORING LOCATION: DATE STARTED: DATE & TIME COMPLETED: DEPTH TO SATURATED ZONE: LL (IN) SAMPLE PREFIX: 1176160504						
DRI	LING DET	AILS			м	IATERIAL DES	CRIPTION			A	NALYTICAL S.	AMPLES
START DEPTH (FT)	BLOWS 6"	REC/ PEN (IN)	DEPTH RANGE (FT)		D	ESCRIPTION		PID	LITHO- LOGIC CODE	SAMPLE NO. & TIME	DEPTH INTERVAL (FT)	JARS & PRESERV.
0	MA	MA	0-	Concr	etc			M				
1		2º/en	1-3	F-m SF no odur	reddon	SILT, brown	dry, lose	NO	SM	-40	1-3	5802
3		18/27	35	Same	- <\$	chow	e	Mo	sn	0950	3-5	9802
	BORING		BORING	METHOD	BORING	REMAR	UKS					
D l		R	Jand Se	eque	DEPTH 5	Field Ins PID/OV	trument = I /M	f refusal is end	countered, d	escribe all e	fforts used to	confirm.
						Field De	con: Yes / No / Dedicate	ed Device				
PROPOI Trace (tr) Little (lt) EXAMPI SAND, Loose. Review	RTIONS USE 0 to 10% 10 to 20% LE DESCRIP F-M; sm F No odor. ed by Staff:	D: 5 TION: 5 angular g	Some (s And ravel; ltl silt;	m) 20 to 35% 35 to 50% tr clay; (10R 5/4),	wet at 7 ft.	BACKF Asphalt / Bentoniti Cuttings/ Other	BACKFILL To See Monitoring Well Asphalt / Concrete To Bentonite Grout/Chips To Cuttings/Native Material To Other To					

-	in the					BORI	NG LOG	S	ITE ID:	5B-	34	
	F	USS	&O'N	EILL	PROJEC	T: Merid	en Hospital	S P	HEET: ROJECT	1 NO:	of 2012023	1 2.C40
					LOCATI	ON: Me	riden, CT	V	EATHE	R: Clo	very	
CONT OPER F&O I DRILI SAMP HAMI	TRACTO ATOR: REPRESI LING MI LING M MER WT	R: ENTAT ETHOI ETHO	FnO D. Leve TIVE: D. (D: D:	esque/D. Coo Cook Direct P 5'Macro C HAMMER	ok ush core FALL (IN)		BORING LOCAT DATE STARTED DATE & TIME C DEPTH TO SATU SAMPLE PREFIX	CION: D: COMPLET URATED &: 1176160	ED: ZONE:		3 m	
DR	ILLING DET	AILS	1		МА	TERIAL DES	CRIPTION			A	NALYTICAL S	AMPLES
START DEPTH (FT)	BLOWS 6"	REC/ PEN (IN)	DEPTH RANGE (FT)		DES	SCRIPTION		PID	LITHO- LOGIC CODE	SAMPLE NO. & TIME	DEPTH INTERVAL (FT)	JARS & PRESERV.
0	jun	MA	0-1	Conf	ete			AN				
ſ	1	18/24	1-3	F-M Lossyn	Sand, l	thes.	lf, dry L'arow	MO	51	-51 1340	7-3	6000
2	1	15/24	3-5	Sam	re er	96.	ne	NO	Sm	-52	3-5	6.40
				8	⁷ 2' • [
			BORING	METHOD	DEPTH	Field Ins PID/OV	rrument = M	If refusal is e	ncountered, d	lescribe all e	fforts used to	o confirm.
						Field Dec	con: Yes / No / Dedicat	ted Device				
PROPOR Trace (rr) Little (lt) EXAMPL SAND, Loose. I Reviewe	TIONS USEE 0 to 10% 10 to 20% E DESCRIPT F-M; sm F No odor. d by Staff:): ION: angular g	Some (sn And ravel; ltl silt; t	n) 20 to 35% 35 to 50% er clay; (10R 5/4)	, wet at 7 ft.	BACKFI Asphalt / Bentonita Cuttings/ Other	LL Concrete e Grout/Chips /Native Material	4	To To To		See Monito Completion	ring Well Report

	A			6	J	BORI	NG LOG	SI	TE ID:	SB.	35	
6	F	USS 8	kO'N	EILL	PROJECT	F: Merid	en Hospital	SI P	HEET:	1 NO:	of 20120232	1 2.C40
w.					LOCATIO	ON: Me	riden, CT	w	EATHEI	R: Clor	dy 50	>
CONT OPER F&O I DRILI SAMP HAMI	TRACTO ATOR:_ REPRESI LING M LING M MER WT	R: ENTAT ETHOD ETHOI	<u>FnO</u> <u>D. Leve</u> IVE: <u>D. (</u> :):	sque/D. Cook Cook Direct Pu 5'Macro Co HAMMER 1	sh re FALL (IN)		BORING LOCATIO DATE STARTED: DATE & TIME CO DEPTH TO SATUR SAMPLE PREFIX:	ON: MPLET: RATED 1 1176160	D ED:_ ZONE:_ SoY	2.lr 11.6	~~~	
DR	ILLING DET	AILS			MA	TERIAL DES	CRIPTION			A	NALYTICAL S	AMPLES
START DEPTH (FT)	BLOWS 6"	REC/ PEN (IN)	DEPTH RANGE (FT)		DES	CRIPTION		PID	LITHO- LOGIC CODE	SAMPLE NO. & TIME	DEPTH INTERVAL (FT)	JARS & PRESERV.
6	m	ms	5-1	Contr	er			m	1			
1		20/24	1-3	Fin s	odn S	m s.	ht, day	MO	Sm	-53 1440	1-3	6900
3		27/24	7-5		Jame G	5 41	pin	MO	5m	-54 1450	3-5	G BUR
				•	• [2.5						
	BORING IAMETER	1	BORING	METHOD	BORING DEPTH	REMAR Field Inst PID/OV	KS rument = If r M	refusal is er	acountered, d	escribe all e	fforts used to	confi r m.
PROPOR Trace (tr) Little (tt) EXAMPL SAND, Loose. M Reviewe	TIONS USEI 0 to 10% 10 to 20% E DESCRIPI F-M; sm F No odor. ed by Staff:	iON: angular gra	Some (sm And vel; ltl silt; t) 20 to 35% 35 to 50% r clay; (10R 5/4),	wet at 7 ft.	Field Dec BACKFI Asphalt / Bentonite Cuttings/ Other	on: Yes / No / Dedicated	Device	To To To To		See Monito Completion	ing Well Report

Appendix B

Groundwater Sampling Field Data Sheets

Low Flow Sampling

Client/Project Name: Meriden Hospit		
Project Location: Meriden, CT	PROJECT #: 20120232.C40	FUSS&O'NEILL
Sample#: 1176160323- 03	WELL ID: MW-01	

Purge Data

I uige Data		Sample D	ala
Date: 3/23/2016	Container	Quantity	Preservative
Start time: 1/43 Stop time: 2/5 Sample time: 7/8 Pump Rate: 2/09 (ml/m) Depth Sampled: 22.5 Total time purged: 37 Sampler: DAC	VOA	3	He
Volume Purged:(ltr) Purge Device: Dedicated / Nondedicated Weather:Sunny 60s	P250	1	HNOJ
Filtered? N / Y Filter Size: 10u / 0.45u Filtered in: Field / Lab Appearance: Clear PVC: 1.40 Well Yield: High / Moderate / Low / Dry TPS: 17.77	AL	3	ICE
Well Diameter: 1.5 2 DTB: 25. 69 70, 27 = 25, 87 Comments:			

Field Parameter Data

Instrument ID#

Solinst#2		2020# 3	YSI 600 # 7 -				
Water Level (ft)	Time	Turbidity (ntu)	Dissolved Oxygen (mg/L)	рН	Temp. (deg C)	Specific Conductivity (uS)	ORP(mV)
17.90	1143	Begin	forge -		-		
17.42	1155	46.32	6.10	5.83	13.2	-1233	433.8
17.42	1200	49,26	6.23	5.81	13,2	1242	446.8
17.42	1205	24,77	6.52	5.84	13.2	1257	447.6
17.42	1210	17.94	6.67	5.86	13.2	1267	449.2
17.42	1215	9,88	6.61	5.85	132	1275	451.6
	1218	Sample					

Well Condition Checklist

(circle appropriate item(s), cross out if not applicable]

General Condition: Good / Needs Repair Protective Steel: OK / Cracked / Leaking / Bent / Loose/ None Well # Visible?: Y / N Well Cap Good / Broken / None Evidence of rain water between steel and PVC?: Y / N Evidence of ponding around well?: Y / N Gopher type holes around collar?: Y / N Comments:

Is well plumb?: Y N Lock: Good / Broken / None Rust around cap / N PVC Riser: Good / Damaged / None Concrete collar: OK / Cracked / Leaking / None Other evidence of Rodents / Insects / None Curb Box: N / Y (key is: Hey / Pent / Other)

Sample Data

Low Flow Sampling

	Low Flow Sampling				
Client/Project Name: Meriden Hospita	al		527		
Project Location: Meriden, CT		FUSS&C	NEILL		
Sample#: 1176160323-05	WELL ID: MW - 10				
Purge Data -06 d	uplicate		Sample D	ata	
Date: 3/23/2016		Container	Quantity	Preservative	
Start time: 3.45 Stop time: Pump Rate: 160 (ml/m) Total time purged: 40 Volume Purged: 149 (ltr)	Y25 Sample time: 1936 1455 Depth Sampled: 10 Sampler: DAC	VUA	3 22	ALL	
Purge Device: Dedicated / Nondedicated Device Type: Bladder / Peristalic / Submo Filtered? N/Y Filter Size: 10u / 0.45u F Appearance: Well Yield: High / Moderate / Low / Dry Well Diameter: 1.5 Comments:	Weather:Sunny 60s ersible Fild / Lab PVC: PVC: 5.92 y TPS: DTB: 13.05 10.21- 13.27	9250	1 22	HNOZ	

Field Parameter Data

Instrument ID#

Solinst# 2	1	2020# 3	YSI 600 # 🄧 🗕				
Water Level (ft)	Time	Turbidity (ntu)	Dissolved Oxygen (mg/L)	рН	Temp. (deg C)	Specific Conductivity (uS)	ORP(mV)
5.92	1345	Besin	Purge -				
7.30	1355	15015	0,40	7.36	12.3	745	171.2
7.40	1400	101.6	0.38	7.76	12.3	748	102.7
7.50	1405	\$2.74	0:39	737	12.3	750	76.7
7.50	1410	37.57	0:38	7.37	12.3	752	51.6
7.50	1415	21,85	0,39	7.37	12.3	750750	50.8
7.50	1420	12.74	0.41	7.37	12.3	746	53.9
750	1425	9.71	0,40	7.37	12.3	744	52.4
-	1430	Sampe					
	1435	Sample	duplicate				
							(*)

Well Condition Checklist

(circle appropriate item(s), cross out if not applicable]

General Condition: Good / Needs Repair Protective Steel: OR / Cracked / Leaking / Bent / Loose/ None Well # Visible?: Y / N Well Cap: Good / Broken / None Evidence of rain water between steel and PVC?: Y / N Evidence of ponding around well?: Y / N Gopher type holes around collar?: Y / N Comments:

Is well plumb?: N Lock: Good / Broken / None Rust around cap: Y / N PVC Riser: Good Damaged / None Concrete collar: OK Cracked / Leaking / None Other evidence of: Rodents / Insects / None Curb Box: N / Y (key is: Hex) Pent / Other)

Low Flow Sampling

Client/Project Name: Meriden Hospit		
Project Location: Meriden, CT	PROJECT #: 20120232.C40	FUSS&O'NEILL
Sample#: 1176160323-02	WELL ID: MW-11	

Purge Data

		oumpic D	
Date: 3/23/2016	Container	Quantity	Preservative
Start time: 0943 Stop time: 1022 Sample time: 1025 Pump Rate: 200 (ml/m) Depth Sampled: 1915 Total time purged: 42 Sampler: DAC Volume Purged: 18.5 (ltr) Purge Device: Dedicated Weather: Sunny 60s	VaA AL	31	Her
Device Type: Bladder / Peristallic / Submersible Filtered? M/Y Filter Size: 10u / 0.45u Filtered in: Field / Lab Appearance: Clear Well Yield: High / Moderate / Low / Dry Well Diameter: 1.5 Comments: DTB: 22.32 to 27 = 22.59	P250	1-	H1N63

Field Parameter Data

Instrument ID#

	2020#	YSI 600 #				•
Time	Turbidity (ntu)	Dissolved Oxygen (mg/L)	рН	Temp. (deg C)	Specific Conductivity (uS)	ORP(mV)
0943	Begin	purge -		-		
0958	34.97	7.67	6.97	9,9	.477.5	89.1
1002	29,67	8.31	6.91	9,9	467.2	791
1006	24.29	8.34	6.92	9,9	463.3	72.2
1010	19,72	8.40	6.93	9.9	461.5	75.6
1014	18.73	8.38	6.92	9,9	455.4	70.7
1018	16.42	8.40	6.92	9.9	450.2	62.0
1022	12,41	8.31	6.93	9,9	448.7	60.7
1025	Sample					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	1					
	Time 0943 0958 1002 1006 1010 1017 1018 1018 1025 1025	2020# Time Turbidity (ntu) 0943 Begin 0958 34.97 1002 29.67 1006 24.29 1010 19.72 1014 18.73 1018 16.42 1022 12.41 1025 Sample	2020# YSI 600 # - Time Turbidity (ntu) Dissolved Oxygen (mg/L) 0943 Begin Pwse 0958 34.97 7.67 1002 29.67 8.31 1006 24.29 8.34 1010 19.72 8.40 1014 18.73 8.38 1018 16.42 8.40 1018 16.42 8.40 1018 16.42 8.31 1025 54mgle	2020# YSI 600 # Time Turbidity (ntu) Dissolved Oxygen (mg/L) pH 0943 Begin Pwse - 0943 Begin Pwse - 0943 Begin Pwse - 0958 34.97 7.67 6.97 1002 29.67 8.31 6.91 1005 24.29 8.34 6.92 1010 19.72 8.40 6.93 1010 19.72 8.40 6.92 1019 16.42 8.40 6.92 1018 16.42 8.40 6.92 1018 16.42 8.40 6.92 1022 12.41 8.31 6.93 1025 54mgle - - 1025 54mgle - - </td <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td>	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

Well Condition Checklist

(circle appropriate item(s), cross out if not applicable]

General Condition: Good / Needs Repair Protective Steel: OK / Cracked / Leaking / Bent / Loose/ None Well # Visible?: Y /N Well Cap: Good / Broken / None Evidence of rain water between steel and PVC?: Y / N Evidence of ponding around well?: Y / N Gopher type holes around collar?: Y / N Comments: Is well plumb?: Y N Lock: Good / Broken / None Rust around cap: Y / N PVC Riser: Good / Damaged / None Concrete collar: OK Cracked / Leaking / None Other evidence of Rodents / Insects / None Curb Box: M / Y (key is: Hex / Pent / Other)

Sample Data

Low Flow Sampling

Client/Project Name: Meriden Hospital				
Project Location: Meriden, CT		FUSS&C)'NEILL	
Sample#: 1176160323- 64	WELL ID: MW-13 MW-12			
Purge Data	(edited by SKW 4/28	: 9/16)	Sample D	ata
Date: 3/23/2016		Container	Quantity	Preservative
Start time: 1239 Stop time: Pump Rate: Zoo (ml/m) Total time purged: 41 Volume Purged: 28 (ltr)	Sample time: 1325 Depth Sampled: 16 Sampler: DAC	VOA	3	HCL
Purge Device: Dedicated / Nondedicated	Weather: Sunny 60s	AL	3	TLE
Device Type: Bladder / Peristabic / Submer	rsible		-	
Filtered? N/Y Filter Size: 10u / 0.45u Fi Appearance: Clear Well Yield: Figh / Moderate / Low / Dry Well Diameter: 1.5 Comments:	Itered in: Field / Lab PVC: 11.14 TPS: 11.48 DTB: 20,05 +0.27.76.27	hso	U	HNO3

Field Parameter Data

Instrument ID#

Solinst# 2		2020# 3	YSI 600 # 3 -				
Water Level (ft)	Time	Turbidity (ntu)	Dissolved Oxygen (mg/L)	pН	Temp. (deg C)	Specific Conductivity (uS)	ORP(mV)
11.16	1239	Begin	Parge -				
11.46	1300	18, 74	1.70	7.30	12.4	739	82.5
11.46	1305	19.87	0.72	7.30	12.6	736	75.7
11.46	1310	12.64	0.73	7.31	12.6	734	72.4
11.46	1315	9.34	0.74	7.33	12.4	732	69.4
11.46	1320	9.28	0,74	7.32	12.4	731	67.6
	1325	Sample					

Well Condition Checklist

(circle appropriate item(s), cross out if not applicable]

General Condition: Good Needs Repair Protective Steel: OK / Cracked / Leaking / Bent / Loose/ None Well # Visible?: Y / N Well Cap: Good / Broken / None Evidence of rain water between steel and PVC?: Y / N Evidence of ponding around well?: Y / N Gopher type holes around collar?: Y / N Comments:

Is well plumb?: // N Lock: Good / Broken / None Rust around cap: Y / N PVC Riser: Good / Damaged / None Concrete collar: OK / Cracked / Leaking / None Other evidence of: Rodents / Insects / None Curb Box: N / Y (key is: Hes / Pent / Other)

Low Flow Sampling

Client/Project Name: Former Meriden		
Project Location: Meriden, CT	FUSS&O'NEILL	
Sample#: 1176160512-02	WELL ID: MW-02	

Putge Data	Sumple Dum		
P == 5/12/2016 == ==	Container	Quantity	Preservative
Start time: Stop time: 0019 Sample time: 0820	Amber L	3	Ice
Pump Rate: 200 (ml/m) Depth Sampled:		. /	UC
Total time purged: 29 Sampler: DAC	VOA	3	HCI
Volume Purged: 4.8 (ltr)	P 250	1	F/HNO3
Purge Device: Dedicated / Nondedicated Weather:	P 250	1	HNO3
Eitered V Filter Size: 10n / 0.45n Filtered in: Field / Lab			
Appearance: Clear PVC: 9.90			
Well Yield: High / Moderate / Low / Dry TPS:			
Well Diameter: 2 DTB: 1/17			
Comments:			

Field Parameter Data

Instrument ID#

suument IL	m						
Solinst#		2020#	YSI 600 #				
Water Level (ft)	Time	Turbidity (ntu)	Dissolved Oxygen (mg/L)	pH	Temp. (deg C)	Specific Conductivity (uS)	ORP(mV)
9,90	0750	Basin	poge -				
19.00	0804	35.80	0.65		11.6	926	55710
10,00	0809	12.64	0,67		11.5	957	562.3
10,00	0814	6.21	0.61	-	11.5	968	552.5
	0820	Sand					Ч
	-						

Well Condition Checklist

(circle appropriate item(s), cross out if not applicable]

General Condition: Good / Needs Repair Protective Steel: OK / Cracked / Leaking / Bent / Loose/ None Well # Visible?: Y / N Well Cap. Good / Broken / None Evidence of rain water between steel and PVC?: Y (N) Evidence of ponding around well?: Y Gopher type holes around collar?: Y (N) Comments:

Is well plumb?: Y/ N Lock: Good / Broken / None Rust around cap: Y / N PVC Riser: Good / Damaged / None Concrete collar: OK) Cracked / Leaking / None Other evidence of: Rodents / Insects / None Curb Box: N / Y (key is: HCK / Pent / Other)

Sample Data

Low Flow Sampling

	Low 110w Damping			
Client/Project Name: Former Meriden I	Hospital			
Project Location: Meriden, CT		FUSS&O	'NEILL	
Sample#: 1176160512-63	WELL ID: MW-13 (edited b	v:		
Purge Data	SKW 5/1	3/16)	Sample Da	ata
Dem 5/12/2016		Container	Quantity	Preservative
Date: 5/12/2010	Sample time: 09 25	Amber L	3	Ice
Pump Rate: 200 (ml/m) Total time purged: 22	Depth Sampled:	VOA	3 -	HCl
Volume Purged: <u>4,9</u> (ltr)	S	P 250	1	E/HNO3
Purge Device: Dedicated / Nondedicated Device Type: Bladder / Peristaltic / Submer Filtered? N Y Filter Size: 10u / 0.45u Fil Appearance: Well Yield: High / Moderate / Low / Dry Well Diameter:	weather: 2007 000 sible tered in: Field / Lab (3, 9) PVC: (7, 9) TPS: (7, 7) DTB: 22.65	P 250	1	HNO3

Field Parameter Data

Instrument ID#

suument it					1	1	
Solinst#		2020#	YSI 600 #				
Water Level (ft)	Time	Turbidity (ntu)	Dissolved Oxygen (mg/L)	рН	Temp. (deg C)	Specific Conductivity (uS)	ORP(mV)
13.71	0857	Begn	gurge -				,
14.02	07 07	2.57	7.48		11.2	768	541.1
14.02	0714	6.22	3.40		11.2	762	551.3
19.02	0.919	5.41	3.41	-	11.2	766	562.3
	0925	Samel					5
		1.					

Well Condition Checklist

(circle appropriate item(s), cross out if not applicable]

General Condition Good / Needs Repair Protective Steel: OK / Cracked / Leaking / Bent / Loose/ None Well # Visible?: Y / N Well Cap: Good / Broken / None Evidence of rain water between steel and PVC?: Y / N Evidence of ponding around well?: Y / N Gopher type holes around collar?: Y / N Comments:

Is well plumbe: Y / N Lock: Good / Broken / None Rust around cap: Y / D PVC Riser: Good / Damaged / None Concrete collar: OB / Cracked / Leaking / None Other evidence of: Rodents / Insects / None Curb Box: N / Y key is: Hex / Pent / Other) $\overline{\mathcal{T}/\mathcal{G}}$

Appendix C

Laboratory Analytical Reports (on CD)

Wednesday, March 23, 2016

Attn: Ms. Stefanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Project ID: MERIDEN HOSPITAL Sample ID#s: BK79038 - BK79048

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

X.lle

Phyllis/Shiller Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #MA-CT-007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

Analysis Report

March 23, 2016

FOR: Attn: Ms. Stefanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample Information		Custody Inform	Date	<u>Time</u>	
Matrix:	CONCRETE	Collected by:	DC	03/14/16	14:40
Location Code:	F&O-PCB	Received by:	LB	03/16/16	10:00
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	20120232.C40	1 - 1			

Laboratory Data

Project ID:	MERIDEN HOSPITAL
Client ID:	1176160314-13

	RL/					
sult	PQL	Units	Dilution	Date/Time	By	Reference
99		%		03/16/16	W	SW846-%Solid
pleted				03/16/16	Q/I	SW3540C
ND	0.33	mg/kg	10	03/17/16	AW	SW8082A
١D	0.33	mg/kg	10	03/17/16	AW	SW8082A
١D	0.33	mg/kg	10	03/17/16	AW	SW8082A
١D	0.33	mg/kg	10	03/17/16	AW	SW8082A
١D	0.33	mg/kg	10	03/17/16	AW	SW8082A
١D	0.33	mg/kg	10	03/17/16	AW	SW8082A
١D	0.33	mg/kg	10	03/17/16	AW	SW8082A
١D	0.33	mg/kg	10	03/17/16	AW	SW8082A
١D	0.33	mg/kg	10	03/17/16	AW	SW8082A
92		%	10	03/17/16	AW	30 - 150 %
94		%	10	03/17/16	AW	30 - 150 %
	esult 99 pleted ND ND ND ND ND ND ND ND ND ND ND ND ND	RL/ PQL 99 pleted ND 0.33 ND 0.33	RL/ Units 99 % pleted % ND 0.33 mg/kg ND 0.34 mg/kg	RL/ Units Dilution 99 % pleted % ND 0.33 mg/kg 10 ND 0.33 mg/k	RL/ esultPQLUnitsDilutionDate/Time99% $03/16/16$ $03/16/16$ pleted% $03/16/16$ $03/16/16$ ND 0.33 mg/kg10ND $0.317/16$ $0.317/16$ <td>RL/ esult PQL Units Dilution Date/Time By 99 % 03/16/16 W pleted % 03/16/16 Q/I ND 0.33 mg/kg 10 03/17/16 AW <t< td=""></t<></td>	RL/ esult PQL Units Dilution Date/Time By 99 % 03/16/16 W pleted % 03/16/16 Q/I ND 0.33 mg/kg 10 03/17/16 AW ND 0.33 mg/kg 10 03/17/16 AW <t< td=""></t<>

Project ID: MERIDEN HOS	PITAL				Ph	noenix	x I.D.: BK79038
Client ID: 1176160314-13	5						
		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director March 23, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

March 23, 2016

FOR: Attn: Ms. Stefanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample Information		Custody Inform	Custody Information		
Matrix:	CONCRETE	Collected by:	DC	03/14/16	15:30
Location Code:	F&O-PCB	Received by:	LB	03/16/16	10:00
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	20120232.C40				

Laboratory Data

Project ID:	MERIDEN HOSPITAL
Client ID:	1176160314-14

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
Silver	5.95	0.32	mg/Kg	1	03/17/16	LK	SW6010C
Arsenic	2.1	0.6	mg/Kg	1	03/17/16	LK	SW6010C
Barium	56.3	0.32	mg/Kg	1	03/17/16	LK	SW6010C
Cadmium	3.84	0.32	mg/Kg	1	03/17/16	LK	SW6010C
Chromium	14.2	0.32	mg/Kg	1	03/17/16	LK	SW6010C
Mercury	0.92	0.12	mg/Kg	1	03/18/16	MA	SW7471B
Lead	12.9	0.32	mg/Kg	1	03/17/16	LK	SW6010C
Selenium	< 1.3	1.3	mg/Kg	1	03/17/16	LK	SW6010C
Percent Solid	98		%		03/16/16	W	SW846-%Solid
Extraction of CT ETPH	Completed				03/16/16	BC/CK	SW3545A
Mercury Digestion	Completed				03/18/16	W/W	SW7471B
Extraction for PCB	Completed				03/16/16	Q/I	SW3540C
Total Metals Digest	Completed				03/16/16	G/AG	SW3050B
TPH by GC (Extracta	ble Product	<u>s)</u>					
Ext. Petroleum HC	2100	100	mg/Kg	2	03/18/16	JRB	CTETPH 8015D
Identification	**		mg/Kg	2	03/18/16	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	101		%	2	03/18/16	JRB	50 - 150 %
PCB (Soxhlet SW354	<u>10C)</u>						
PCB-1016	ND	0.33	mg/kg	10	03/17/16	AW	SW8082A
PCB-1221	ND	0.33	mg/kg	10	03/17/16	AW	SW8082A
PCB-1232	ND	0.33	mg/kg	10	03/17/16	AW	SW8082A
PCB-1242	ND	0.33	mg/kg	10	03/17/16	AW	SW8082A
PCB-1248	ND	0.33	mg/kg	10	03/17/16	AW	SW8082A
PCB-1254	ND	0.33	mg/kg	10	03/17/16	AW	SW8082A
PCB-1260	ND	0.33	mg/kg	10	03/17/16	AW	SW8082A

Project ID: MERIDEN HOSPITAL Client ID: 1176160314-14

Units	Dilution	Date/Time	By	Reference	
mg/kg	10	03/17/16	AW	SW8082A	
mg/kg	10	03/17/16	AW	SW8082A	
%	10	03/17/16	AW	30 - 150 %	
%	10	03/17/16	AW	30 - 150 %	
	Units mg/kg mg/kg %	UnitsDilutionmg/kg10mg/kg10%10%10%10	Units Dilution Date/Time mg/kg 10 03/17/16 mg/kg 10 03/17/16 % 10 03/17/16 % 10 03/17/16 % 10 03/17/16 % 10 03/17/16	Units Dilution Date/Time By mg/kg 10 03/17/16 AW mg/kg 10 03/17/16 AW % 10 03/17/16 AW % 10 03/17/16 AW % 10 03/17/16 AW % 10 03/17/16 AW	Units Dilution Date/Time By Reference mg/kg 10 03/17/16 AW SW8082A mg/kg 10 03/17/16 AW SW8082A % 10 03/17/16 AW SW8082A % 10 03/17/16 AW 30 - 150 % % 10 03/17/16 AW 30 - 150 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

TPH Comment:

**Petroleum hydrocarbon chromatogram contains a multicomponent hydrocarbon distribution in the range of C9 to C36. The sample was quantitated against a C9-C36 alkane hydrocarbon standard.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director March 23, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

March 23, 2016

FOR: Attn: Ms. Stefanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample Information		Custody Inform	nation	<u>Date</u>	<u>Time</u>	
Matrix:	CONCRETE	Collected by:	DC	03/14/16	16:00	
Location Code:	F&O-PCB	Received by:	LB	03/16/16	10:00	
Rush Request:	Standard	Analyzed by:	see "By" below			
P.O.#:	20120232.C40					

Laboratory Data

SDG ID: GBK79038 Phoenix ID: BK79040

Project ID: MERIDEN HOSPITAL Client ID: 1176160314-15

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Silver	< 0.31	0.31	mg/Kg	1	03/17/16	EK	SW6010C
Arsenic	4.2	0.6	mg/Kg	1	03/17/16	EK	SW6010C
Barium	142	0.31	mg/Kg	1	03/17/16	EK	SW6010C
Cadmium	0.32	0.31	mg/Kg	1	03/17/16	EK	SW6010C
Chromium	14.1	0.31	mg/Kg	1	03/17/16	EK	SW6010C
Mercury	0.13	0.03	mg/Kg	1	03/18/16	MA	SW7471B
Lead	34.8	0.31	mg/Kg	1	03/18/16	LK	SW6010C
Selenium	< 1.2	1.2	mg/Kg	1	03/17/16	LK	SW6010C
Percent Solid	97		%		03/16/16	W	SW846-%Solid
Extraction of CT ETPH	Completed				03/16/16	BC/CK	SW3545A
Mercury Digestion	Completed				03/18/16	W/W	SW7471B
Extraction for PCB	Completed				03/16/16	Q/I	SW3540C
Total Metals Digest	Completed				03/16/16	G/AG	SW3050B
TPH by GC (Extractabl	e Product	<u>s)</u>					
Ext. Petroleum HC	460	51	mg/Kg	1	03/19/16	JRB	CTETPH 8015D
Identification	**		mg/Kg	1	03/19/16	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	113		%	1	03/19/16	JRB	50 - 150 %
PCB (Soxhlet SW3540	C)						
PCB-1016	ND	0.34	mg/kg	10	03/17/16	AW	SW8082A
PCB-1221	ND	0.34	mg/kg	10	03/17/16	AW	SW8082A
PCB-1232	ND	0.34	mg/kg	10	03/17/16	AW	SW8082A
PCB-1242	ND	0.34	mg/kg	10	03/17/16	AW	SW8082A
PCB-1248	ND	0.34	mg/kg	10	03/17/16	AW	SW8082A
PCB-1254	ND	0.34	mg/kg	10	03/17/16	AW	SW8082A
PCB-1260	ND	0.34	mg/kg	10	03/17/16	AW	SW8082A

Project ID: MERIDEN HOSPITAL Client ID: 1176160314-15

		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference	
PCB-1262	ND	0.34	mg/kg	10	03/17/16	AW	SW8082A	
PCB-1268	ND	0.34	mg/kg	10	03/17/16	AW	SW8082A	
QA/QC Surrogates								
% DCBP	83		%	10	03/17/16	AW	30 - 150 %	
% TCMX	70		%	10	03/17/16	AW	30 - 150 %	

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

TPH Comment:

**Petroleum hydrocarbon chromatogram contains a multicomponent hydrocarbon distribution in the range of C9 to C36. The sample was quantitated against a C9-C36 alkane hydrocarbon standard.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director March 23, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

March 23, 2016

FOR: Attn: Ms. Stefanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample Informa	ation	Custody Inform	nation	<u>Date</u>	<u>Time</u>	
Matrix:	CONCRETE	Collected by:	DC	03/14/16	16:30	
Location Code:	F&O-PCB	Received by:	LB	03/16/16	10:00	
Rush Request:	Standard	Analyzed by:	see "By" below			
P.O.#:	20120232.C40					

Laboratory Data

SDG ID: GBK79038 Phoenix ID: BK79041

Project ID: MERIDEN HOSPITAL Client ID: 1176160314-16

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Silver	< 0.31	0.31	mg/Kg	1	03/17/16	EK	SW6010C
Arsenic	4.0	0.6	mg/Kg	1	03/17/16	EK	SW6010C
Barium	63.0	0.31	mg/Kg	1	03/17/16	ΕK	SW6010C
Cadmium	< 0.31	0.31	mg/Kg	1	03/17/16	ΕK	SW6010C
Chromium	14.5	0.31	mg/Kg	1	03/17/16	EK	SW6010C
Mercury	0.13	0.02	mg/Kg	1	03/18/16	MA	SW7471B
Lead	8.00	0.31	mg/Kg	1	03/18/16	LK	SW6010C
Selenium	< 1.3	1.3	mg/Kg	1	03/17/16	LK	SW6010C
Percent Solid	97		%		03/16/16	W	SW846-%Solid
Extraction of CT ETPH	Completed				03/16/16	BC/CK	SW3545A
Mercury Digestion	Completed				03/18/16	W/W	SW7471B
Extraction for PCB	Completed				03/16/16	Q/I	SW3540C
Total Metals Digest	Completed				03/16/16	G/AG	SW3050B
TPH by GC (Extractable	Products	<u>s)</u>					
Ext. Petroleum HC	1200	100	mg/Kg	2	03/18/16	JRB	CTETPH 8015D
Identification	**		mg/Kg	2	03/18/16	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	83		%	2	03/18/16	JRB	50 - 150 %
PCB (Soxhlet SW3540C	;)						
PCB-1016	ND	0.34	mg/kg	10	03/17/16	AW	SW8082A
PCB-1221	ND	0.34	mg/kg	10	03/17/16	AW	SW8082A
PCB-1232	ND	0.34	mg/kg	10	03/17/16	AW	SW8082A
PCB-1242	ND	0.34	mg/kg	10	03/17/16	AW	SW8082A
PCB-1248	ND	0.34	mg/kg	10	03/17/16	AW	SW8082A
PCB-1254	ND	0.34	mg/kg	10	03/17/16	AW	SW8082A
PCB-1260	ND	0.34	mg/kg	10	03/17/16	AW	SW8082A

Project ID: MERIDEN HOSPITAL Client ID: 1176160314-16

		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference	
PCB-1262	ND	0.34	mg/kg	10	03/17/16	AW	SW8082A	
PCB-1268	ND	0.34	mg/kg	10	03/17/16	AW	SW8082A	
QA/QC Surrogates								
% DCBP	83		%	10	03/17/16	AW	30 - 150 %	
% TCMX	87		%	10	03/17/16	AW	30 - 150 %	

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

TPH Comment:

**Petroleum hydrocarbon chromatogram contains a multicomponent hydrocarbon distribution in the range of C9 to C36. The sample was quantitated against a C9-C36 alkane hydrocarbon standard.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director March 23, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

March 23, 2016

FOR: Attn: Ms. Stefanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample Informa	ation	Custody Inform	nation	Date	<u>Time</u>	
Matrix:	CONCRETE	Collected by:	DC	03/14/16	16:40	
Location Code:	F&O-PCB	Received by:	LB	03/16/16	10:00	
Rush Request:	Standard	Analyzed by:	see "By" below			
P.O.#:	20120232.C40					

Laboratory Data

Project ID:	MERIDEN HOSPITAL
Client ID:	1176160314-17

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	98		%		03/16/16	W	SW846-%Solid
Extraction for PCB	Completed				03/16/16	Q/I	SW3540C
PCB (Soxhlet SW354	10C)						
PCB-1016	ND	0.34	mg/kg	10	03/17/16	AW	SW8082A
PCB-1221	ND	0.34	mg/kg	10	03/17/16	AW	SW8082A
PCB-1232	ND	0.34	mg/kg	10	03/17/16	AW	SW8082A
PCB-1242	ND	0.34	mg/kg	10	03/17/16	AW	SW8082A
PCB-1248	ND	0.34	mg/kg	10	03/17/16	AW	SW8082A
PCB-1254	ND	0.34	mg/kg	10	03/17/16	AW	SW8082A
PCB-1260	ND	0.34	mg/kg	10	03/17/16	AW	SW8082A
PCB-1262	ND	0.34	mg/kg	10	03/17/16	AW	SW8082A
PCB-1268	ND	0.34	mg/kg	10	03/17/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	83		%	10	03/17/16	AW	30 - 150 %
% TCMX	74		%	10	03/17/16	AW	30 - 150 %

Project ID: MERIDEN HOSPITAL					Phoenix I.D.: BK79042			
Client ID: 1176160314-	17							
		RL/						
Parameter	Result	PQL	Ur	nits	Dilution	Date/Time	By	Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director March 23, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

March 23, 2016

FOR: Attn: Ms. Stefanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample Informa	ation	Custody Inform	nation	<u>Date</u>	<u>Time</u>
Matrix:	CONCRETE	Collected by:	DC	03/14/16	16:30
Location Code:	F&O-PCB	Received by:	LB	03/16/16	10:00
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	20120232.C40				

Laboratory Data

Project ID:	MERIDEN HOSPITAL
Client ID:	1176160314-20

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	90		%		03/16/16	W	SW846-%Solid
Extraction for PCB	Completed				03/16/16	Q/I	SW3540C
PCB (Soxhlet SW354)	0C)						
PCB-1016	ND	0.37	mg/kg	10	03/17/16	AW	SW8082A
PCB-1221	ND	0.37	mg/kg	10	03/17/16	AW	SW8082A
PCB-1232	ND	0.37	mg/kg	10	03/17/16	AW	SW8082A
PCB-1242	ND	0.37	mg/kg	10	03/17/16	AW	SW8082A
PCB-1248	ND	0.37	mg/kg	10	03/17/16	AW	SW8082A
PCB-1254	ND	0.37	mg/kg	10	03/17/16	AW	SW8082A
PCB-1260	ND	0.37	mg/kg	10	03/17/16	AW	SW8082A
PCB-1262	ND	0.37	mg/kg	10	03/17/16	AW	SW8082A
PCB-1268	ND	0.37	mg/kg	10	03/17/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	81		%	10	03/17/16	AW	30 - 150 %
% TCMX	88		%	10	03/17/16	AW	30 - 150 %

Project ID: MERIDEN HOSPITAL					Phoenix I.D.: BK79043			3
Client ID: 1176160314-20								
		RL/						
Parameter	Result	PQL	Unit	s Dilution	Date/Time	Ву	Reference	
								r

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director March 23, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis F	Report
------------	--------

FOR: Attn: Ms. Stefanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

March 23, 2016

Sample Information		Custody Inform	Custody Information		
Matrix:	CONCRETE	Collected by:	DC	03/15/16	11:00
Location Code:	F&O-PCB	Received by:	LB	03/16/16	10:00
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	20120232.C40				

Laboratory Data

Project ID:	MERIDEN HOSPITAL
Client ID:	1176160314-29

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
Percent Solid	96		%		03/16/16	W	SW846-%Solid
Extraction of CT ETPH	Completed				03/16/16	BC/CK	SW3545A
Extraction for PCB	Completed				03/16/16	Q/I	SW3540C
TPH by GC (Extractable	e Products)					
Ext. Petroleum HC	450	52	mg/Kg	1	03/17/16	JRB	CTETPH 8015D
Identification	**		mg/Kg	1	03/17/16	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	Interference		%	1	03/17/16	JRB	50 - 150 %
PCB (Soxhlet SW35400	<u>C)</u>						
PCB-1016	ND	0.34	mg/kg	10	03/17/16	AW	SW8082A
PCB-1221	ND	0.34	mg/kg	10	03/17/16	AW	SW8082A
PCB-1232	ND	0.34	mg/kg	10	03/17/16	AW	SW8082A
PCB-1242	ND	0.34	mg/kg	10	03/17/16	AW	SW8082A
PCB-1248	ND	0.34	mg/kg	10	03/17/16	AW	SW8082A
PCB-1254	ND	0.34	mg/kg	10	03/17/16	AW	SW8082A
PCB-1260	ND	0.34	mg/kg	10	03/17/16	AW	SW8082A
PCB-1262	ND	0.34	mg/kg	10	03/17/16	AW	SW8082A
PCB-1268	ND	0.34	mg/kg	10	03/17/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	106		%	10	03/17/16	AW	30 - 150 %
% TCMX	93		%	10	03/17/16	AW	30 - 150 %

Project ID: MERIDEN HOSPITAL					Phoenix I.D.: BK79044			
Client ID: 1176160314								
		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	
								_

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

TPH Comment:

**Petroleum hydrocarbon chromatogram contains a multicomponent hydrocarbon distribution in the range of C9 to C36. The sample was quantitated against a C9-C36 alkane hydrocarbon standard.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director March 23, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

March 23, 2016

FOR: Attn: Ms. Stefanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample Information		Custody Inform	Custody Information		
Matrix:	CONCRETE	Collected by:	DC	03/15/16	11:15
Location Code:	F&O-PCB	Received by:	LB	03/16/16	10:00
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	20120232.C40	1 - 6 - 7 - 6 - 7			

Laboratory Data

Project ID:	MERIDEN HOSPITAL
Client ID:	1176160314-30

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	96		%		03/16/16	W	SW846-%Solid
Extraction for PCB	Completed				03/16/16	Q/I	SW3540C
PCB (Soxhlet SW3540	<u>C)</u>						
PCB-1016	ND	0.35	mg/kg	10	03/17/16	AW	SW8082A
PCB-1221	ND	0.35	mg/kg	10	03/17/16	AW	SW8082A
PCB-1232	ND	0.35	mg/kg	10	03/17/16	AW	SW8082A
PCB-1242	ND	0.35	mg/kg	10	03/17/16	AW	SW8082A
PCB-1248	ND	0.35	mg/kg	10	03/17/16	AW	SW8082A
PCB-1254	0.99	0.35	mg/kg	10	03/17/16	AW	SW8082A
PCB-1260	ND	0.35	mg/kg	10	03/17/16	AW	SW8082A
PCB-1262	ND	0.35	mg/kg	10	03/17/16	AW	SW8082A
PCB-1268	ND	0.35	mg/kg	10	03/17/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	87		%	10	03/17/16	AW	30 - 150 %
% TCMX	93		%	10	03/17/16	AW	30 - 150 %

Project ID: MERIDEN HOSPITAL					Phoenix I.D.: BK79045		
Client ID: 1176160314-30							
		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director March 23, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis F	Report
------------	--------

FOR: Attn: Ms. Stefanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

March 23, 2016

Sample Information		Custody Inform	Custody Information		
Matrix:	CONCRETE	Collected by:	DC	03/15/16	14:00
Location Code:	F&O-PCB	Received by:	LB	03/16/16	10:00
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	20120232.C40				

Laboratory Data

Project ID:	MERIDEN HOSPITAL
Client ID:	1176160314-31

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	98		%		03/16/16	W	SW846-%Solid
Extraction of CT ETPH	Completed				03/16/16	BC/CK	SW3545A
Extraction for PCB	Completed				03/16/16	Q/I	SW3540C
TPH by GC (Extractable	Products)					
Ext. Petroleum HC	82	50	mg/Kg	1	03/17/16	JRB	CTETPH 8015D
Identification	**		mg/Kg	1	03/17/16	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	104		%	1	03/17/16	JRB	50 - 150 %
PCB (Soxhlet SW3540C)						
PCB-1016	ND	0.34	mg/kg	10	03/21/16	AW	SW8082A
PCB-1221	ND	0.34	mg/kg	10	03/21/16	AW	SW8082A
PCB-1232	ND	0.34	mg/kg	10	03/21/16	AW	SW8082A
PCB-1242	ND	0.34	mg/kg	10	03/21/16	AW	SW8082A
PCB-1248	ND	0.34	mg/kg	10	03/21/16	AW	SW8082A
PCB-1254	0.81	0.34	mg/kg	10	03/21/16	AW	SW8082A
PCB-1260	ND	0.34	mg/kg	10	03/21/16	AW	SW8082A
PCB-1262	ND	0.34	mg/kg	10	03/21/16	AW	SW8082A
PCB-1268	ND	0.34	mg/kg	10	03/21/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	89		%	10	03/21/16	AW	30 - 150 %
% TCMX	71		%	10	03/21/16	AW	30 - 150 %

Project ID: MERIDEN HOS	SPITAL		Phoenix I.D.: BK7904					
Client ID: 1176160314-31								
		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

-

TPH Comment:

**Petroleum hydrocarbon chromatogram contains a multicomponent hydrocarbon distribution in the range of C14 to C36. The sample was quantitated against a C9-C36 alkane hydrocarbon standard.

PCB Comment:

For PCBs, in order to reach the desired RL, multiple cleanup steps were performed. The extract was cleaned up with a combination of sulfuric acid, potassium permanganate, copper powder and additional florisil.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director March 23, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

March 23, 2016

FOR: Attn: Ms. Stefanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample Informa	ation	Custody Inform	nation	Date	<u>Time</u>
Matrix:	CONCRETE	Collected by:	DC	03/15/16	14:30
Location Code:	F&O-PCB	Received by:	LB	03/16/16	10:00
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	20120232.C40				

Laboratory Data

Project ID:	MERIDEN HOSPITAL
Client ID:	1176160314-32

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
Percent Solid	93		%		03/16/16	W	SW846-%Solid
Extraction for PCB	Completed				03/16/16	Q/I	SW3540C
PCB (Soxhlet SW3540	<u>()</u>						
PCB-1016	ND	0.35	mg/kg	10	03/17/16	AW	SW8082A
PCB-1221	ND	0.35	mg/kg	10	03/17/16	AW	SW8082A
PCB-1232	ND	0.35	mg/kg	10	03/17/16	AW	SW8082A
PCB-1242	ND	0.35	mg/kg	10	03/17/16	AW	SW8082A
PCB-1248	ND	0.35	mg/kg	10	03/17/16	AW	SW8082A
PCB-1254	ND	0.35	mg/kg	10	03/17/16	AW	SW8082A
PCB-1260	ND	0.35	mg/kg	10	03/17/16	AW	SW8082A
PCB-1262	ND	0.35	mg/kg	10	03/17/16	AW	SW8082A
PCB-1268	ND	0.35	mg/kg	10	03/17/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	79		%	10	03/17/16	AW	30 - 150 %
% TCMX	80		%	10	03/17/16	AW	30 - 150 %

Client ID: 1176160314-32 RL/ Parameter Result PQL Units Dilution Date/Time By Reference	Project ID: MERIDEN HOSPITAL						Phoenix I.D.: BK79047			
RL/ Parameter Result PQL Units Dilution Date/Time By Reference	Client ID: 117616031									
Parameter Result PQL Units Dilution Date/Time By Reference			RL/							
	Parameter	Result	PQL	U	Jnits	Dilution	Date/Time	By	Reference	

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director March 23, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

March 23, 2016

FOR: Attn: Ms. Stefanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample Information		Custody Inform	Date	<u>Time</u>	
Matrix:	WATER	Collected by:	DC	03/15/16	15:00
Location Code:	F&O-PCB	Received by:	LB	03/16/16	10:00
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	20120232.C40				

Laboratory Data

Project ID:	MERIDEN HOSPITAL
Client ID:	1176160314-33

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
PCB Extraction	Completed				03/16/16	ΤL	SW3510C
Polychlorinated Bij	phenyls						
PCB-1016	ND	0.50	ug/L	1	03/17/16	AW	SW8082A
PCB-1221	ND	0.50	ug/L	1	03/17/16	AW	SW8082A
PCB-1232	ND	0.50	ug/L	1	03/17/16	AW	SW8082A
PCB-1242	ND	0.50	ug/L	1	03/17/16	AW	SW8082A
PCB-1248	ND	0.50	ug/L	1	03/17/16	AW	SW8082A
PCB-1254	ND	0.50	ug/L	1	03/17/16	AW	SW8082A
PCB-1260	ND	0.50	ug/L	1	03/17/16	AW	SW8082A
PCB-1262	ND	0.50	ug/L	1	03/17/16	AW	SW8082A
PCB-1268	ND	0.50	ug/L	1	03/17/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	102		%	1	03/17/16	AW	30 - 150 %
% TCMX	96		%	1	03/17/16	AW	30 - 150 %

Project ID: MERIDEN HOS		Phoenix I.D.: BK7904						
Client ID: 1176160314-33	3							
		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference	

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Phyllis Shiller, Laboratory Director March 23, 2016 Reviewed and Released by: Ethan Lee, Project Manager

QA/QC Report

March 23, 2016

QA/QC Data

SDG I.D.: GBK79038

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 338226 (mg/k	g), QC Sam	nple No:	: BK7864	1 (BK79)	039)								
ICP Metals - Soil													
Arsenic	BRL	0.66	9.4	8.19	13.8	114			99.2			75 - 125	30
Barium	BRL	0.33	70.4	58.7	18.1	109			94.8			75 - 125	30
Cadmium	BRL	0.33	<0.37	<0.37	NC	102			88.9			75 - 125	30
Chromium	BRL	0.33	33.9	40.2	17.0	108			96.8			75 - 125	30
Lead	BRL	0.33	46.9	45.4	3.30	107			94.5			75 - 125	30
Selenium	BRL	1.3	<1.5	<1.5	NC	112			92.5			75 - 125	30
Silver	BRL	0.33	<0.37	<0.37	NC	107			104			75 - 125	30
QA/QC Batch 338229 (mg/k	g), QC Sam	nple No:	: BK7902	4 (BK790	040, BK	(79041))						
ICP Metals - Soil	<u> </u>	F		,	,		, 						
Arsenic	BRL	0.67	2.6	2.83	NC	110			94.1			75 - 125	30
Barium	BRL	0.33	57.8	56.9	1.60	105			92.5			75 - 125	30
Cadmium	BRL	0.33	<0.32	<0.34	NC	98.6			90.8			75 - 125	30
Chromium	BRL	0.33	13.6	14.0	2.90	108			97.0			75 - 125	30
Lead	BRL	0.33	27.9	30.9	10.2	101			89.0			75 - 125	30
Selenium	BRL	1.3	<1.3	<1.3	NC	111			87.8			75 - 125	30
Silver	BRL	0.33	<0.32	<0.34	NC	106			95.6			75 - 125	30
QA/QC Batch 338445 (mg/k	g), QC Sam	nple No:	: BK7986	6 (BK790	039, BK	(79040	, BK790	41)					
Mercury - Soil Comment:	BRL	0.03	<0.03	< 0.03	NC	94.3	93.4	1.0	109			70 - 130	30
Auditional Mercury criteria: LC	s acceptanc	e range i	ior waters	15 80-120	70 and 10	JI SOIIS I	570-130	70.					

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

March 23, 2016

QA/QC Data

SDG I.D.: GBK79038

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 338075 (ug/L)), QC Samp	le No: BK78637 (BK79048)									
Polychlorinated Bipher	nyls - Wat	ter									
PCB-1016	ND	0.050	106	93	13.1				40 - 140	20	
PCB-1221	ND	0.050							40 - 140	20	
PCB-1232	ND	0.050							40 - 140	20	
PCB-1242	ND	0.050							40 - 140	20	
PCB-1248	ND	0.050							40 - 140	20	
PCB-1254	ND	0.050							40 - 140	20	
PCB-1260	ND	0.050	106	95	10.9				40 - 140	20	
PCB-1262	ND	0.050							40 - 140	20	
PCB-1268	ND	0.050							40 - 140	20	
% DCBP (Surrogate Rec)	89	%	113	98	14.2				30 - 150	20	
% TCMX (Surrogate Rec) Comment:	87	%	95	87	8.8				30 - 150	20	

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

QA/QC Batch 338211 (mg/kg), QC Sample No: BK79026 10X (BK79038, BK79039, BK79040, BK79041, BK79042, BK79043, BK79044, BK79045, BK79046, BK79047)

Polych	lorinated B	phen	yls

PCB-1016	ND	0.17		91	90	1.1	104	73	35.0	40 - 140	30	r
PCB-1221	ND	0.17								40 - 140	30	
PCB-1232	ND	0.17								40 - 140	30	
PCB-1242	ND	0.17								40 - 140	30	
PCB-1248	ND	0.17								40 - 140	30	
PCB-1254	ND	0.17								40 - 140	30	
PCB-1260	ND	0.17		92	93	1.1	99	75	27.6	40 - 140	30	
PCB-1262	ND	0.17								40 - 140	30	
PCB-1268	ND	0.17								40 - 140	30	
% DCBP (Surrogate Rec)	91	%		89	91	2.2	101	74	30.9	30 - 150	30	r
% TCMX (Surrogate Rec)	80	%		95	95	0.0	106	73	36.9	30 - 150	30	r
QA/QC Batch 338230 (mg/ł	<g), qc="" san<="" td=""><td>nple No: E</td><td>3K79333 (BK7903</td><td>9, BK79040,</td><td>BK790</td><td>041, BK</td><td>79044,</td><td>BK790</td><td>46)</td><td></td><td></td><td></td></g),>	nple No: E	3K79333 (BK7903	9, BK79040,	BK790	041, BK	79044,	BK790	46)			
TPH by GC (Extractab	le Produc	: <u>ts)</u>										
Ext. Petroleum H.C.	ND	50		63	71	11.9	67	65	3.0	60 - 120	30	
% n-Pentacosane	62	%		58	72	21.5	73	72	1.4	50 - 150	30	

r = This parameter is outside laboratory RPD specified recovery limits.

QA/QC Data

									%	%	
		Blk	LCS	LCSD	LCS	MS	MSD	MS	Rec	RPD	
Parameter	Blank	RL	%	%	RPD	%	%	RPD	Limits	Limits	

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

this

Phyllis/Shiller, Laboratory Director March 23, 2016

Wednesday, March 23, 2016

Criteria: CT: GBM, RC

State: CT

Sample Criteria Exceedences Report

GBK79038 - FO-PCB

State:	CI						RL	Analysis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
BK79039	\$ETPH_SMR	Ext. Petroleum HC	CT / PESTICIDES, PCB's, TPH, a / RES DEC (mg/kg)	2100	100	500	500	mg/Kg
BK79041	\$ETPH_SMR	Ext. Petroleum HC	CT / PESTICIDES, PCB's, TPH, a / RES DEC (mg/kg)	1200	100	500	500	mg/Kg

Phoenix Laboratories does not assume responsibility for the data contained in this report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

Reasonable Confidence Protocol Laboratory Analysis QA/QC Certification Form

Labo	oratory Name:	Phoenix Environmental Labs, Inc. Client: Fuss &					uss & O'Neill	& O'Neill, Inc.				
Proje	ect Location:	MERIC	DEN HOS	PITAL		Project	Number:					
Labo	Laboratory Sample ID(s): BK79038, BK79039, BK79040, BK79041, BK79042, BK79043, BK79044, BK79045, BK79046, BK79047, BK79048											
Sam	Sampling Date(s): 3/14/2016, 3/15/2016											
RCP	RCP Methods Used:											
13	311/1312 🖌 601	10 [7000	7196	7	470/7471	8081	EPH		TO15		
✔ 80	082 🗌 815	51 [8260	8270	✔ E	TPH	9010/9012	2 🗌 VPH				
1.	 For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria falling outside of acceptable guidelines, as specified in the CT DEP method-specific Reasonable Confidence Protocol documents? 											
1a.	Were the method	d specifi	ed preserv	ation and hole	ding tim	ne requirer	nents met?	✓ Yes	🗆 No			
1b.	1b. EPH and VPH methods only: Was the VPH or EPH method conducted without significant modifications (see section 11.3 of respective RCP methods) □ Yes □ No ✓ NA									✓ NA		
2.	Were all sample described on the	s receive associa	ed by the la ated Chain	aboratory in a -of-Custody d	conditi ocumer	on consist nt(s)?	ent with that	✓ Yes	🗆 No			
3.	Were samples re	eceived	at an appr	opriate tempe	rature (< 6 Degre	es C)?	✓ Yes	🗆 No	□ NA		
4.	4. Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? ✓ Yes □ No											
5a.	a. Were reporting limits specified or referenced on the chain-of-custody? ✓ Yes □ No											
5b.	Were these reporting limits met?							✓ Yes	No			
6. For each analytical method referenced in this laboratory report package, were results reported for all constituents identified in the method-specific analyte lists presented in the Reasonable Confidence Protocol documents?								□ Yes	✓ No			
7.	Are project-spec	set?	✓ No									

Note: For all questions to which the response was "No" (with the exception of question #5a, #7), additional information must be provided in an attached narrative. If the answer to question #1, #1A or 1B is "No", the data package does not meet the requirements for "Reasonable Confidence".

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete.

Authorized Signature:

Ethan See

Date: Wednesday, March 23, 2016

Printed Name: Ethan Lee

Position: Project Manager

RCP Certification Report

March 23, 2016

SDG I.D.: GBK79038

SDG Comments

Metals Analysis:

The client requested a shorter list of elements than the 6010 RCP list. Only the RCRA 8 Metals are reported as requested on the chain of custody.

ETPH Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument:

AU-FID11 03/17/16-2

Jeff Bucko, Chemist 03/17/16

BK79044

The initial calibration (ETPH304I) RSD for the compound list was less than 30% except for the following compounds: None. As per section 7.2.3, a discrimination check standard was run and contained the following outliers: C36 23%L (20%) The continuing calibration %D for the compound list was less than 30% except for the following compounds:None.

AU-FID11 03/18/16-2

Jeff Bucko, Chemist 03/18/16

BK79040

The initial calibration (ETPH304I) RSD for the compound list was less than 30% except for the following compounds: None. The continuing calibration %D for the compound list was less than 30% except for the following compounds:None.

AU-XL1 03/17/16-2

Jeff Bucko, Chemist 03/17/16

BK79046

The initial calibration (ETPH308I) RSD for the compound list was less than 30% except for the following compounds: None. As per section 7.2.3, a discrimination check standard was run and contained the following outliers: C36 44.9%L (20%) The continuing calibration %D for the compound list was less than 30% except for the following compounds:None.

AU-XL2 03/18/16-2

Jeff Bucko, Chemist 03/18/16

BK79039, BK79041

The initial calibration (ETPH310I) RSD for the compound list was less than 30% except for the following compounds: None. The continuing calibration %D for the compound list was less than 30% except for the following compounds:None.

QC (Batch Specific):

Batch 338230 (BK79333)

BK79039, BK79040, BK79041, BK79044, BK79046

All LCS recoveries were within 60 - 120 with the following exceptions: None. All LCSD recoveries were within 60 - 120 with the following exceptions: None. All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

Mercury Narration

Were all QA/QC performance criteria specified in the analytical method achieved? Yes.

Instrument:

MERLIN 03/18/16 09:25

Mike Arsenault, Chemist 03/18/16

BK790391:10, BK79040, BK79041

The following Initial Calibration Verification (ICV) compounds did not meet criteria: None.

The following Continuing Calibration Verification (CCV) compounds did not meet criteria: CCV 03/18/16 10:03: Mercury 72% (80-120)

March 23, 2016

SDG I.D.: GBK79038

ACCOR

Mercury Narration

QC (Batch Specific):

Batch 338445 (BK79866)

BK79039, BK79040, BK79041

All LCS recoveries were within 70 - 130 with the following exceptions: None. All LCSD recoveries were within 70 - 130 with the following exceptions: None. All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

ICP Metals Narration

Were all QA/QC performance criteria specified in the analytical method achieved? Yes.

Instrument:

ARCOS 03/16/16 18:07

Emily Kolominskaya, Laura Kinnin, Chemist 03/16/16

BK79039, BK79040, BK79041

The linear range is defined daily by the calibration range.

The following Initial Calibration Verification (ICV) compounds did not meet criteria: None. The following Continuing Calibration Verification (CCV) compounds did not meet criteria: None. The following ICP Interference Check (ICSAB) compounds did not meet criteria: None.

ARCOS 03/17/16 22:18

Emily Kolominskaya, Laura Kinnin, Chemist 03/17/16

BK79040, BK79041

The linear range is defined daily by the calibration range.

The following Initial Calibration Verification (ICV) compounds did not meet criteria: None. The following Continuing Calibration Verification (CCV) compounds did not meet criteria: None. The following ICP Interference Check (ICSAB) compounds did not meet criteria: None.

QC (Batch Specific):

Batch 338226 (BK78641)

BK79039 All LCS recoveries were within 75 - 125 with the following exceptions: None.

Batch 338229 (BK79024)

BK79040, BK79041 All LCS recoveries were within 75 - 125 with the following exceptions: None.

PCB Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument:

AU-ECD3 03/17/16-1

Adam Werner, Chemist 03/17/16

BK79042, BK79044, BK79045

The initial calibration (PC0229AI) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC0229BI) RSD for the compound list was less than 20% except for the following compounds: None. The continuing calibration %D for the compound list was less than 15% except for the following compounds:None.

RCP Certification Report

March 23, 2016

SDG I.D.: GBK79038

PCB Narration

AU-ECD5 03/17/16-1

Adam Werner, Chemist 03/17/16

BK79038, BK79039, BK79040, BK79041, BK79043, BK79047

The initial calibration (PC0314AI) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC0314BI) RSD for the compound list was less than 20% except for the following compounds: None. The continuing calibration %D for the compound list was less than 15% except for the following compounds:None.

AU-ECD5 03/21/16-1

Adam Werner, Chemist 03/21/16

BK79046

The initial calibration (PC0314AI) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC0314BI) RSD for the compound list was less than 20% except for the following compounds: None. The continuing calibration %D for the compound list was less than 15% except for the following compounds:None.

AU-ECD6 03/17/16-1

Adam Werner, Chemist 03/17/16

BK79048

The initial calibration (PC0308AI) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC0308BI) RSD for the compound list was less than 20% except for the following compounds: None. The continuing calibration %D for the compound list was less than 15% except for the following compounds:None.

QC (Batch Specific):

Batch 338075 (BK78637)

BK79048

All LCS recoveries were within 40 - 140 with the following exceptions: None.

All LCSD recoveries were within 40 - 140 with the following exceptions: None.

All LCS/LCSD RPDs were less than 20% with the following exceptions: None.

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

Batch 338211 (BK79026)

BK79038, BK79039, BK79040, BK79041, BK79042, BK79043, BK79044, BK79045, BK79046, BK79047

All LCS recoveries were within 40 - 140 with the following exceptions: None.

All LCSD recoveries were within 40 - 140 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

Temperature Narration

The samples were received at 3C with cooling initiated. (Note acceptance criteria is above freezing up to 6° C)

FUSS & O'NEILL (860) 646-2469 • www.FandO.com	 Hartford Road, Manchester, CT 06040 56 Quarry Road, Trumbull, CT 06611 1419 Richland Street, Columbia, SC 29201 	 □ 78 Interstate Drive, West Springfield, MA 01089 □ 317 Iron Horse Way, Suite 204, Providence, RI 02908 □ 80 Washington Street, Suite 301, Poughkeepsie, NY 	d Zthr
CHAIN-OF-	CUSTODY RECORD	34917 72-Hour* 72-Hour* Other 9.4.Hour* \$72-Hour* 0 Other	e days) e Applies
PROJECT NAME Menden Hosphal	PROJECT LOCATION	PROJECT NUMBER LABORA	VTORY
SPORT TO: Stelenie WLESSECH VOICE TO: J.	galete + Danid Cash	Analysis Contai Request	ners
0. No.: mpler's Signature: 724 Q.C			10000000000000000000000000000000000000
urce Codes: W=Monitoring Well PW=Potable Water /=Surface Water ST=Stormwater	T=Treatment Facility S=Soil B=Sediment W=Waste A=Air C=Concrete	La Contraction of the contractio	20 WI 211111111111111111111111111111111111
-Other	umbe: Code Sampled Sample	Contraction of the service of the se	Comments
1176160314-	13 c 3/14/16 1440		9638
	(4 1230		9039
	15 1 1600		0406
	7		14041
	20 4 4 1630		Eho Pl
		Image: Section of the sectio	
ansfer Relinquished By	Accepted By D	Date Time Charge Exceptions: CT Tax Exception Date Date Other Date	
2 Great	fto freze 3/4	L 1880) Reporting and Detection Limit Requirements: ARCP Deliverables ロMCP CAM Cert レル トム	
3 7. Com	A Dinum 3	UIL 10:00 Additional Comments: MUST MARTANCE INVILLE MUST BE Z/= 1 MJ/K	
		antifactures first, craft & netals and recard	menny Kinnam

Monday, April 18, 2016

Attn: Ms. Stefanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Project ID: MERIDEN HOSPITAL Sample ID#s: BK79016 - BK79017, BK79019 - BK79020, BK79022 - BK79024, BK79026 -BK79029

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

Enclosed are revised Analysis Report pages. Please replace and discard the original pages. If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

XI: De

Phyllis/Shiller Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #MA-CT-007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

Analysis Report

April 18, 2016

FOR: Attn: Ms. Stefanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample Information		Custody Inform	nation	<u>Date</u>
Matrix:	SOIL	Collected by:	DC	03/14/16
Location Code:	F&O-PCB	Received by:	LB	03/16/16
Rush Request:	Standard	Analyzed by:	see "By" below	
P.O.#:	20120232.C40			000

Laboratory Data

SDG ID: GBK79016 Phoenix ID: BK79016

Time

10:00

9:54

Project ID:MERIDEN HOSPITALClient ID:1176160314-01

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
Silver	< 0.35	0.35	mg/Kg	1	03/17/16	LK	SW6010C
Arsenic	3.0	0.7	mg/Kg	1	03/17/16	LK	SW6010C
Barium	52.9	0.35	mg/Kg	1	03/17/16	LK	SW6010C
Cadmium	< 0.35	0.35	mg/Kg	1	03/17/16	LK	SW6010C
Chromium	13.2	0.35	mg/Kg	1	03/17/16	LK	SW6010C
Mercury	< 0.03	0.03	mg/Kg	1	03/17/16	RS	SW7471B
Lead	6.73	0.37	mg/Kg	1	03/18/16	LK	SW6010C
Selenium	< 1.4	1.4	mg/Kg	1	03/17/16	LK	SW6010C
Percent Solid	88		%		03/16/16	W	SW846-%Solid
Soil Extraction SVOA PAH	Completed				03/16/16	BB/CKV	SW3545A
Extraction of CT ETPH	Completed				03/16/16	BB/CK	SW3545A
Mercury Digestion	Completed				03/17/16	W/W	SW7471B
Total Metals Digest	Completed				03/17/16	G/AG	SW3050B
TPH by GC (Extractal	ble Products	<u>s)</u>					
Ext. Petroleum HC	ND	57	mg/Kg	1	03/17/16	JRB	CTETPH 8015D
Identification	ND		mg/Kg	1	03/17/16	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	117		%	1	03/17/16	JRB	50 - 150 %
Polynuclear Aromatic	: HC						
2-Methylnaphthalene	ND	260	ug/Kg	1	03/16/16	DD	SW8270D
Acenaphthene	ND	260	ug/Kg	1	03/16/16	DD	SW8270D
Acenaphthylene	ND	260	ug/Kg	1	03/16/16	DD	SW8270D
Anthracene	ND	260	ug/Kg	1	03/16/16	DD	SW8270D
Benz(a)anthracene	ND	260	ug/Kg	1	03/16/16	DD	SW8270D
Benzo(a)pyrene	ND	260	ug/Kg	1	03/16/16	DD	SW8270D
Benzo(b)fluoranthene	ND	260	ug/Kg	1	03/16/16	DD	SW8270D

Project ID: MERIDEN HOSPITAL Client ID: 1176160314-01

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Benzo(ghi)perylene	ND	260	ug/Kg	1	03/16/16	DD	SW8270D
Benzo(k)fluoranthene	ND	260	ug/Kg	1	03/16/16	DD	SW8270D
Chrysene	ND	260	ug/Kg	1	03/16/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	260	ug/Kg	1	03/16/16	DD	SW8270D
Fluoranthene	ND	260	ug/Kg	1	03/16/16	DD	SW8270D
Fluorene	ND	260	ug/Kg	1	03/16/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	260	ug/Kg	1	03/16/16	DD	SW8270D
Naphthalene	ND	260	ug/Kg	1	03/16/16	DD	SW8270D
Phenanthrene	ND	260	ug/Kg	1	03/16/16	DD	SW8270D
Pyrene	ND	260	ug/Kg	1	03/16/16	DD	SW8270D
QA/QC Surrogates							
% 2-Fluorobiphenyl	71		%	1	03/16/16	DD	30 - 130 %
% Nitrobenzene-d5	72		%	1	03/16/16	DD	30 - 130 %
% Terphenyl-d14	73		%	1	03/16/16	DD	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director April 18, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

April 18, 2016

FOR: Attn: Ms. Stefanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample Information		Custody Inform	nation	<u>Date</u>	<u>Time</u>	
Matrix:	SOIL	Collected by:	DC	03/14/16	10:15	
Location Code:	F&O-PCB	Received by:	LB	03/16/16	9:54	
Rush Request:	Standard	Analyzed by:	see "By" below			
P.O.#:	20120232.C40				00/700	

Laboratory Data

SDG ID: GBK79016 Phoenix ID: BK79017

Project ID:	MERIDEN HOSPITAL
Client ID:	1176160314-02W

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	84		%		03/16/16	W	SW846-%Solid
Soil Extraction SVOA PAH	Completed				03/16/16	BB/CKV	SW3545A
Extraction of CT ETPH	Completed				03/16/16	BB/CK	SW3545A
TPH by GC (Extractab	le Products)					
Ext. Petroleum HC	ND	58	mg/Kg	1	03/18/16	JRB	CTETPH 8015D
Identification	ND		mg/Kg	1	03/18/16	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	92		%	1	03/18/16	JRB	50 - 150 %
Polynuclear Aromatic	<u>HC</u>						
2-Methylnaphthalene	ND	270	ug/Kg	1	03/17/16	DD	SW8270D
Acenaphthene	ND	270	ug/Kg	1	03/17/16	DD	SW8270D
Acenaphthylene	ND	270	ug/Kg	1	03/17/16	DD	SW8270D
Anthracene	ND	270	ug/Kg	1	03/17/16	DD	SW8270D
Benz(a)anthracene	ND	270	ug/Kg	1	03/17/16	DD	SW8270D
Benzo(a)pyrene	ND	270	ug/Kg	1	03/17/16	DD	SW8270D
Benzo(b)fluoranthene	ND	270	ug/Kg	1	03/17/16	DD	SW8270D
Benzo(ghi)perylene	ND	270	ug/Kg	1	03/17/16	DD	SW8270D
Benzo(k)fluoranthene	ND	270	ug/Kg	1	03/17/16	DD	SW8270D
Chrysene	ND	270	ug/Kg	1	03/17/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	270	ug/Kg	1	03/17/16	DD	SW8270D
Fluoranthene	ND	270	ug/Kg	1	03/17/16	DD	SW8270D
Fluorene	ND	270	ug/Kg	1	03/17/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	270	ug/Kg	1	03/17/16	DD	SW8270D
Naphthalene	ND	270	ug/Kg	1	03/17/16	DD	SW8270D
Phenanthrene	ND	270	ug/Kg	1	03/17/16	DD	SW8270D
Pyrene	ND	270	ug/Kg	1	03/17/16	DD	SW8270D

Client ID: 1176160314-02W

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference	
QA/QC Surrogates								
% 2-Fluorobiphenyl	69		%	1	03/17/16	DD	30 - 130 %	
% Nitrobenzene-d5	70		%	1	03/17/16	DD	30 - 130 %	
% Terphenyl-d14	66		%	1	03/17/16	DD	30 - 130 %	

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director April 18, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

April 18, 2016

FOR: Attn: Ms. Stefanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample Information		Custody Inform	nation	<u>Date</u>	<u>Time</u>	
Matrix:	SOIL	Collected by:	DC	03/14/16	11:00	
Location Code:	F&O-PCB	Received by:	LB	03/16/16	9:54	
Rush Request:	Standard	Analyzed by:	see "By" below			
P.O.#:	20120232.C40				00/700	

Laboratory Data

SDG ID: GBK79016 Phoenix ID: BK79019

Project ID:	MERIDEN HOSPITAL
Client ID:	1176160314-04W

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	86		%		03/16/16	W	SW846-%Solid
Soil Extraction SVOA PAH	Completed				03/16/16	BB/CKV	SW3545A
Extraction of CT ETPH	Completed				03/16/16	BB/CK	SW3545A
TPH by GC (Extractab	le Products)					
Ext. Petroleum HC	ND	58	mg/Kg	1	03/18/16	JRB	CTETPH 8015D
Identification	ND		mg/Kg	1	03/18/16	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	93		%	1	03/18/16	JRB	50 - 150 %
Polynuclear Aromatic	<u>HC</u>						
2-Methylnaphthalene	ND	270	ug/Kg	1	03/17/16	DD	SW8270D
Acenaphthene	ND	270	ug/Kg	1	03/17/16	DD	SW8270D
Acenaphthylene	ND	270	ug/Kg	1	03/17/16	DD	SW8270D
Anthracene	ND	270	ug/Kg	1	03/17/16	DD	SW8270D
Benz(a)anthracene	ND	270	ug/Kg	1	03/17/16	DD	SW8270D
Benzo(a)pyrene	ND	270	ug/Kg	1	03/17/16	DD	SW8270D
Benzo(b)fluoranthene	ND	270	ug/Kg	1	03/17/16	DD	SW8270D
Benzo(ghi)perylene	ND	270	ug/Kg	1	03/17/16	DD	SW8270D
Benzo(k)fluoranthene	ND	270	ug/Kg	1	03/17/16	DD	SW8270D
Chrysene	ND	270	ug/Kg	1	03/17/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	270	ug/Kg	1	03/17/16	DD	SW8270D
Fluoranthene	ND	270	ug/Kg	1	03/17/16	DD	SW8270D
Fluorene	ND	270	ug/Kg	1	03/17/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	270	ug/Kg	1	03/17/16	DD	SW8270D
Naphthalene	ND	270	ug/Kg	1	03/17/16	DD	SW8270D
Phenanthrene	ND	270	ug/Kg	1	03/17/16	DD	SW8270D
Pyrene	ND	270	ug/Kg	1	03/17/16	DD	SW8270D

Client ID: 1176160314-04W

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
QA/QC Surrogates							
% 2-Fluorobiphenyl	72		%	1	03/17/16	DD	30 - 130 %
% Nitrobenzene-d5	70		%	1	03/17/16	DD	30 - 130 %
% Terphenyl-d14	67		%	1	03/17/16	DD	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director April 18, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

April 18, 2016

FOR: Attn: Ms. Stefanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample Information		Custody Informa	<u>tion</u>	<u>Date</u>
Matrix:	SOIL	Collected by:	DC	03/14/16
Location Code:	F&O-PCB	Received by:	LB	03/16/16
Rush Request:	Standard	Analyzed by:	see "By" below	
P.O.#:	20120232.C40			

Laboratory Data

SDG ID: GBK79016 Phoenix ID: BK79020

Time

11:15 9:54

Project ID:	MERIDEN HOSPITAL
Client ID:	1176160314-05

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Silver	< 0.36	0.36	mg/Kg	1	03/17/16	LK	SW6010C
Arsenic	2.7	0.7	mg/Kg	1	03/17/16	LK	SW6010C
Barium	54.7	0.36	mg/Kg	1	03/17/16	LK	SW6010C
Cadmium	< 0.36	0.36	mg/Kg	1	03/17/16	LK	SW6010C
Chromium	12.7	0.36	mg/Kg	1	03/17/16	LK	SW6010C
Mercury	0.07	0.03	mg/Kg	1	03/17/16	RS	SW7471B
Lead	31.1	0.33	mg/Kg	1	03/18/16	LK	SW6010C
Selenium	< 1.4	1.4	mg/Kg	1	03/17/16	LK	SW6010C
SPLP Lead	< 0.010	0.010	mg/L	1	04/12/16	LK	SW6010C
SPLP Metals Digestion	Completed				04/11/16	1/1	SW3005A
Percent Solid	94		%		03/16/16	W	SW846-%Solid
Soil Extraction SVOA PAH	Completed				03/16/16	BB/CKV	SW3545A
Extraction of CT ETPH	Completed				03/16/16	BB/CK	SW3545A
Mercury Digestion	Completed				03/17/16	W/W	SW7471B
Extraction for PCB	Completed				03/16/16	Q/I	SW3540C
SPLP Extraction for Metals	Completed				04/08/16	I	SW1312
Total Metals Digest	Completed				03/17/16	G/AG	SW3050B
TPH by GC (Extractab	le Products	<u>;)</u>					
Ext. Petroleum HC	810	260	mg/Kg	5	03/17/16	JRB	CTETPH 8015D
Identification	**		mg/Kg	5	03/17/16	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	65		%	5	03/17/16	JRB	50 - 150 %
PCB (Soxhlet SW3540	<u>()</u>						
PCB-1016	ND	0.35	mg/kg	10	03/17/16	AW	SW8082A
PCB-1221	ND	0.35	mg/kg	10	03/17/16	AW	SW8082A
PCB-1232	ND	0.35	mg/kg	10	03/17/16	AW	SW8082A

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
PCB-1242	ND	0.35	mg/kg	10	03/17/16	AW	SW8082A
PCB-1248	ND	0.35	mg/kg	10	03/17/16	AW	SW8082A
PCB-1254	ND	0.35	mg/kg	10	03/17/16	AW	SW8082A
PCB-1260	ND	0.35	mg/kg	10	03/17/16	AW	SW8082A
PCB-1262	ND	0.35	mg/kg	10	03/17/16	AW	SW8082A
PCB-1268	ND	0.35	mg/kg	10	03/17/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	66		%	10	03/17/16	AW	30 - 150 %
% TCMX	76		%	10	03/17/16	AW	30 - 150 %
Polynuclear Aromatic	: HC						
2-Methylnaphthalene	ND	240	ug/Kg	1	03/17/16	DD	SW8270D
Acenaphthene	560	240	ug/Kg	1	03/17/16	DD	SW8270D
Acenaphthylene	ND	240	ug/Kg	1	03/17/16	DD	SW8270D
Anthracene	780	240	ug/Kg	1	03/17/16	DD	SW8270D
Benz(a)anthracene	1200	240	ug/Kg	1	03/17/16	DD	SW8270D
Benzo(a)pyrene	1100	240	ug/Kg	1	03/17/16	DD	SW8270D
Benzo(b)fluoranthene	940	240	ug/Kg	1	03/17/16	DD	SW8270D
Benzo(ghi)perylene	640	240	ug/Kg	1	03/17/16	DD	SW8270D
Benzo(k)fluoranthene	870	240	ug/Kg	1	03/17/16	DD	SW8270D
Chrysene	1400	240	ug/Kg	1	03/17/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	240	ug/Kg	1	03/17/16	DD	SW8270D
Fluoranthene	2800	240	ug/Kg	1	03/17/16	DD	SW8270D
Fluorene	480	240	ug/Kg	1	03/17/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	640	240	ug/Kg	1	03/17/16	DD	SW8270D
Naphthalene	380	240	ug/Kg	1	03/17/16	DD	SW8270D
Phenanthrene	3500	240	ug/Kg	1	03/17/16	DD	SW8270D
Pyrene	2900	240	ug/Kg	1	03/17/16	DD	SW8270D
QA/QC Surrogates							
% 2-Fluorobiphenyl	57		%	1	03/17/16	DD	30 - 130 %
% Nitrobenzene-d5	64		%	1	03/17/16	DD	30 - 130 %
% Terphenyl-d14	55		%	1	03/17/16	DD	30 - 130 %

Project ID: MERIDEN HOSPITAL					Pł	noeni	x I.D.: BK790)20
Client ID: 1176160314-05								
		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

TPH Comment:

**Petroleum hydrocarbon chromatogram contains a multicomponent hydrocarbon distribution in the range of C16 to C36. The sample was quantitated against a C9-C36 alkane hydrocarbon standard.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director April 18, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

April 18, 2016

FOR: Attn: Ms. Stefanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample Informa	ation	Custody Inform	nation	<u>Date</u>
Matrix:	SOIL	Collected by:	DC	03/14/16
Location Code:	F&O-PCB	Received by:	LB	03/16/16
Rush Request:	Standard	Analyzed by:	see "By" below	
P.O.#:	20120232.C40			

Laboratory Data

SDG ID: GBK79016 Phoenix ID: BK79022

Time

11:30 9:54

Project ID:	MERIDEN HOSPITAL
Client ID:	1176160314-07

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
Silver	< 0.33	0.33	mg/Kg	1	03/17/16	LK	SW6010C
Arsenic	4.0	0.7	mg/Kg	1	03/17/16	LK	SW6010C
Barium	86.7	0.33	mg/Kg	1	03/17/16	LK	SW6010C
Cadmium	< 0.33	0.33	mg/Kg	1	03/17/16	LK	SW6010C
Chromium	23.3	0.33	mg/Kg	1	03/17/16	LK	SW6010C
Mercury	< 0.03	0.03	mg/Kg	1	03/17/16	RS	SW7471B
Lead	29.1	0.34	mg/Kg	1	03/18/16	LK	SW6010C
Selenium	< 1.3	1.3	mg/Kg	1	03/17/16	LK	SW6010C
Percent Solid	90		%		03/16/16	W	SW846-%Solid
Soil Extraction SVOA PAH	Completed				03/16/16	BB/CKV	SW3545A
Extraction of CT ETPH	Completed				03/16/16	BB/CK	SW3545A
Mercury Digestion	Completed				03/17/16	W/W	SW7471B
Total Metals Digest	Completed				03/17/16	G/AG	SW3050B
TPH by GC (Extractal	ole Products	<u>s)</u>					
Ext. Petroleum HC	ND	54	mg/Kg	1	03/18/16	JRB	CTETPH 8015D
Identification	ND		mg/Kg	1	03/18/16	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	88		%	1	03/18/16	JRB	50 - 150 %
Polynuclear Aromatic	<u>: HC</u>						
2-Methylnaphthalene	ND	260	ug/Kg	1	03/17/16	DD	SW8270D
Acenaphthene	ND	260	ug/Kg	1	03/17/16	DD	SW8270D
Acenaphthylene	ND	260	ug/Kg	1	03/17/16	DD	SW8270D
Anthracene	ND	260	ug/Kg	1	03/17/16	DD	SW8270D
Benz(a)anthracene	ND	260	ug/Kg	1	03/17/16	DD	SW8270D
Benzo(a)pyrene	ND	260	ug/Kg	1	03/17/16	DD	SW8270D
Benzo(b)fluoranthene	ND	260	ug/Kg	1	03/17/16	DD	SW8270D

Project ID: MERIDEN HOSPITAL Client ID: 1176160314-07

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
Benzo(ghi)perylene	ND	260	ug/Kg	1	03/17/16	DD	SW8270D
Benzo(k)fluoranthene	ND	260	ug/Kg	1	03/17/16	DD	SW8270D
Chrysene	ND	260	ug/Kg	1	03/17/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	260	ug/Kg	1	03/17/16	DD	SW8270D
Fluoranthene	ND	260	ug/Kg	1	03/17/16	DD	SW8270D
Fluorene	ND	260	ug/Kg	1	03/17/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	260	ug/Kg	1	03/17/16	DD	SW8270D
Naphthalene	ND	260	ug/Kg	1	03/17/16	DD	SW8270D
Phenanthrene	ND	260	ug/Kg	1	03/17/16	DD	SW8270D
Pyrene	ND	260	ug/Kg	1	03/17/16	DD	SW8270D
QA/QC Surrogates							
% 2-Fluorobiphenyl	72		%	1	03/17/16	DD	30 - 130 %
% Nitrobenzene-d5	72		%	1	03/17/16	DD	30 - 130 %
% Terphenyl-d14	69		%	1	03/17/16	DD	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director April 18, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

April 18, 2016

FOR: Attn: Ms. Stefanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample Informa	ation	Custody Inform	nation	<u>Date</u>	<u>Time</u>	
Matrix:	SOIL	Collected by:	DC	03/14/16	12:30	
Location Code:	F&O-PCB	Received by:	LB	03/16/16	9:54	
Rush Request:	Standard	Analyzed by:	see "By" below			
P.O.#:	20120232.C40					

Laboratory Data

SDG ID: GBK79016 Phoenix ID: BK79023

Project ID:	MERIDEN HOSPITAL
Client ID:	1176160314-08

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
Silver	< 0.33	0.33	mg/Kg	1	03/17/16	LK	SW6010C
Arsenic	3.7	0.7	mg/Kg	1	03/17/16	LK	SW6010C
Barium	72.6	0.33	mg/Kg	1	03/17/16	LK	SW6010C
Cadmium	< 0.33	0.33	mg/Kg	1	03/17/16	LK	SW6010C
Chromium	17.7	0.33	mg/Kg	1	03/17/16	LK	SW6010C
Mercury	0.07	0.03	mg/Kg	1	03/17/16	RS	SW7471B
Lead	41.5	0.39	mg/Kg	1	03/18/16	LK	SW6010C
Selenium	< 1.5	1.5	mg/Kg	1	03/18/16	LK	SW6010C
SPLP Chromium	< 0.010	0.010	mg/L	1	04/14/16	EK	SW6010C
SPLP Lead	< 0.010	0.010	mg/L	1	04/14/16	EK	SW6010C
SPLP Metals Digestion	Completed				04/11/16	1/1	SW3005A
Percent Solid	90		%		03/16/16	W	SW846-%Solid
Soil Extraction SVOA PAH	Completed				03/16/16	BB/CKV	SW3545A
Extraction of CT ETPH	Completed				03/16/16	BB/CK	SW3545A
Mercury Digestion	Completed				03/17/16	W/W	SW7471B
SPLP Extraction for Metals	Completed				04/08/16	I	SW1312
Total Metals Digest	Completed				03/17/16	G/AG	SW3050B
Field Extraction	Completed				03/14/16		SW5035A
TPH by GC (Extractabl	le Products	5)					
Ext. Petroleum HC	ND	54	mg/Kg	1	03/18/16	JRB	CTETPH 8015D
Identification	ND		mg/Kg	1	03/18/16	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	98		%	1	03/18/16	JRB	50 - 150 %
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	4.7	ug/Kg	1	03/17/16	JLI	SW8260
1,1,1-Trichloroethane	ND	4.7	ug/Kg	1	03/17/16	JLI	SW8260

Devementer	Desult	RL/	Linite	Dilution	Data/Time	D. /	Deference
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
1,1,2,2-Tetrachloroethane	ND	2.8	ug/Kg	1	03/17/16	JLI	SW8260
1,1,2-Trichloroethane	ND	4.7	ug/Kg	1	03/17/16	JLI	SW8260
1,1-Dichloroethane	ND	4.7	ug/Kg	1	03/17/16	JLI	SW8260
1,1-Dichloroethene	ND	4.7	ug/Kg	1	03/17/16	JLI	SW8260
1,1-Dichloropropene	ND	4.7	ug/Kg	1	03/17/16	JLI	SW8260
1,2,3-Trichlorobenzene	ND	4.7	ug/Kg	1	03/17/16	JLI	SW8260
1,2,3-Trichloropropane	ND	4.7	ug/Kg	1	03/17/16	JLI	SW8260
1,2,4-Trichlorobenzene	ND	4.7	ug/Kg	1	03/17/16	JLI	SW8260
1,2,4-Trimethylbenzene	ND	4.7	ug/Kg	1	03/17/16	JLI	SW8260
1,2-Dibromo-3-chloropropane	ND	4.7	ug/Kg	1	03/17/16	JLI	SW8260
1,2-Dibromoethane	ND	4.7	ug/Kg	1	03/17/16	JLI	SW8260
1,2-Dichlorobenzene	ND	4.7	ug/Kg	1	03/17/16	JLI	SW8260
1,2-Dichloroethane	ND	4.7	ug/Kg	1	03/17/16	JLI	SW8260
1,2-Dichloropropane	ND	4.7	ug/Kg	1	03/17/16	JLI	SW8260
1,3,5-Trimethylbenzene	ND	4.7	ug/Kg	1	03/17/16	JLI	SW8260
1,3-Dichlorobenzene	ND	4.7	ug/Kg	1	03/17/16	JLI	SW8260
1,3-Dichloropropane	ND	4.7	ug/Kg	1	03/17/16	JLI	SW8260
1,4-Dichlorobenzene	ND	4.7	ug/Kg	1	03/17/16	JLI	SW8260
2,2-Dichloropropane	ND	4.7	ug/Kg	1	03/17/16	JLI	SW8260
2-Chlorotoluene	ND	4.7	ug/Kg	1	03/17/16	JLI	SW8260
2-Hexanone	ND	23	ug/Kg	1	03/17/16	JLI	SW8260
2-Isopropyltoluene	ND	4.7	ug/Kg	1	03/17/16	JLI	SW8260
4-Chlorotoluene	ND	4.7	ug/Kg	1	03/17/16	JLI	SW8260
4-Methyl-2-pentanone	ND	23	ug/Kg	1	03/17/16	JLI	SW8260
Acetone	ND	230	ug/Kg	1	03/17/16	JLI	SW8260
Acrylonitrile	ND	4.7	ug/Kg	1	03/17/16	JLI	SW8260
Benzene	ND	4.7	ug/Kg	1	03/17/16	JLI	SW8260
Bromobenzene	ND	4.7	ug/Kg	1	03/17/16	JLI	SW8260
Bromochloromethane	ND	4.7	ug/Kg	1	03/17/16	JLI	SW8260
Bromodichloromethane	ND	4.7	ug/Kg	1	03/17/16	JLI	SW8260
Bromoform	ND	4.7	ug/Kg	1	03/17/16	JLI	SW8260
Bromomethane	ND	4.7	ua/Ka	1	03/17/16	JLI	SW8260
Carbon Disulfide	ND	4.7	ug/Kg	1	03/17/16	JLI	SW8260
Carbon tetrachloride	ND	4.7	ua/Ka	1	03/17/16	JLI	SW8260
Chlorobenzene	ND	4.7	ug/Kg	1	03/17/16	JLI	SW8260
Chloroethane	ND	4.7	ug/Kg	1	03/17/16	JLI	SW8260
Chloroform	ND	4.7	ua/Ka	1	03/17/16	JLI	SW8260
Chloromethane	ND	4.7	ua/Ka	1	03/17/16	JLI	SW8260
cis-1 2-Dichloroethene	ND	4.7	ug/Ka	1	03/17/16	JLI	SW8260
cis-1 3-Dichloropropene	ND	4.7	ua/Ka	1	03/17/16	JLI	SW8260
Dibromochloromethane	ND	2.8	ug/Ka	1	03/17/16	JLI	SW8260
Dibromomethane	ND	4.7	ug/Ka	1	03/17/16	JLI	SW8260
Dichlorodifluoromethane	ND	4.7	ug/Kg	1	03/17/16	JI I	SW8260
Ethylbenzene	ND	47	ug/Kg	1	03/17/16		SW8260
Hexachlorobutadiene	ND	47	ug/Kg	1	03/17/16		SW8260
Isopropylbenzene	ND	47	ug/Kg	1	03/17/16		SW8260
m&n-Xvlana	ND	47	ug/Kg	' 1	03/17/16		SW8260
Methyl Ethyl Ketone	ND	28	ug/Kg	' 1	03/17/16		SW8260
Mothyl t butyl other (MTPE)		03	ug/Kg	1	03/17/16	11	SW/8260
weinyi i-bulyi elner (WIBE)		5.3	uy/Ny	I	03/17/10	JLI	JVV0200

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
Methylene chloride	ND	9.3	ug/Kg	1	03/17/16	JLI	SW8260
Naphthalene	ND	4.7	ug/Kg	1	03/17/16	JLI	SW8260
n-Butylbenzene	ND	4.7	ug/Kg	1	03/17/16	JLI	SW8260
n-Propylbenzene	ND	4.7	ug/Kg	1	03/17/16	JLI	SW8260
o-Xylene	ND	4.7	ug/Kg	1	03/17/16	JLI	SW8260
p-Isopropyltoluene	ND	4.7	ug/Kg	1	03/17/16	JLI	SW8260
sec-Butylbenzene	ND	4.7	ug/Kg	1	03/17/16	JLI	SW8260
Styrene	ND	4.7	ug/Kg	1	03/17/16	JLI	SW8260
tert-Butylbenzene	ND	4.7	ug/Kg	1	03/17/16	JLI	SW8260
Tetrachloroethene	ND	4.7	ug/Kg	1	03/17/16	JLI	SW8260
Tetrahydrofuran (THF)	ND	9.3	ug/Kg	1	03/17/16	JLI	SW8260
Toluene	ND	4.7	ug/Kg	1	03/17/16	JLI	SW8260
Total Xylenes	ND	4.7	ug/Kg	1	03/17/16	JLI	SW8260
trans-1,2-Dichloroethene	ND	4.7	ug/Kg	1	03/17/16	JLI	SW8260
trans-1,3-Dichloropropene	ND	4.7	ug/Kg	1	03/17/16	JLI	SW8260
trans-1,4-dichloro-2-butene	ND	9.3	ug/Kg	1	03/17/16	JLI	SW8260
Trichloroethene	ND	4.7	ug/Kg	1	03/17/16	JLI	SW8260
Trichlorofluoromethane	ND	4.7	ug/Kg	1	03/17/16	JLI	SW8260
Trichlorotrifluoroethane	ND	4.7	ug/Kg	1	03/17/16	JLI	SW8260
Vinyl chloride	ND	4.7	ug/Kg	1	03/17/16	JLI	SW8260
QA/QC Surrogates							
% 1.2-dichlorobenzene-d4	101		%	1	03/17/16	JLI	70 - 130 %
% Bromofluorobenzene	94		%	1	03/17/16	JLI	70 - 130 %
% Dibromofluoromethane	97		%	1	03/17/16	JLI	70 - 130 %
% Toluene-d8	97		%	1	03/17/16	JLI	70 - 130 %
Polynuclear Aromatic	HC						
2-Methylnaphthalene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Acenaphthene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Acenaphthylene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Anthracene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Benz(a)anthracene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Benzo(a)pyrene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Benzo(b)fluoranthene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Benzo(ghi)pervlene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Benzo(k)fluoranthene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Chrvsene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Fluoranthene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Fluorene	ND	250	ua/Ka	1	03/17/16	DD	SW8270D
Indeno(1.2.3-cd)pyrene	ND	250	ua/Ka	1	03/17/16	DD	SW8270D
Nanhthalene	ND	250	ua/Ka	1	03/17/16	DD	SW8270D
Phenanthrene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Pyrene	ND	250	ua/Ka	1	03/17/16	DD	SW8270D
QA/QC Surrogates			~9,9	·			
% 2-Fluorobinbenyl	68		%	1	03/17/16	סס	30 - 130 %
% Nitrobenzene-d5	61		%	1	03/17/16	סכ	30 - 130 %
% Terphenyl-d14	65		%	1	03/17/16		30 - 130 %
				•			

Client ID: 1176160314-08 RL/ Parameter Result PQL Units Dilution Date/Time By Reference	Project ID: MERIDEN HOSPITAL						Pł	noenix	kI.D.: BK7902	23
RL/ Parameter Result PQL Units Dilution Date/Time By Reference	Client ID: 1176160314-0	08								
Parameter Result PQL Units Dilution Date/Time By Reference			RL/							
	Parameter	Result	PQL	l	Units	Dilution	Date/Time	Ву	Reference	

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director April 18, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

April 18, 2016

FOR: Attn: Ms. Stefanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample Informa	ation	Custody Inforn	nation	<u>Date</u>
Matrix:	SOIL	Collected by:	DC	03/14/16
Location Code:	F&O-PCB	Received by:	LB	03/16/16
Rush Request:	Standard	Analyzed by:	see "By" below	
P.O.#:	20120232.C40			

Laboratory Data

SDG ID: GBK79016 Phoenix ID: BK79024

Time

13:30 9:54

Project ID:	MERIDEN HOSPITAL
Client ID:	1176160314-09

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Silver	< 0.32	0.32	mg/Kg	1	03/17/16	LK	SW6010C
Arsenic	2.6	0.6	mg/Kg	1	03/17/16	LK	SW6010C
Barium	57.8	0.32	mg/Kg	1	03/17/16	LK	SW6010C
Cadmium	< 0.32	0.32	mg/Kg	1	03/17/16	LK	SW6010C
Chromium	13.6	0.32	mg/Kg	1	03/17/16	LK	SW6010C
Mercury	0.07	0.03	mg/Kg	1	03/17/16	RS	SW7471B
Lead	27.9	0.32	mg/Kg	1	03/17/16	LK	SW6010C
Selenium	< 1.3	1.3	mg/Kg	1	03/17/16	LK	SW6010C
Percent Solid	93		%		03/16/16	W	SW846-%Solid
Soil Extraction SVOA PAH	Completed				03/16/16	BB/CKV	SW3545A
Extraction of CT ETPH	Completed				03/16/16	BB/CK	SW3545A
Mercury Digestion	Completed				03/17/16	W/W	SW7471B
Total Metals Digest	Completed				03/16/16	G/AG	SW3050B
Field Extraction	Completed				03/14/16		SW5035A
TPH by GC (Extractab	le Products	<u>s)</u>					
Ext. Petroleum HC	ND	54	mg/Kg	1	03/17/16	JRB	CTETPH 8015D
Identification	ND		mg/Kg	1	03/17/16	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	82		%	1	03/17/16	JRB	50 - 150 %
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	4.6	ug/Kg	1	03/17/16	JLI	SW8260
1,1,1-Trichloroethane	ND	4.6	ug/Kg	1	03/17/16	JLI	SW8260
1,1,2,2-Tetrachloroethane	ND	2.7	ug/Kg	1	03/17/16	JLI	SW8260
1,1,2-Trichloroethane	ND	4.6	ug/Kg	1	03/17/16	JLI	SW8260
1,1-Dichloroethane	ND	4.6	ug/Kg	1	03/17/16	JLI	SW8260
1,1-Dichloroethene	ND	4.6	ug/Kg	1	03/17/16	JLI	SW8260

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
1,1-Dichloropropene	ND	4.6	ug/Kg	1	03/17/16	JLI	SW8260
1,2,3-Trichlorobenzene	ND	4.6	ug/Kg	1	03/17/16	JLI	SW8260
1,2,3-Trichloropropane	ND	4.6	ug/Kg	1	03/17/16	JLI	SW8260
1,2,4-Trichlorobenzene	ND	4.6	ug/Kg	1	03/17/16	JLI	SW8260
1,2,4-Trimethylbenzene	ND	4.6	ug/Kg	1	03/17/16	JLI	SW8260
1,2-Dibromo-3-chloropropane	ND	4.6	ug/Kg	1	03/17/16	JLI	SW8260
1,2-Dibromoethane	ND	4.6	ug/Kg	1	03/17/16	JLI	SW8260
1,2-Dichlorobenzene	ND	4.6	ug/Kg	1	03/17/16	JLI	SW8260
1,2-Dichloroethane	ND	4.6	ug/Kg	1	03/17/16	JLI	SW8260
1,2-Dichloropropane	ND	4.6	ug/Kg	1	03/17/16	JLI	SW8260
1,3,5-Trimethylbenzene	ND	4.6	ug/Kg	1	03/17/16	JLI	SW8260
1,3-Dichlorobenzene	ND	4.6	ug/Kg	1	03/17/16	JLI	SW8260
1,3-Dichloropropane	ND	4.6	ug/Kg	1	03/17/16	JLI	SW8260
1,4-Dichlorobenzene	ND	4.6	ug/Kg	1	03/17/16	JLI	SW8260
2,2-Dichloropropane	ND	4.6	ug/Kg	1	03/17/16	JLI	SW8260
2-Chlorotoluene	ND	4.6	ug/Kg	1	03/17/16	JLI	SW8260
2-Hexanone	ND	23	ug/Kg	1	03/17/16	JLI	SW8260
2-Isopropyltoluene	ND	4.6	ug/Kg	1	03/17/16	JLI	SW8260
4-Chlorotoluene	ND	4.6	ug/Kg	1	03/17/16	JLI	SW8260
4-Methyl-2-pentanone	ND	23	ug/Kg	1	03/17/16	JLI	SW8260
Acetone	ND	230	ug/Kg	1	03/17/16	JLI	SW8260
Acrylonitrile	ND	4.6	ug/Kg	1	03/17/16	JLI	SW8260
Benzene	ND	4.6	ug/Kg	1	03/17/16	JLI	SW8260
Bromobenzene	ND	4.6	ug/Kg	1	03/17/16	JLI	SW8260
Bromochloromethane	ND	4.6	ug/Kg	1	03/17/16	JLI	SW8260
Bromodichloromethane	ND	4.6	ug/Kg	1	03/17/16	JLI	SW8260
Bromoform	ND	4.6	ug/Kg	1	03/17/16	JLI	SW8260
Bromomethane	ND	4.6	ug/Kg	1	03/17/16	JLI	SW8260
Carbon Disulfide	ND	4.6	ug/Kg	1	03/17/16	JLI	SW8260
Carbon tetrachloride	ND	4.6	ug/Kg	1	03/17/16	JLI	SW8260
Chlorobenzene	ND	4.6	ug/Kg	1	03/17/16	JLI	SW8260
Chloroethane	ND	4.6	ug/Kg	1	03/17/16	JLI	SW8260
Chloroform	ND	4.6	ug/Kg	1	03/17/16	JLI	SW8260
Chloromethane	ND	4.6	ug/Kg	1	03/17/16	JLI	SW8260
cis-1,2-Dichloroethene	ND	4.6	ug/Kg	1	03/17/16	JLI	SW8260
cis-1,3-Dichloropropene	ND	4.6	ug/Kg	1	03/17/16	JLI	SW8260
Dibromochloromethane	ND	2.7	ug/Kg	1	03/17/16	JLI	SW8260
Dibromomethane	ND	4.6	ug/Kg	1	03/17/16	JLI	SW8260
Dichlorodifluoromethane	ND	4.6	ug/Kg	1	03/17/16	JLI	SW8260
Ethylbenzene	ND	4.6	ug/Kg	1	03/17/16	JLI	SW8260
Hexachlorobutadiene	ND	4.6	ug/Kg	1	03/17/16	JLI	SW8260
Isopropylbenzene	ND	4.6	ug/Kg	1	03/17/16	JLI	SW8260
m&p-Xylene	ND	4.6	ug/Kg	1	03/17/16	JLI	SW8260
Methyl Ethyl Ketone	ND	27	ug/Kg	1	03/17/16	JLI	SW8260
Methyl t-butyl ether (MTBE)	ND	9.1	ug/Kg	1	03/17/16	JLI	SW8260
Methylene chloride	ND	9.1	ug/Kg	1	03/17/16	JLI	SW8260
Naphthalene	ND	4.6	ug/Kg	1	03/17/16	JLI	SW8260
n-Butylbenzene	ND	4.6	ug/Kg	1	03/17/16	JLI	SW8260
n-Propylbenzene	ND	4.6	ug/Kg	1	03/17/16	JLI	SW8260

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
o-Xylene	ND	4.6	ug/Kg	1	03/17/16	JLI	SW8260
p-Isopropyltoluene	ND	4.6	ug/Kg	1	03/17/16	JLI	SW8260
sec-Butylbenzene	ND	4.6	ug/Kg	1	03/17/16	JLI	SW8260
Styrene	ND	4.6	ug/Kg	1	03/17/16	JLI	SW8260
tert-Butylbenzene	ND	4.6	ug/Kg	1	03/17/16	JLI	SW8260
Tetrachloroethene	ND	4.6	ug/Kg	1	03/17/16	JLI	SW8260
Tetrahydrofuran (THF)	ND	9.1	ug/Kg	1	03/17/16	JLI	SW8260
Toluene	ND	4.6	ug/Kg	1	03/17/16	JLI	SW8260
Total Xylenes	ND	4.6	ug/Kg	1	03/17/16	JLI	SW8260
trans-1,2-Dichloroethene	ND	4.6	ug/Kg	1	03/17/16	JLI	SW8260
trans-1,3-Dichloropropene	ND	4.6	ug/Kg	1	03/17/16	JLI	SW8260
trans-1,4-dichloro-2-butene	ND	9.1	ug/Kg	1	03/17/16	JLI	SW8260
Trichloroethene	ND	4.6	ug/Kg	1	03/17/16	JLI	SW8260
Trichlorofluoromethane	ND	4.6	ug/Kg	1	03/17/16	JLI	SW8260
Trichlorotrifluoroethane	ND	4.6	ug/Kg	1	03/17/16	JLI	SW8260
Vinyl chloride	ND	4.6	ug/Kg	1	03/17/16	JLI	SW8260
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	99		%	1	03/17/16	JLI	70 - 130 %
% Bromofluorobenzene	96		%	1	03/17/16	JLI	70 - 130 %
% Dibromofluoromethane	97		%	1	03/17/16	JLI	70 - 130 %
% Toluene-d8	98		%	1	03/17/16	JLI	70 - 130 %
Polynuclear Aromatic	HC						
2-Methylnaphthalene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Acenaphthene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Acenaphthylene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Anthracene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Benz(a)anthracene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Benzo(a)pyrene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Benzo(b)fluoranthene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Benzo(ghi)perylene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Benzo(k)fluoranthene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Chrysene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Fluoranthene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Fluorene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Naphthalene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Phenanthrene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Pyrene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
QA/QC Surrogates							
% 2-Fluorobiphenyl	62		%	1	03/17/16	DD	30 - 130 %
% Nitrobenzene-d5	58		%	1	03/17/16	DD	30 - 130 %
% Terphenyl-d14	55		%	1	03/17/16	DD	30 - 130 %

Project ID: MERIDEN HC			Pł	noenix	x I.D.: BK79024		
Client ID: 1176160314-0)9						
		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director April 18, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

April 18, 2016

FOR: Attn: Ms. Stefanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample Informa	ation	Custody Inform	nation	<u>Date</u>	<u>Time</u>	
Matrix:	SOIL	Collected by:	DC	03/14/16	14:06	
Location Code:	F&O-PCB	Received by:	LB	03/16/16	9:54	
Rush Request:	Standard	Analyzed by:	see "By" below			
P.O.#:	20120232.C40					

Laboratory Data

SDG ID: GBK79016 Phoenix ID: BK79026

MERIDEN HOSPITAL Project ID: Client ID: 1176160314-11

_		RL/				_	
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Silver	0.63	0.31	mg/Kg	1	03/17/16	LK	SW6010C
Arsenic	4.1	0.6	mg/Kg	1	03/17/16	LK	SW6010C
Barium	78.1	0.31	mg/Kg	1	03/17/16	LK	SW6010C
Cadmium	< 0.31	0.31	mg/Kg	1	03/17/16	LK	SW6010C
Chromium	18.4	0.31	mg/Kg	1	03/17/16	LK	SW6010C
Mercury	0.09	0.02	mg/Kg	1	03/17/16	RS	SW7471B
Lead	35.4	0.31	mg/Kg	1	03/17/16	LK	SW6010C
Selenium	< 1.3	1.3	mg/Kg	1	03/17/16	LK	SW6010C
SPLP Chromium	< 0.010	0.010	mg/L	1	04/12/16	EK	SW6010C
SPLP Lead	< 0.010	0.010	mg/L	1	04/12/16	EK	SW6010C
SPLP Metals Digestion	Completed				04/11/16	1/1	SW3005A
Percent Solid	95		%		03/16/16	W	SW846-%Solid
Soil Extraction SVOA PAH	Completed				03/16/16	BB/CKV	SW3545A
Extraction of CT ETPH	Completed				03/16/16	BB/CK	SW3545A
Mercury Digestion	Completed				03/17/16	W/W	SW7471B
Extraction for PCB	Completed				03/16/16	Q/I	SW3540C
SPLP PCB Extraction	Completed				04/11/16	LZ/T	SW3510C/SW3520C
SPLP Extraction for Metals	Completed				04/08/16	I	SW1312
SPLP Extraction for Organics	Completed				04/08/16	I	SW1312
SPLP Semivolatiles (SIM) Ext.	Completed				04/11/16	P/D	SW3510C/SW3520C
Total Metals Digest	Completed				03/16/16	G/AG	SW3050B
Field Extraction	Completed				03/14/16		SW5035A
TPH by GC (Extractable	e Products	<u>s)</u>					
Ext. Petroleum HC	230	51	mg/Kg	1	03/17/16	JRB	CTETPH 8015D
Identification	**		mg/Kg	1	03/17/16	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	98		%	1	03/17/16	JRB	50 - 150 %

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
PCB (Soxhlet SW35400	<u>C)</u>						
PCB-1016	ND	17	mg/kg	500	03/17/16	AW	SW8082A
PCB-1221	ND	17	mg/kg	500	03/17/16	AW	SW8082A
PCB-1232	ND	17	mg/kg	500	03/17/16	AW	SW8082A
PCB-1242	ND	17	mg/kg	500	03/17/16	AW	SW8082A
PCB-1248	ND	17	mg/kg	500	03/17/16	AW	SW8082A
PCB-1254	180	17	mg/kg	500	03/17/16	AW	SW8082A
PCB-1260	ND	17	ma/ka	500	03/17/16	AW	SW8082A
PCB-1262	ND	17	ma/ka	500	03/17/16	AW	SW8082A
PCB-1268	ND	17	ma/ka	500	03/17/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	Diluted Out		%	500	03/17/16	AW	30 - 150 %
% TCMX	Diluted Out		%	500	03/17/16	AW	30 - 150 %
	_		,,,		00,11,10		
SPLP Polychlorinated	Biphenyls						
PCB-1016	ND	0.55	ug/L	1	04/12/16	AW	SW8082A
PCB-1221	ND	0.55	ug/L	1	04/12/16	AW	SW8082A
PCB-1232	ND	0.55	ug/L	1	04/12/16	AW	SW8082A
PCB-1242	ND	0.55	ug/L	1	04/12/16	AW	SW8082A
PCB-1248	ND	0.55	ug/L	1	04/12/16	AW	SW8082A
PCB-1254	ND	0.55	ug/L	1	04/12/16	AW	SW8082A
PCB-1260	ND	0.55	ug/L	1	04/12/16	AW	SW8082A
PCB-1262	ND	0.55	ug/L	1	04/12/16	AW	SW8082A
PCB-1268	ND	0.55	ug/L	1	04/12/16	AW	SW8082A
QA/QC Surrogates							
%DCBP (Surrogate Rec)	48		%	1	04/12/16	AW	30 - 150 %
%TCMX (Surrogate Rec)	110		%	1	04/12/16	AW	30 - 150 %
Volatiles							
1 1 1 2-Tetrachloroethane	ND	56	ua/Ka	1	03/17/16	.11.1	SW8260
1 1 1-Trichloroethane	ND	5.6	ug/Kg	1	03/17/16		SW8260
1 1 2 2-Tetrachloroethane	ND	3.3	ug/Kg	1	03/17/16	JI I	SW8260
1 1 2-Trichloroethane	ND	5.6	ug/Kg	1	03/17/16		SW8260
1 1-Dichloroethane	ND	5.6	ug/Kg	1	03/17/16		SW8260
1 1-Dichloroethene	ND	5.6	ug/Kg	1	03/17/16		SW8260
1 1-Dichloropropene	ND	5.6	ug/Kg	1	03/17/16		SW8260
1 2 3-Trichlorobenzene	ND	5.6	ug/Kg	1	03/17/16		SW8260
1.2.3-Trichloropropage	ND	5.6	ug/Kg	1	03/17/16		SW8260
1.2.4-Trichlorobenzene	ND	5.6	ug/Kg	1	03/17/16	11	SW/8260
1.2.4 Trimothylbonzono	11	5.6	ug/Kg	1	03/17/16	11	SW/8260
1.2 Dibromo 2 chloropropopo	ND	5.6	ug/Kg	1	03/17/16	11	SW8260
1,2-Dibromosthana	ND	5.6	ug/Kg	1	03/17/16	11	SW/8260
		5.0		1	03/17/16		SW/8260
		5.0		1	03/17/16		SW/8260
		5.0		1	03/17/10	JLI 	SW0200
		5.0 5.6	ug/rg	1	03/17/10	JLI	SW0200
1,3,5-I rimethylbenzene		0.C	ug/Kg	T A	03/17/16	JLI	3VV020U
	ND	0.C	ug/Kg	1	03/17/16	JLI	SVV820U
1,3-Dichloropropane	ND	5.6	ug/Kg	1	03/17/16	JLI	5008260
1,4-Dichlorobenzene	ND	5.6	ug/Kg	1	03/17/16	JLI	SW8260

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
2,2-Dichloropropane	ND	5.6	ug/Kg	1	03/17/16	JLI	SW8260
2-Chlorotoluene	ND	5.6	ug/Kg	1	03/17/16	JLI	SW8260
2-Hexanone	ND	28	ug/Kg	1	03/17/16	JLI	SW8260
2-Isopropyltoluene	ND	5.6	ug/Kg	1	03/17/16	JLI	SW8260
4-Chlorotoluene	ND	5.6	ug/Kg	1	03/17/16	JLI	SW8260
4-Methyl-2-pentanone	ND	28	ug/Kg	1	03/17/16	JLI	SW8260
Acetone	ND	280	ug/Kg	1	03/17/16	JLI	SW8260
Acrylonitrile	ND	5.6	ug/Kg	1	03/17/16	JLI	SW8260
Benzene	ND	5.6	ug/Kg	1	03/17/16	JLI	SW8260
Bromobenzene	ND	5.6	ug/Kg	1	03/17/16	JLI	SW8260
Bromochloromethane	ND	5.6	ug/Kg	1	03/17/16	JLI	SW8260
Bromodichloromethane	ND	5.6	ug/Kg	1	03/17/16	JLI	SW8260
Bromoform	ND	5.6	ug/Kg	1	03/17/16	JLI	SW8260
Bromomethane	ND	5.6	ug/Kg	1	03/17/16	JLI	SW8260
Carbon Disulfide	ND	5.6	ug/Kg	1	03/17/16	JLI	SW8260
Carbon tetrachloride	ND	5.6	ug/Kg	1	03/17/16	JLI	SW8260
Chlorobenzene	ND	5.6	ug/Kg	1	03/17/16	JLI	SW8260
Chloroethane	ND	5.6	ug/Kg	1	03/17/16	JLI	SW8260
Chloroform	ND	5.6	ug/Kg	1	03/17/16	JLI	SW8260
Chloromethane	ND	5.6	ug/Kg	1	03/17/16	JLI	SW8260
cis-1,2-Dichloroethene	ND	5.6	ug/Kg	1	03/17/16	JLI	SW8260
cis-1,3-Dichloropropene	ND	5.6	ug/Kg	1	03/17/16	JLI	SW8260
Dibromochloromethane	ND	3.3	ug/Kg	1	03/17/16	JLI	SW8260
Dibromomethane	ND	5.6	ug/Kg	1	03/17/16	JLI	SW8260
Dichlorodifluoromethane	ND	5.6	ug/Kg	1	03/17/16	JLI	SW8260
Ethylbenzene	ND	5.6	ug/Kg	1	03/17/16	JLI	SW8260
Hexachlorobutadiene	ND	5.6	ug/Kg	1	03/17/16	JLI	SW8260
Isopropylbenzene	ND	5.6	ug/Kg	1	03/17/16	JLI	SW8260
m&p-Xylene	ND	5.6	ug/Kg	1	03/17/16	JLI	SW8260
Methyl Ethyl Ketone	ND	33	ug/Kg	1	03/17/16	JLI	SW8260
Methyl t-butyl ether (MTBE)	ND	11	ug/Kg	1	03/17/16	JLI	SW8260
Methylene chloride	ND	11	ug/Kg	1	03/17/16	JLI	SW8260
Naphthalene	9400	280	ug/Kg	50	03/17/16	JLI	SW8260
n-Butylbenzene	ND	5.6	ug/Kg	1	03/17/16	JLI	SW8260
n-Propylbenzene	ND	5.6	ug/Kg	1	03/17/16	JLI	SW8260
o-Xylene	ND	5.6	ug/Kg	1	03/17/16	JLI	SW8260
p-Isopropyltoluene	ND	5.6	ug/Kg	1	03/17/16	JLI	SW8260
sec-Butylbenzene	ND	5.6	ug/Kg	1	03/17/16	JLI	SW8260
Styrene	ND	5.6	ug/Kg	1	03/17/16	JLI	SW8260
tert-Butylbenzene	ND	5.6	ug/Kg	1	03/17/16	JLI	SW8260
Tetrachloroethene	ND	5.6	ug/Kg	1	03/17/16	JLI	SW8260
Tetrahydrofuran (THF)	ND	11	ug/Kg	1	03/17/16	JLI	SW8260
Toluene	ND	5.6	ug/Kg	1	03/17/16	JLI	SW8260
Total Xylenes	ND	5.6	ug/Kg	1	03/17/16	JLI	SW8260
trans-1.2-Dichloroethene	ND	5.6	ug/Kg	1	03/17/16	JLI	SW8260
trans-1.3-Dichloropropene	ND	5.6	ug/Kg	1	03/17/16	JLI	SW8260
trans-1.4-dichloro-2-butene	ND	11	ug/Kg	1	03/17/16	JLI	SW8260
Trichloroethene	ND	5.6	ua/Ka	1	03/17/16	JLI	SW8260
Trichlorofluoromethane	ND	5.6	ua/Ka	1	03/17/16	JLI	SW8260
				-			

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
Trichlorotrifluoroethane	ND	5.6	ug/Kg	1	03/17/16	JLI	SW8260
Vinyl chloride	ND	5.6	ug/Kg	1	03/17/16	JLI	SW8260
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	99		%	1	03/17/16	JLI	70 - 130 %
% Bromofluorobenzene	99		%	1	03/17/16	JLI	70 - 130 %
% Dibromofluoromethane	86		%	1	03/17/16	JLI	70 - 130 %
% Toluene-d8	98		%	1	03/17/16	JLI	70 - 130 %
Polynuclear Aromatic	HC						
2-Methylnaphthalene	11000	1200	ug/Kg	5	03/17/16	DD	SW8270D
Acenaphthene	270	240	ug/Kg	1	03/17/16	DD	SW8270D
Acenaphthylene	ND	240	ug/Kg	1	03/17/16	DD	SW8270D
Anthracene	ND	240	ug/Kg	1	03/17/16	DD	SW8270D
Benz(a)anthracene	1100	240	ug/Kg	1	03/17/16	DD	SW8270D
Benzo(a)pyrene	650	240	ug/Kg	1	03/17/16	DD	SW8270D
Benzo(b)fluoranthene	1000	240	ug/Kg	1	03/17/16	DD	SW8270D
Benzo(ghi)pervlene	450	240	ug/Kg	1	03/17/16	DD	SW8270D
Benzo(k)fluoranthene	920	240	ug/Kg	1	03/17/16	DD	SW8270D
Chrvsene	1700	240	ug/Kg	1	03/17/16	DD	SW8270D
Dibenz(a.h)anthracene	ND	240	ug/Kg	1	03/17/16	DD	SW8270D
Fluoranthene	850	240	ug/Kg	1	03/17/16	DD	SW8270D
Fluorene	ND	240	ug/Kg	1	03/17/16	DD	SW8270D
Indeno(1.2.3-cd)pyrene	480	240	ug/Kg	1	03/17/16	DD	SW8270D
Naphthalene	1700	240	ua/Ka	1	03/17/16	DD	SW8270D
Phenanthrene	460	240	ug/Kg	1	03/17/16	DD	SW8270D
Pyrene	860	240	ua/Ka	1	03/17/16	DD	SW8270D
QA/QC Surrogates			- 3- 5				
% 2-Fluorobiphenyl	74		%	1	03/17/16	DD	30 - 130 %
% Nitrobenzene-d5	76		%	1	03/17/16	DD	30 - 130 %
% Terphenvl-d14	70		%	1	03/17/16	DD	30 - 130 %
SPI P Somivolatilos h							
2 Mathylpaphthalana	<u>y Olivi</u> 72	0.10	ug/l	1	04/12/16	חח	SW(8270D (SIM)
	10	0.10	ug/L	1	04/13/16	סס	SW0270D (SIM)
Acenaphthylana	0.24	0.10	ug/L	1	04/12/16		SW0270D (SIM)
Acteriaphilipiene	0.34	0.10	ug/L	1	04/12/16	סט	SW0270D (SIW)
	0.12	0.10	ug/L	1	04/12/16	סט	SW0270D (SIW)
Benz(a)anthracene	0.00	0.02	ug/L	1	04/12/16	סט	SW0270D (SIW)
Benzo(a)pyrene		0.02	ug/L	1	04/12/16	סט	SW0270D (SIW)
Benzo(b)nuorantnene		0.02	ug/L	1	04/12/16	סט	SW0270D (SIW)
Benzo(gni)perviene		0.10	ug/L	1	04/12/16	סט	SW0270D (SIW)
Chrysone	0.03	0.02	ug/L	1	04/12/16		SW0270D (SINI)
	0.07	0.02	ug/L	1	04/12/16	עט	SVV8270D (SIIVI)
	ND	0.01	ug/L	1	04/12/16	עט	SVV8270D (SIIVI)
	0.12	0.10	ug/L	1	04/12/16	טט	
	1.1	0.10	ug/L	1	04/12/16	טט	SVVOZIUD (SIM)
Indeno(1,2,3-cd)pyrene	ND	0.02	ug/L	1	04/12/16	טט	SVV82/UD (SIM)
	23	0.10	ug/L	1	04/13/16	טט	SVVOZIUD (SIM)
	1.0	0.07	ug/L	1	04/12/16	סס	
	0.10	0.10	ug/L	I	04/12/10	טט	300210D (31101)
WANNE SUITURATES							

Client ID: 1176160314-11

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference	
% 2-Fluorobiphenyl	71		%	1	04/12/16	DD	30 - 130 %	
% Nitrobenzene-d5	63		%	1	04/12/16	DD	30 - 130 %	
% Terphenyl-d14	90		%	1	04/12/16	DD	30 - 130 %	

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

DI /

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

TPH Comment:

**Petroleum hydrocarbon chromatogram contains a multicomponent hydrocarbon distribution in the range of C10 to C36. The sample was quantitated against a C9-C36 alkane hydrocarbon standard.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director April 18, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Laboratory Data

Analysis Report

April 18, 2016

FOR: Attn: Ms. Stefanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample Information		Custody Inforn	nation	<u>Date</u>
Matrix:	SOIL	Collected by:	DC	03/14/16
Location Code:	F&O-PCB	Received by:	LB	03/16/16
Rush Request:	Standard	Analyzed by:	see "By" below	
P.O.#:	20120232.C40			000

03/16/16 9:54 SDG ID: GBK79016

Time

14:20

Phoenix ID: BK79027

Project ID: MERIDEN HOSPITAL Client ID: 1176160314-12

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Silver	0.51	0.35	mg/Kg	1	03/17/16	LK	SW6010C
Arsenic	2.9	0.7	mg/Kg	1	03/17/16	LK	SW6010C
Barium	64.7	0.35	mg/Kg	1	03/17/16	LK	SW6010C
Cadmium	< 0.35	0.35	mg/Kg	1	03/17/16	LK	SW6010C
Chromium	10.5	0.35	mg/Kg	1	03/17/16	LK	SW6010C
Mercury	0.17	0.03	mg/Kg	1	03/17/16	RS	SW7471B
Lead	25.1	0.35	mg/Kg	1	03/17/16	LK	SW6010C
Selenium	< 1.4	1.4	mg/Kg	1	03/17/16	LK	SW6010C
SPLP Mercury	< 0.0005	0.0005	mg/L	1	04/11/16	RS	SW7470A
Percent Solid	93		%		03/16/16	W	SW846-%Solid
Soil Extraction SVOA PAH	Completed				03/16/16	BB/CKV	SW3545A
Extraction of CT ETPH	Completed				03/16/16	BB/CK	SW3545A
Mercury Digestion	Completed				03/17/16	W/W	SW7471B
Extraction for PCB	Completed				03/16/16	Q/I	SW3540C
SPLP Digestion Mercury	Completed				04/11/16	1/1	SW1312/SW7470A
SPLP Extraction for Metals	Completed				04/08/16	I	SW1312
Total Metals Digest	Completed				03/16/16	G/AG	SW3050B
TPH by GC (Extractabl	e Products	<u>5)</u>					
Ext. Petroleum HC	ND	53	mg/Kg	1	03/18/16	JRB	CTETPH 8015D
Identification	ND		mg/Kg	1	03/18/16	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	95		%	1	03/18/16	JRB	50 - 150 %
PCB (Soxhlet SW3540	<u>C)</u>						
PCB-1016	ND	0.35	mg/kg	10	03/17/16	AW	SW8082A
PCB-1221	ND	0.35	mg/kg	10	03/17/16	AW	SW8082A
PCB-1232	ND	0.35	mg/kg	10	03/17/16	AW	SW8082A

Client ID: 1176160314-12

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
PCB-1242	ND	0.35	mg/kg	10	03/17/16	AW	SW8082A
PCB-1248	ND	0.35	mg/kg	10	03/17/16	AW	SW8082A
PCB-1254	ND	0.35	mg/kg	10	03/17/16	AW	SW8082A
PCB-1260	ND	0.35	mg/kg	10	03/17/16	AW	SW8082A
PCB-1262	ND	0.35	mg/kg	10	03/17/16	AW	SW8082A
PCB-1268	ND	0.35	mg/kg	10	03/17/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	78		%	10	03/17/16	AW	30 - 150 %
% TCMX	66		%	10	03/17/16	AW	30 - 150 %
Polynuclear Aromatic	HC						
2-Methylnaphthalene	860	240	ug/Kg	1	03/17/16	DD	SW8270D
Acenaphthene	ND	240	ug/Kg	1	03/17/16	DD	SW8270D
Acenaphthylene	ND	240	ug/Kg	1	03/17/16	DD	SW8270D
Anthracene	ND	240	ug/Kg	1	03/17/16	DD	SW8270D
Benz(a)anthracene	ND	240	ug/Kg	1	03/17/16	DD	SW8270D
Benzo(a)pyrene	ND	240	ug/Kg	1	03/17/16	DD	SW8270D
Benzo(b)fluoranthene	ND	240	ug/Kg	1	03/17/16	DD	SW8270D
Benzo(ghi)perylene	ND	240	ug/Kg	1	03/17/16	DD	SW8270D
Benzo(k)fluoranthene	ND	240	ug/Kg	1	03/17/16	DD	SW8270D
Chrysene	ND	240	ug/Kg	1	03/17/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	240	ug/Kg	1	03/17/16	DD	SW8270D
Fluoranthene	ND	240	ug/Kg	1	03/17/16	DD	SW8270D
Fluorene	ND	240	ug/Kg	1	03/17/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	240	ug/Kg	1	03/17/16	DD	SW8270D
Naphthalene	ND	240	ug/Kg	1	03/17/16	DD	SW8270D
Phenanthrene	ND	240	ug/Kg	1	03/17/16	DD	SW8270D
Pyrene	ND	240	ug/Kg	1	03/17/16	DD	SW8270D
QA/QC Surrogates							
% 2-Fluorobiphenyl	72		%	1	03/17/16	DD	30 - 130 %
% Nitrobenzene-d5	70		%	1	03/17/16	DD	30 - 130 %
% Terphenyl-d14	68		%	1	03/17/16	DD	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

DI /

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director April 18, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

April 18, 2016

FOR: Attn: Ms. Stefanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample Information		Custody Inform	nation	<u>Date</u>	<u>Time</u>
Matrix:	SOIL	Collected by:	DC	03/14/16	17:00
Location Code:	F&O-PCB	Received by:	LB	03/16/16	9:54
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	20120232.C40				001/700

Laboratory Data

SDG ID: GBK79016 Phoenix ID: BK79028

Project ID: MERIDEN HOSPITAL Client ID: 1176160314-18

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
Field Extraction	Completed				03/14/16		SW5035A
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
1,1,1-Trichloroethane	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
1,1,2,2-Tetrachloroethane	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
1,1,2-Trichloroethane	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
1,1-Dichloroethane	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
1,1-Dichloroethene	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
1,1-Dichloropropene	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
1,2,3-Trichlorobenzene	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
1,2,3-Trichloropropane	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
1,2,4-Trichlorobenzene	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
1,2,4-Trimethylbenzene	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
1,2-Dibromo-3-chloropropane	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
1,2-Dibromoethane	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
1,2-Dichlorobenzene	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
1,2-Dichloroethane	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
1,2-Dichloropropane	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
1,3,5-Trimethylbenzene	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
1,3-Dichlorobenzene	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
1,3-Dichloropropane	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
1,4-Dichlorobenzene	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
2,2-Dichloropropane	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
2-Chlorotoluene	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
2-Hexanone	ND	1300	ug/Kg	50	03/17/16	JLI	SW8260
2-Isopropyltoluene	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
4-Chlorotoluene	ND	250	ug/Kg	50	03/17/16	JLI	SW8260

Parameter Result PQL Units Dilution Date/Time By	Reference
4-Methyl-2-pentanone ND 1300 ug/Kg 50 03/17/16 JLI	SW8260
Acetone ND 5000 ug/Kg 50 03/17/16 JLI	SW8260
Acrylonitrile ND 500 ug/Kg 50 03/17/16 JLI	SW8260
Benzene ND 250 ug/Kg 50 03/17/16 JLI	SW8260
Bromobenzene ND 250 ug/Kg 50 03/17/16 JLI 5	SW8260
Bromochloromethane ND 250 ug/Kg 50 03/17/16 JLI	SW8260
Bromodichloromethane ND 250 ug/Kg 50 03/17/16 JLI	SW8260
Bromoform ND 250 ug/Kg 50 03/17/16 JLI	SW8260
Bromomethane ND 250 ug/Kg 50 03/17/16 JLI 5	SW8260
Carbon Disulfide ND 250 ug/Kg 50 03/17/16 JLI	SW8260
Carbon tetrachloride ND 250 ug/Kg 50 03/17/16 JLI	SW8260
Chlorobenzene ND 250 ug/Kg 50 03/17/16 JLI	SW8260
Chloroethane ND 250 ug/Kg 50 03/17/16 JLI	SW8260
Chloroform ND 250 ug/Kg 50 03/17/16 JLI	SW8260
Chloromethane ND 250 ug/Kg 50 03/17/16 JLI	SW8260
cis-1,2-Dichloroethene ND 250 ug/Kg 50 03/17/16 JLI	SW8260
cis-1,3-Dichloropropene ND 250 ug/Kg 50 03/17/16 JLI	SW8260
Dibromochloromethane ND 250 ug/Kg 50 03/17/16 JLI	SW8260
Dibromomethane ND 250 ug/Kg 50 03/17/16 JLI	SW8260
Dichlorodifluoromethane ND 250 ug/Kg 50 03/17/16 JLI	SW8260
Ethylbenzene ND 250 ug/Kg 50 03/17/16 JLI	SW8260
Hexachlorobutadiene ND 250 ug/Kg 50 03/17/16 JLI	SW8260
Isopropylbenzene ND 250 ug/Kg 50 03/17/16 JLI	SW8260
m&p-Xylene ND 250 ug/Kg 50 03/17/16 JLI	SW8260
Methyl Ethyl Ketone ND 3000 ug/Kg 50 03/17/16 JLI	SW8260
Methyl t-butyl ether (MTBE) ND 250 ug/Kg 50 03/17/16 JLI	SW8260
Methylene chloride ND 500 ug/Kg 50 03/17/16 JLI	SW8260
Naphthalene ND 250 ug/Kg 50 03/17/16 JLI	SW8260
n-Butylbenzene ND 250 ug/Kg 50 03/17/16 JLI	SW8260
n-Propylbenzene ND 250 ug/Kg 50 03/17/16 JLI	SW8260
o-Xylene ND 250 ug/Kg 50 03/17/16 JLI	SW8260
p-Isopropyltoluene ND 250 ug/Kg 50 03/17/16 JLI	SW8260
sec-Butylbenzene ND 250 ug/Kg 50 03/17/16 JLI	SW8260
Styrene ND 250 ug/Kg 50 03/17/16 JLI	SW8260
tert-Butylbenzene ND 250 ug/Kg 50 03/17/16 JLI	SW8260
Tetrachloroethene ND 250 ug/Kg 50 03/17/16 JLI	SW8260
Tetrahydrofuran (THF) ND 500 ug/Kg 50 03/17/16 JLI	SW8260
Toluene ND 250 ug/Kg 50 03/17/16 JLI	SW8260
Total Xylenes ND 250 ug/Kg 50 03/17/16 JLI 5	SW8260
trans-1,2-Dichloroethene ND 250 ug/Kg 50 03/17/16 JLI	SW8260
trans-1,3-Dichloropropene ND 250 ug/Kg 50 03/17/16 JLI	SW8260
trans-1,4-dichloro-2-butene ND 500 ug/Kg 50 03/17/16 JLI	SW8260
Trichloroethene ND 250 ug/Kg 50 03/17/16 JLI	SW8260
Trichlorofluoromethane ND 250 ug/Kg 50 03/17/16 JLI	SW8260
Trichlorotrifluoroethane ND 250 ug/Kg 50 03/17/16 JLI	SW8260
Vinyl chloride ND 250 ug/Kg 50 03/17/16 JLI	SW8260
QA/QC Surrogates	
% 1,2-dichlorobenzene-d4 97 % 50 03/17/16 JLI	70 - 130 %
% Bromofluorobenzene 97 % 50 03/17/16 JLI	70 - 130 %

Client ID: 1176160314-18

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
% Dibromofluoromethane	97		%	50	03/17/16	JLI	70 - 130 %
% Toluene-d8	98		%	50	03/17/16	JLI	70 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Results are reported on an ``as received`` basis, and are not corrected for dry weight., TRIP BLANK INCLUDED.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director April 18, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

April 18, 2016

FOR: Attn: Ms. Stefanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample Information		Custody Inform	nation	Date	<u>Time</u>
Matrix:	SOIL	Collected by:	DC	03/14/16	17:15
Location Code:	F&O-PCB	Received by:	LB	03/16/16	9:54
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	20120232.C40				00/700

Laboratory Data

SDG ID: GBK79016 Phoenix ID: BK79029

Project ID:MERIDEN HOSPITALClient ID:1176160314-19

_		RL/				_	
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Field Extraction	Completed				03/14/16		SW5035A
Volatiles							
1,1,1,2-Tetrachloroethane	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
1,1,1-Trichloroethane	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
1,1,2,2-Tetrachloroethane	ND	3.0	ug/Kg	1	03/17/16	JLI	SW8260
1,1,2-Trichloroethane	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
1,1-Dichloroethane	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
1,1-Dichloroethene	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
1,1-Dichloropropene	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
1,2,3-Trichlorobenzene	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
1,2,3-Trichloropropane	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
1,2,4-Trichlorobenzene	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
1,2,4-Trimethylbenzene	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
1,2-Dibromo-3-chloropropane	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
1,2-Dibromoethane	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
1,2-Dichlorobenzene	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
1,2-Dichloroethane	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
1,2-Dichloropropane	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
1,3,5-Trimethylbenzene	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
1,3-Dichlorobenzene	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
1,3-Dichloropropane	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
1,4-Dichlorobenzene	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
2,2-Dichloropropane	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
2-Chlorotoluene	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
2-Hexanone	ND	25	ug/Kg	1	03/17/16	JLI	SW8260
2-Isopropyltoluene	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
4-Chlorotoluene	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
Client ID: 1176160314-19

Parameter Result POL Units Dilution Date/Time By Reference 4-Methyl-2-pentanone ND 25 ug/Kg 1 03/17/16 JLL SW8260 Acatone ND 5.0 ug/Kg 1 03/17/16 JLL SW8260 Bornache ND 5.0 ug/Kg 1 03/17/16 JLL SW8260 Bromochinoromethane ND 5.0 ug/Kg 1 03/17/16 JLL SW8260 Bromochinoromethane ND 5.0 ug/Kg 1 03/17/16 JLL SW8260 Bromochinoromethane ND 5.0 ug/Kg 1 03/17/16 JLL SW8260 Carbon tetrachtoride ND 5.0 ug/Kg 1 03/17/16 JLL SW8260 Chiorobenzen ND 5.0 ug/Kg 1 03/17/16 JLL SW8260 Carbon tetrachtoride ND 5.0 ug/Kg 1 03/17/16 JLL			RL/					
4-Methyl-2-pentanone ND 25 ug/Kg 1 03/17/16 JL SW2800 Acetone ND 250 ug/Kg 1 03/17/16 JL SW2800 Acetone ND 5.0 ug/Kg 1 03/17/16 JL SW2800 Benzene ND 5.0 ug/Kg 1 03/17/16 JL SW2800 Bromodichloromethane ND 5.0 ug/Kg 1 03/17/16 JL SW2800 Bromodichloromethane ND 5.0 ug/Kg 1 03/17/16 JL SW2800 Bromolethane ND 5.0 ug/Kg 1 03/17/16 JL SW2800 Carbon Disulfide ND 5.0 ug/Kg 1 03/17/16 JL SW2800 Chiorobenzene ND 5.0 ug/Kg 1 03/17/16 JL SW2800 Chiorobenzene ND 5.0 ug/Kg 1 03/17/16 JL SW2800	Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
Acetone ND 250 ug/Kg 1 03/17/16 LL SVW280 Acrylonitrile ND 5.0 ug/Kg 1 03/17/16 LL SVW280 Bromochloromethane ND 5.0 ug/Kg 1 03/17/16 LL SVW280 Carbon terrachloride ND 5.0 ug/Kg 1 03/17/16 LL SVW280 Chlorobenzene ND 5.0 ug/Kg 1 03/17/16 LL SVW280 Chlorobenzene ND 5.0 ug/Kg 1 03/17/16 LL SVW280 Chlorobenzene ND 5.0 ug/Kg 1 03/17/16 LL SVW280	4-Methyl-2-pentanone	ND	25	ug/Kg	1	03/17/16	JLI	SW8260
Acrylonithie ND 5.0 ugKg 1 03/17/16 JLI SW280 Benzene ND 5.0 ugKg 1 03/17/16 JLI SW280 Bromochloromethane ND 5.0 ugKg 1 03/17/16 JLI SW280 Bromochloromethane ND 5.0 ugKg 1 03/17/16 JLI SW280 Bromochloromethane ND 5.0 ugKg 1 03/17/16 JLI SW280 Carbon Disulfide ND 5.0 ugKg 1 03/17/16 JLI SW280 Carbon Disulfide ND 5.0 ugKg 1 03/17/16 JLI SW280 Chioromethane ND 5.0 ugKg 1 03/17/16 JLI SW280 Chioromethane ND 5.0 ugKg 1 03/17/16 JLI SW280 Dibromochloromethane ND 5.0 ugKg 1 03/17/16 JLI SW280	Acetone	ND	250	ug/Kg	1	03/17/16	JLI	SW8260
Benzone ND 5.0 ugKg 1 0.317716 JLI SW8280 Bromochicoromethane ND 5.0 ugKg 1 0.317716 JLI SW8280 Bromochicoromethane ND 5.0 ugKg 1 0.317716 JLI SW8280 Bromochicoromethane ND 5.0 ugKg 1 0.317716 JLI SW8280 Carbon Disulifice ND 5.0 ugKg 1 0.317716 JLI SW8280 Carbon tetrachloride ND 5.0 ugKg 1 0.317716 JLI SW8280 Chiorobenzane ND 5.0 ugKg 1 0.317716 JLI SW8280	Acrylonitrile	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
BromochloromethaneND5.0ug/kg10.3/17/16JLISW3260BromochloromethaneND5.0ug/kg10.3/17/16JLISW3260BromochloromethaneND5.0ug/kg10.3/17/16JLISW3260BromochloromethaneND5.0ug/kg10.3/17/16JLISW3260Carbon DisulfideND5.0ug/kg10.3/17/16JLISW3260Carbon tetrachlorideND5.0ug/kg10.3/17/16JLISW3260ChioroberzeneND5.0ug/kg10.3/17/16JLISW3260ChiorobertaneND5.0ug/kg10.3/17/16JLISW3260ChiorobertaneND5.0ug/kg10.3/17/16JLISW3260ChiorobertaneND5.0ug/kg10.3/17/16JLISW3260ChiorobertaneND5.0ug/kg10.3/17/16JLISW3260DibromochloromethaneND5.0ug/kg10.3/17/16JLISW3260DibromochloromethaneND5.0ug/kg10.3/17/16JLISW3260DibromochloromethaneND5.0ug/kg10.3/17/16JLISW3260DibromochloromethaneND5.0ug/kg10.3/17/16JLISW3260DibromochloromethaneND5.0ug/kg10.3/17/16JLISW3260<	Benzene	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
Bromochloromethane ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Bromodichloromethane ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Bromomethane ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Carbon Disulfide ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Carbon Disulfide ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Chiorobenzene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Chiorothane ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Chioromethane ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Dibromochioropropene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Dibromochioromethane ND 5.0 ug/Kg 1 03/17/16 JLI <	Bromobenzene	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
Bromadichloromethane ND 5.0 ug/Kg 1 03/17/16 JLI SW2820 Bromorthane ND 5.0 ug/Kg 1 03/17/16 JLI SW2820 Carbon Disulfide ND 5.0 ug/Kg 1 03/17/16 JLI SW2820 Carbon tetrachloride ND 5.0 ug/Kg 1 03/17/16 JLI SW2820 Chloroberzene ND 5.0 ug/Kg 1 03/17/16 JLI SW2820 Chloroberthane ND 5.0 ug/Kg 1 03/17/16 JLI SW2820 Chlorobrethane ND 5.0 ug/Kg 1 03/17/16 JLI SW2820 Chlorobrethane ND 5.0 ug/Kg 1 03/17/16 JLI SW2820 Dibromothane ND 5.0 ug/Kg 1 03/17/16 JLI SW2820 Dibromothane ND 5.0 ug/Kg 1 03/17/16 JLI SW2820 <td>Bromochloromethane</td> <td>ND</td> <td>5.0</td> <td>ug/Kg</td> <td>1</td> <td>03/17/16</td> <td>JLI</td> <td>SW8260</td>	Bromochloromethane	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
Bromodrom ND 5.0 ug/Kg 1 031716 JL SW8280 Bromomethane ND 5.0 ug/Kg 1 031716 JL SW8280 Carbon Disulficie ND 5.0 ug/Kg 1 031716 JL SW8280 Carbon Disulficie ND 5.0 ug/Kg 1 031716 JL SW8280 Chiorothane ND 5.0 ug/Kg 1 031716 JL SW8280 Chiorothane ND 5.0 ug/Kg 1 031716 JL SW8280 Chioromethane ND 5.0 ug/Kg 1 031716 JL SW8280 Dibromochioromethane ND 5.0 ug/Kg 1 031716 JL SW8280 Dibromochioromethane ND 5.0 ug/Kg 1 031716 JL SW8280 Dibromochioromethane ND 5.0 ug/Kg 1 031716 JL SW8280	Bromodichloromethane	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
BromomethaneND5.0ug/Kg103/17/16LISW8260Carbon tistrachlorideND5.0ug/Kg103/17/16JLISW8260ChiorobenzeneND5.0ug/Kg103/17/16JLISW8260ChiorobenzeneND5.0ug/Kg103/17/16JLISW8260ChiorobentaneND5.0ug/Kg103/17/16JLISW8260ChiorobentaneND5.0ug/Kg103/17/16JLISW8260ChiorobenteneND5.0ug/Kg103/17/16JLISW8260ChiorobenteneND5.0ug/Kg103/17/16JLISW8260DibromochloromethaneND5.0ug/Kg103/17/16JLISW8260DibromochloromethaneND5.0ug/Kg103/17/16JLISW8260DibromochloromethaneND5.0ug/Kg103/17/16JLISW8260EntylbenzeneND5.0ug/Kg103/17/16JLISW8260IsopropylbenzeneND5.0ug/Kg103/17/16JLISW8260IsopropylbenzeneND5.0ug/Kg103/17/16JLISW8260IsopropylbenzeneND5.0ug/Kg103/17/16JLISW8260IsopropylbenzeneND5.0ug/Kg103/17/16JLISW8260IsopropylbenzeneND5.0<	Bromoform	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
Carbon Disulfide ND 5.0 ug/Kg 1 03/17/16 JL SW8280 Carbon tetrachloride ND 5.0 ug/Kg 1 03/17/16 JL SW8280 Chloroehrane ND 5.0 ug/Kg 1 03/17/16 JL SW8280 Chloroethane ND 5.0 ug/Kg 1 03/17/16 JL SW8280 Chloroothane ND 5.0 ug/Kg 1 03/17/16 JL SW8280 Cis-1,2-Dichloroethene ND 5.0 ug/Kg 1 03/17/16 JL SW8280 Dibromochloroptopene ND 5.0 ug/Kg 1 03/17/16 JL SW8280 Dibromochloromethane ND 5.0 ug/Kg 1 03/17/16 JL SW8280 Dibromochloromethane ND 5.0 ug/Kg 1 03/17/16 JL SW8280 Isopropylbenzene ND 5.0 ug/Kg 1 03/17/16 JL	Bromomethane	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
Carbon tetrachloride ND 5.0 ug/Kg 1 03/17/16 JLI SW8280 Chiorobenzene ND 5.0 ug/Kg 1 03/17/16 JLI SW8280 Chiorothane ND 5.0 ug/Kg 1 03/17/16 JLI SW8280 Chiorothane ND 5.0 ug/Kg 1 03/17/16 JLI SW8280 Cisi-1,2-Dichlorothene ND 5.0 ug/Kg 1 03/17/16 JLI SW8280 Dibromochloromethane ND 5.0 ug/Kg 1 03/17/16	Carbon Disulfide	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
Chlorobenzene ND 5.0 ug/Kg 1 03/17/16 JL SW2260 Chloroform ND 5.0 ug/Kg 1 03/17/16 JL SW2260 Chloromethane ND 5.0 ug/Kg 1 03/17/16 JL SW2260 Chloromethane ND 5.0 ug/Kg 1 03/17/16 JL SW2260 cis-1,3-Dichloropropene ND 5.0 ug/Kg 1 03/17/16 JL SW2260 Dibromochloromethane ND 5.0 ug/Kg 1 03/17/16 JL SW2260 Dibromochloromethane ND 5.0 ug/Kg 1 03/17/16 JL SW2260 Ethylbenzene ND 5.0 ug/Kg 1 03/17/16 JL SW2260 Boproylbenzene ND 5.0 ug/Kg 1 03/17/16 JL SW2260 Methyl Lehyl Ketone ND 5.0 ug/Kg 1 03/17/16 JL SW2260 Methyl Lehyl Ketone ND 5.0 ug/Kg 1 03/17/16	Carbon tetrachloride	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
Chloroethane ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Chlorootrorm ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 cis-1,2-Dichloroethene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Dibromochloromethane ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Dibromochloromethane ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Dichlorodflluoromethane ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Dichlorodflluoromethane ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Isopropylbenzene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Methyl Ethyl Kotone ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Naphthalene ND 5.0 ug/Kg 1 03/17/16 <td< td=""><td>Chlorobenzene</td><td>ND</td><td>5.0</td><td>ug/Kg</td><td>1</td><td>03/17/16</td><td>JLI</td><td>SW8260</td></td<>	Chlorobenzene	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
Chloroform ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Chloromethane ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 cis-1,2-Dichloroethene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Dibromochloromethane ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Dibromothane ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Dibromothane ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Ethylbenzene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Boproylbenzene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Methyl tethyl Ketone ND 10 ug/Kg 1 03/17/16 JLI SW8260 Naphthalene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260	Chloroethane	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
Chloromethane ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 cis-1,2-Dichloropropene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Dibromochloropropene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Dibromochloromethane ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Dichlorodifluoromethane ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Isopropylbenzene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Isopropylbenzene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Methyl Ethyl Ketone ND 3.0 ug/Kg 1 03/17/16 JLI SW8260 Naphthalene ND 3.0 ug/Kg 1 03/17/16 JLI SW8260 N-Propylbenzene ND 5.0 ug/Kg 1 03/17/16 J	Chloroform	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
cis-1,2-Dichloroperhene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Dibromochloromethane ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Dibromochloromethane ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Dichlorodifluoromethane ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Ethylbenzene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Isopropylbenzene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Isopropylbenzene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Methyl Ethyl Ketone ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Naptthalene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 -Propylbenzene ND 5.0 ug/Kg 1 03/17/16 JLI	Chloromethane	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
cis-1,3-Dichloropropene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Dibromochloromethane ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Dibromothane ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Ethylbenzene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Isopropylbenzene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Isopropylbenzene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Methyl Ethyl Ketone ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Methyl Ethyl Ketone ND 10 ug/Kg 1 03/17/16 JLI SW8260 Naphthalene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 o-Sylene ND 5.0 ug/Kg 1 03/17/16 JLI S	cis-1,2-Dichloroethene	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
Dibromochloromethane ND 3.0 ug/Kg 1 03/17/16 JLI SW8260 Dibromomethane ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Dichlorodifluoromethane ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Hexachlorobutadiene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Isopropylbenzene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Methyl Ethyl Ketone ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Methyl Ethyl Ketone ND 30 ug/Kg 1 03/17/16 JLI SW8260 Naphhalene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 n-Propylbenzene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 p-Sopropyltoluene ND 5.0 ug/Kg 1 03/17/16 JLI <td>cis-1,3-Dichloropropene</td> <td>ND</td> <td>5.0</td> <td>ug/Kg</td> <td>1</td> <td>03/17/16</td> <td>JLI</td> <td>SW8260</td>	cis-1,3-Dichloropropene	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
Dibromomethane ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Dichlorodifluoromethane ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Ethylbenzene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Isopropylbenzene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Methyl Ethyl Ketone ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Methyl Ethyl Ketone ND 3.0 ug/Kg 1 03/17/16 JLI SW8260 Methyl Ethyl Ketone ND 10 ug/Kg 1 03/17/16 JLI SW8260 Naphthalene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 NPStylbenzene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 NPStylbenzene ND 5.0 ug/Kg 1 03/17/16 JLI <t< td=""><td>Dibromochloromethane</td><td>ND</td><td>3.0</td><td>ug/Kg</td><td>1</td><td>03/17/16</td><td>JLI</td><td>SW8260</td></t<>	Dibromochloromethane	ND	3.0	ug/Kg	1	03/17/16	JLI	SW8260
Dichlorodifluoromethane ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Ethylbenzene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Hexachlorobutadiene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 nsoproylbenzene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 msp-Xylene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Methyl Ethyl Ketone ND 30 ug/Kg 1 03/17/16 JLI SW8260 Naphthalene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 n-Putylbenzene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 o-Sylene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 o-Sylene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 </td <td>Dibromomethane</td> <td>ND</td> <td>5.0</td> <td>ug/Kg</td> <td>1</td> <td>03/17/16</td> <td>JLI</td> <td>SW8260</td>	Dibromomethane	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
Ethylbenzene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Hexachlorobutadiene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Isopropylbenzene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 m&p-Xylene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Methyl Ethyl Ketone ND 30 ug/Kg 1 03/17/16 JLI SW8260 Methyl Ethyl Ketone ND 10 ug/Kg 1 03/17/16 JLI SW8260 Naphthalene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 n-Propylbenzene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 o-Xylene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Styrene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260	Dichlorodifluoromethane	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
Hexachlorobutadiene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Isopropylbenzene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Methyl Ethyl Ketone ND 3.0 ug/Kg 1 03/17/16 JLI SW8260 Methyl Ethyl Ketone ND 3.0 ug/Kg 1 03/17/16 JLI SW8260 Methyl ether (MTBE) ND 10 ug/Kg 1 03/17/16 JLI SW8260 Naphthalene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 n-Butylbenzene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 o-Sylene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 o-Sylene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 sec-Butylbenzene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 </td <td>Ethylbenzene</td> <td>ND</td> <td>5.0</td> <td>ug/Kg</td> <td>1</td> <td>03/17/16</td> <td>JLI</td> <td>SW8260</td>	Ethylbenzene	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
Isopropylbenzene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 m&p-Xylene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Methyl Ethyl Ketone ND 30 ug/Kg 1 03/17/16 JLI SW8260 Methyle chloride ND 10 ug/Kg 1 03/17/16 JLI SW8260 Naphthalene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 n-Propylbenzene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 o-Xylene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 o-Sylene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 o-Sylene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 sec-Butylbenzene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Styrene ND 5.0 ug/Kg 1 03/17/16 JLI <td< td=""><td>Hexachlorobutadiene</td><td>ND</td><td>5.0</td><td>ug/Kg</td><td>1</td><td>03/17/16</td><td>JLI</td><td>SW8260</td></td<>	Hexachlorobutadiene	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
m&p-Xylene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Methyl Ethyl Ketone ND 30 ug/Kg 1 03/17/16 JLI SW8260 Methyl I-butyl ether (MTBE) ND 10 ug/Kg 1 03/17/16 JLI SW8260 Methylene chloride ND 10 ug/Kg 1 03/17/16 JLI SW8260 Naphthalene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 n-Butylbenzene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 n-Propylbenzene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 o-Xylene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Styrene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Tetrachloroethene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260	Isopropylbenzene	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
Methyl Ethyl Ketone ND 30 ug/Kg 1 03/17/16 JLI SW8260 Methyl t-butyl ether (MTBE) ND 10 ug/Kg 1 03/17/16 JLI SW8260 Methylene chloride ND 10 ug/Kg 1 03/17/16 JLI SW8260 Naphthalene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 n-Butylbenzene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 o-Xylene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 o-Xylene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 o-Xylene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 sec-Butylbenzene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Styrene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260	m&p-Xylene	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
Methyl t-butyl ether (MTBE) ND 10 ug/Kg 1 03/17/16 JLI SW8260 Methylene chloride ND 10 ug/Kg 1 03/17/16 JLI SW8260 Naphthalene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 n-Butylbenzene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 o-Xylene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 o-Xylene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 o-Sylene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 sec-Butylbenzene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Styrene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Tetrachloroethene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260	Methyl Ethyl Ketone	ND	30	ug/Kg	1	03/17/16	JLI	SW8260
Methylene chloride ND 10 ug/Kg 1 03/17/16 JLI SW8260 Naphthalene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 n-Butylbenzene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 n-Propylbenzene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 o-Xylene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 p-lsopropyltoluene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 sec-Butylbenzene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Styrene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Tetrachloroethene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Tetrachloroethene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260	Methyl t-butyl ether (MTBE)	ND	10	ug/Kg	1	03/17/16	JLI	SW8260
Naphthalene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 n-Butylbenzene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 n-Propylbenzene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 o-Xylene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 o-Xylene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 sec-Butylbenzene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Styrene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Tetrabylbenzene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Tetrabydrofuran (THF) ND 10 ug/Kg 1 03/17/16 JLI SW8260 Total Xylenes ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 <tr< td=""><td>Methylene chloride</td><td>ND</td><td>10</td><td>ug/Kg</td><td>1</td><td>03/17/16</td><td>JLI</td><td>SW8260</td></tr<>	Methylene chloride	ND	10	ug/Kg	1	03/17/16	JLI	SW8260
n-ButylbenzeneND5.0ug/Kg103/17/16JLISW8260n-PropylbenzeneND5.0ug/Kg103/17/16JLISW8260o-XyleneND5.0ug/Kg103/17/16JLISW8260p-IsopropyltolueneND5.0ug/Kg103/17/16JLISW8260sec-ButylbenzeneND5.0ug/Kg103/17/16JLISW8260StyreneND5.0ug/Kg103/17/16JLISW8260tert-ButylbenzeneND5.0ug/Kg103/17/16JLISW8260TetrachloroetheneND5.0ug/Kg103/17/16JLISW8260TotlaneND5.0ug/Kg103/17/16JLISW8260Total XylenesND5.0ug/Kg103/17/16JLISW8260Trans-1,2-DichloroetheneND5.0ug/Kg103/17/16JLISW8260Trans-1,3-DichloroppeneND5.0ug/Kg103/17/16JLISW8260TrichloroetheneND5.0ug/Kg103/17/16JLISW8260TrichloroetheneND5.0ug/Kg103/17/16JLISW8260TrichloroetheneND5.0ug/Kg103/17/16JLISW8260TrichloroetheneND5.0ug/Kg103/17/16JLISW8260TrichloroetheneND5.0	Naphthalene	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
n-Propylbenzene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 o-Xylene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 p-lsopropyltoluene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 sec-Butylbenzene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Styrene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 tert-Butylbenzene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Tetrachloroethene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Totlane ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Total Xylenes ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 trans-1,2-Dichloroethene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260	n-Butylbenzene	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
o-Xylene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 p-lsopropyltoluene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 sec-Butylbenzene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Styrene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 tert-Butylbenzene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 tert-Butylbenzene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Tetrachloroethene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Toluene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Total Xylenes ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 trans-1,2-Dichloroethene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260	n-Propylbenzene	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
p-Isopropyltoluene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 sec-Butylbenzene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Styrene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 tert-Butylbenzene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Tetrachloroethene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Tetrachloroethene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Toluene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Total Xylenes ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 trans-1,2-Dichloroethene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 trans-1,4-dichloro-2-butene ND 5.0 ug/Kg 1 03/17/16 JLI	o-Xylene	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
sec-Butylbenzene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Styrene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 tert-Butylbenzene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Tetrachloroethene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Tetrachloroethene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Tetrachloroethene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Toluene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Total Xylenes ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 trans-1,2-Dichloroethene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 trans-1,4-dichloro-2-butene ND 5.0 ug/Kg 1 03/17/16 JLI	p-Isopropyltoluene	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
Styrene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 tert-Butylbenzene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Tetrachloroethene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Tetrahydrofuran (THF) ND 10 ug/Kg 1 03/17/16 JLI SW8260 Toluene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Total Xylenes ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 trans-1,2-Dichloroethene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 trans-1,3-Dichloropropene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 trans-1,4-dichloro-2-butene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Trichloroethene ND 5.0 ug/Kg 1 03/17/16 JLI </td <td>sec-Butylbenzene</td> <td>ND</td> <td>5.0</td> <td>ug/Kg</td> <td>1</td> <td>03/17/16</td> <td>JLI</td> <td>SW8260</td>	sec-Butylbenzene	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Tetrachloroethene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Tetrahydrofuran (THF) ND 10 ug/Kg 1 03/17/16 JLI SW8260 Toluene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Toluene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Total Xylenes ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 trans-1,2-Dichloroethene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 trans-1,3-Dichloropropene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Trichloroethene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Trichloroethene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Trichloroethene ND 5.0 ug/Kg 1 03/17/16 JLI	Styrene	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
Tetrachloroethene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Tetrahydrofuran (THF) ND 10 ug/Kg 1 03/17/16 JLI SW8260 Toluene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Total Xylenes ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 trans-1,2-Dichloroethene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 trans-1,3-Dichloropropene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 trans-1,4-dichloro-2-butene ND 10 ug/Kg 1 03/17/16 JLI SW8260 Trichloroethene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Trichlorofluoromethane ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Trichlorotrifluoroethane ND 5.0 ug/Kg 1 03/17/16 </td <td>tert-Butylbenzene</td> <td>ND</td> <td>5.0</td> <td>ug/Kg</td> <td>1</td> <td>03/17/16</td> <td>JLI</td> <td>SW8260</td>	tert-Butylbenzene	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
Tetrahydrofuran (THF) ND 10 ug/Kg 1 03/17/16 JLI SW8260 Toluene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Total Xylenes ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 trans-1,2-Dichloroethene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 trans-1,3-Dichloropropene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 trans-1,4-dichloro-2-butene ND 10 ug/Kg 1 03/17/16 JLI SW8260 Trichloroethene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Trichloroethene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Trichlorofluoromethane ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Vinyl chloride ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Vinyl chloride ND 5.0 ug/Kg	Tetrachloroethene	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
Toluene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Total Xylenes ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 trans-1,2-Dichloroethene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 trans-1,3-Dichloropropene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 trans-1,4-dichloro-2-butene ND 10 ug/Kg 1 03/17/16 JLI SW8260 Trichloroethene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Trichloroethene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Trichlorofluoromethane ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Vinyl chloride ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Vinyl chloride ND 5.0 ug/Kg 1 03/17/16 JL	Tetrahydrofuran (THF)	ND	10	ug/Kg	1	03/17/16	JLI	SW8260
Total Xylenes ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 trans-1,2-Dichloroethene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 trans-1,3-Dichloropropene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 trans-1,4-dichloro-2-butene ND 10 ug/Kg 1 03/17/16 JLI SW8260 Trichloroethene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Trichloroethene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Trichlorofluoromethane ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Trichlorotrifluoroethane ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Vinyl chloride ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 QA/QC Surrogates ND 5.0 ug/Kg 1 03/17/16 JLI SW8260	Toluene	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
trans-1,2-Dichloroethene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 trans-1,3-Dichloropropene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 trans-1,4-dichloro-2-butene ND 10 ug/Kg 1 03/17/16 JLI SW8260 Trichloroethene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Trichlorofluoromethane ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Trichlorotrifluoroethane ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Vinyl chloride ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 QA/QC Surrogates ND 5.0 ug/Kg 1 03/17/16 JLI SW8260	Total Xylenes	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
trans-1,3-Dichloropropene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 trans-1,4-dichloro-2-butene ND 10 ug/Kg 1 03/17/16 JLI SW8260 Trichloroethene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Trichlorofluoromethane ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Trichlorotrifluoroethane ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Vinyl chloride ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 QA/QC Surrogates ND 5.0 ug/Kg 1 03/17/16 JLI SW8260	trans-1,2-Dichloroethene	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
trans-1,4-dichloro-2-butene ND 10 ug/Kg 1 03/17/16 JLI SW8260 Trichloroethene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Trichlorofluoromethane ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Trichlorotrifluoroethane ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Vinyl chloride ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 QA/QC. Surrogates ND 5.0 ug/Kg 1 03/17/16 JLI SW8260	trans-1,3-Dichloropropene	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
Trichloroethene ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Trichlorofluoromethane ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Trichlorotrifluoroethane ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Vinyl chloride ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 QA/QC, Surrogates ND 5.0 ug/Kg 1 03/17/16 JLI SW8260	trans-1,4-dichloro-2-butene	ND	10	ug/Kg	1	03/17/16	JLI	SW8260
Trichlorofluoromethane ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Trichlorotrifluoroethane ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Vinyl chloride ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 QA/QC Surrogates Surrogates Surrogates SW8260 SW8260 SW8260	Trichloroethene	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
Trichlorotrifluoroethane ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 Vinyl chloride ND 5.0 ug/Kg 1 03/17/16 JLI SW8260 QA/QC Surrogates Surrogates Surrogates SW8260 SW8260 SW8260	Trichlorofluoromethane	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
Vinyl chloride ND 5.0 ug/Kg 1 03/17/16 JLI SW8260	Trichlorotrifluoroethane	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
QA/QC Surrogates	Vinyl chloride	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
<u></u>	QA/QC Surrogates							
% 1,2-dichlorobenzene-d4 99 % 1 03/17/16 JLI 70 - 130 %	% 1,2-dichlorobenzene-d4	99		%	1	03/17/16	JLI	70 - 130 %
% Bromofluorobenzene 97 % 1 03/17/16 JLI 70 - 130 %	% Bromofluorobenzene	97		%	1	03/17/16	JLI	70 - 130 %

Client ID: 1176160314-19

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
% Dibromofluoromethane	96		%	1	03/17/16	JLI	70 - 130 %
% Toluene-d8	99		%	1	03/17/16	JLI	70 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Results are reported on an ``as received`` basis, and are not corrected for dry weight., TRIP BLANK INCLUDED.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director April 18, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045

Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

April 18, 2016

QA/QC Data

SDG I.D.: GBK79016

% % Blk Sample Dup LCS LCSD LCS MS MSD MS Rec RPD Dup Blank RPD RPD RPD Limits RI Result Result % % I imits Parameter % % QA/QC Batch 338226 (mg/kg), QC Sample No: BK78641 (BK79026, BK79027) ICP Metals - Soil Arsenic BRL 0.66 9.4 8.19 13.8 114 99.2 75 - 125 30 Barium BRL 0.33 70.4 58.7 18.1 109 94.8 75 - 125 30 BRL NC 102 88.9 Cadmium 0.33 < 0.37 <0.37 75 - 125 30 BRL 0.33 33.9 40.2 17.0 108 96.8 Chromium 75 - 125 30 Lead BRL 0.33 46.9 45.4 3.30 107 94.5 30 75 - 125 BRL 1.3 <1.5 NC 112 92.5 Selenium <1.5 75 - 125 30 BRL NC Silver 0.33 <0.37 <0.37 107 104 75 - 125 30 QA/QC Batch 338263 (mg/kg), QC Sample No: BK78679 (BK79016, BK79020, BK79022, BK79023, BK79024, BK79026, BK79027) BRL 0.03 < 0.03 Mercury - Soil < 0.03 NC 123 125 1.6 126 70 - 130 30 m Comment: Additional Mercury criteria: LCS acceptance range for waters is 80-120% and for soils is 70-130%. QA/QC Batch 338229 (mg/kg), QC Sample No: BK79024 (BK79024) ICP Metals - Soil Arsenic BRL 0.67 2.6 2.83 NC 110 94.1 75 - 125 30 Barium BRL 0.33 57.8 56.9 1.60 105 92.5 75 - 125 30 BRL 0.33 <0.34 NC 98.6 90.8 75 - 125 30 Cadmium < 0.32 108 97.0 75 - 125 Chromium BRL 0.33 13.6 14.0 2.90 30 75 - 125 Lead BRL 0.33 27.9 30.9 10.2 101 89.0 30 Selenium BRL 1.3 <1.3 <1.3 NC 111 87.8 75 - 125 30 Silver BRL 0.33 < 0.32 < 0.34 NC 106 95.6 75 - 125 30 QA/QC Batch 341772 (mg/L), QC Sample No: BK79032 (BK79020, BK79023, BK79026) **ICP Metals - SPLP Extraction** Chromium BRL 0.010 < 0.010 < 0.010 NC 97.0 99.6 75 - 125 20 BRL 0.010 < 0.010 < 0.010 NC 97.7 99.7 75 - 125 20 Lead QA/QC Batch 338345 (mg/kg), QC Sample No: BK79757 (BK79023) ICP Metals - Soil Arsenic BRL 75 - 125 0.67 16.0 16.7 4.30 106 95.6 30 18.1 105 75 - 125 30 Barium BRL 0.33 136 163 106 Cadmium BRL 0.33 1.42 1.35 NC 97.7 95.8 75 - 125 30 75 - 125 Chromium BRL 0.33 31.0 24.8 22.2 103 96.7 30 Lead BRL 0.33 148 156 5.30 104 94.8 75 - 125 30 Selenium BRL 1.3 <1.6 <1.6 NC 108 88.2 75 - 125 30 Silver BRL 0.33 < 0.40 <0.40 NC 101 99.3 75 - 125 30 QA/QC Batch 338344 (mg/kg), QC Sample No: BK79866 (BK79016, BK79020, BK79022) **ICP Metals - Soil** BRL NC Arsenic 0.67 3.2 3.71 103 92.6 75 - 125 30 Barium BRL 0.33 17.8 21.1 17.0 109 101 75 - 125 30 NC 87.4 90.7 Cadmium BRL 0.33 < 0.36 <0.35 75 - 125 30 Chromium BRL 0.33 11.3 13.6 18.5 99.2 96.1 75 - 125 30

SDG I.D.: GBK79016

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
Lead	BRL	0.33	3.46	3.89	11.7	99.2			93.4			75 - 125	30
Selenium	BRL	1.3	<1.4	<1.4	NC	99.4			85.6			75 - 125	30
Silver	BRL	0.33	<0.36	<0.35	NC	98.6			95.9			75 - 125	30
QA/QC Batch 341768 (mg/L), QC	Samp	ole No: E	3N09527	(BK7902	27)								
Mercury - Water	BRL	0.0002	< 0.0002	< 0.0002	NC	104			79.5			70 - 130	20
Comment:													
Additional Mercury criteria: LCS acc	ceptance	e range f	or waters	is 80-120%	% and fo	or soils is	\$ 70-1309	%.					

m = This parameter is outside laboratory MS/MSD specified recovery limits.

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

April 18, 2016

QA/QC Data

SDG I.D.: GBK79016

Parameter	Blank	Blk RL		LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 338082 (mg/ BK79026, BK79027)	Kg), QC San	nple No: B	K78737 (BK79016	, BK79017	, BK790	19, BK7	9020,	BK7902	2, BK	79023, E	3K79024,
TPH by GC (Extractat	ble Produc	ts) - Soi									
Ext. Petroleum H.C.	ND	50	-	64			64	55	15.1	60 - 120	30
% n-Pentacosane	73	%		90			98	76	25.3	50 - 150	30
QA/QC Batch 338207 (ug/k BK79026, BK79027)	g), QC Sam	ple No: BK	79016 (BK79016,	BK79017,	BK7901	9, BK79	9020,	BK79022	2, BK7	9023, B	K79024,
Polynuclear Aromatic	HC - Soil										
2-Methylnaphthalene	ND	230		68			74	87	16.1	30 - 130	30
Acenaphthene	ND	230		76			76	87	13.5	30 - 130	30
Acenaphthylene	ND	230		72			74	83	11.5	30 - 130	30
Anthracene	ND	230		78			76	89	15.8	30 - 130	30
Benz(a)anthracene	ND	230		81			76	89	15.8	30 - 130	30
Benzo(a)pyrene	ND	230		76			73	84	14.0	30 - 130	30
Benzo(b)fluoranthene	ND	230		80			74	88	17.3	30 - 130	30
Benzo(ghi)perylene	ND	230		80			77	86	11.0	30 - 130	30
Benzo(k)fluoranthene	ND	230		77			72	87	18.9	30 - 130	30
Chrysene	ND	230		84			80	94	16.1	30 - 130	30
Dibenz(a,h)anthracene	ND	230		78			77	87	12.2	30 - 130	30
Fluoranthene	ND	230		81			80	92	14.0	30 - 130	30
Fluorene	ND	230		79			80	90	11.8	30 - 130	30
Indeno(1,2,3-cd)pyrene	ND	230		79			78	86	9.8	30 - 130	30
Naphthalene	ND	230		66			71	82	14.4	30 - 130	30
Phenanthrene	ND	230		78			76	89	15.8	30 - 130	30
Pyrene	ND	230		84			82	96	15.7	30 - 130	30
% 2-Fluorobiphenyl	49	%		67			69	78	12.2	30 - 130	30
% Nitrobenzene-d5	48	%		65			72	88	20.0	30 - 130	30
% Terphenyl-d14	57	%		78			77	91	16.7	30 - 130	30
Comment											

Additional 8270 criteria: 20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

QA/QC Batch	338872 (ug/kg),	QC Sample No:	BK79023	(BK79023,	BK79024,	BK79026 (1X	, 50X) ,	BK79028 (50X),	BK79029)
Volatiles - 9	Soil									

<u>volatiles - 30ii</u>										
1,1,1,2-Tetrachloroethane	ND	5.0	105	109	3.7	104	109	4.7	70 - 130	30
1,1,1-Trichloroethane	ND	5.0	103	108	4.7	107	116	8.1	70 - 130	30
1,1,2,2-Tetrachloroethane	ND	3.0	99	111	11.4	105	114	8.2	70 - 130	30
1,1,2-Trichloroethane	ND	5.0	91	99	8.4	99	105	5.9	70 - 130	30
1,1-Dichloroethane	ND	5.0	100	106	5.8	106	113	6.4	70 - 130	30
1,1-Dichloroethene	ND	5.0	113	115	1.8	112	120	6.9	70 - 130	30
1,1-Dichloropropene	ND	5.0	110	111	0.9	103	110	6.6	70 - 130	30
1,2,3-Trichlorobenzene	ND	5.0	110	118	7.0	76	82	7.6	70 - 130	30
1,2,3-Trichloropropane	ND	5.0	97	107	9.8	110	119	7.9	70 - 130	30
1,2,4-Trichlorobenzene	ND	5.0	115	122	5.9	80	83	3.7	70 - 130	30

SDG I.D.: GBK79016

		Blk	LCS	LCSD	LCS	MS	MSD	MS	% Rec	% RPD	
Parameter	Blank	RL	%	%	RPD	%	%	RPD	Limits	Limits	
1,2,4-Trimethylbenzene	ND	1.0	111	112	0.9	98	105	6.9	70 - 130	30	
1,2-Dibromo-3-chloropropane	ND	5.0	97	115	17.0	119	140	16.2	70 - 130	30	m
1,2-Dibromoethane	ND	5.0	97	108	10.7	106	110	3.7	70 - 130	30	
1,2-Dichlorobenzene	ND	5.0	105	108	2.8	93	99	6.3	70 - 130	30	
1,2-Dichloroethane	ND	5.0	98	106	7.8	107	111	3.7	70 - 130	30	
1,2-Dichloropropane	ND	5.0	98	103	5.0	101	107	5.8	70 - 130	30	
1,3,5-Trimethylbenzene	ND	1.0	111	111	0.0	99	106	6.8	70 - 130	30	
1,3-Dichlorobenzene	ND	5.0	112	113	0.9	93	98	5.2	70 - 130	30	
1,3-Dichloropropane	ND	5.0	96	103	7.0	102	108	5.7	70 - 130	30	
1,4-Dichlorobenzene	ND	5.0	108	111	2.7	92	96	4.3	70 - 130	30	
2,2-Dichloropropane	ND	5.0	109	112	2.7	102	112	9.3	70 - 130	30	
2-Chlorotoluene	ND	5.0	112	112	0.0	101	110	8.5	70 - 130	30	
2-Hexanone	ND	25	84	102	19.4	101	109	7.6	70 - 130	30	
2-Isopropyltoluene	ND	5.0	113	113	0.0	98	107	8.8	70 - 130	30	
4-Chlorotoluene	ND	5.0	111	111	0.0	96	103	7.0	70 - 130	30	
4-Methyl-2-pentanone	ND	25	84	101	18.4	101	114	12.1	70 - 130	30	
Acetone	ND	10	73	86	16.4	96	109	12.7	70 - 130	30	
Acrylonitrile	ND	5.0	89	104	15.5	104	118	12.6	70 - 130	30	
Benzene	ND	1.0	101	103	2.0	102	107	4.8	70 - 130	30	
Bromobenzene	ND	5.0	107	110	2.8	102	109	6.6	70 - 130	30	
Bromochloromethane	ND	5.0	95	105	10.0	104	110	5.6	70 - 130	30	
Bromodichloromethane	ND	5.0	105	111	5.6	107	112	4.6	70 - 130	30	
Bromoform	ND	5.0	102	115	12.0	101	112	10.3	70 - 130	30	
Bromomethane	ND	5.0	113	117	3.5	114	122	6.8	70 - 130	30	
Carbon Disulfide	ND	5.0	113	116	2.6	102	113	10.2	70 - 130	30	
Carbon tetrachloride	ND	5.0	106	109	2.8	104	113	8.3	70 - 130	30	
Chlorobenzene	ND	5.0	103	106	2.9	96	101	5.1	70 - 130	30	
Chloroethane	ND	5.0	109	111	1.8	108	118	8.8	70 - 130	30	
Chloroform	ND	5.0	99	104	4.9	105	112	6.5	70 - 130	30	
Chloromethane	ND	5.0	103	101	2.0	104	111	6.5	70 - 130	30	
cis-1,2-Dichloroethene	ND	5.0	95	100	5.1	97	105	7.9	70 - 130	30	
cis-1,3-Dichloropropene	ND	5.0	100	108	7.7	100	104	3.9	70 - 130	30	
Dibromochloromethane	ND	3.0	106	115	8.1	108	114	5.4	70 - 130	30	
Dibromomethane	ND	5.0	94	107	12.9	105	110	4.7	70 - 130	30	
Dichlorodifluoromethane	ND	5.0	122	122	0.0	116	126	8.3	70 - 130	30	
Ethylbenzene	ND	1.0	104	107	2.8	99	102	3.0	70 - 130	30	
Hexachlorobutadiene	ND	5.0	119	119	0.0	66	77	15.4	70 - 130	30	m
Isopropylbenzene	ND	1.0	109	110	0.9	103	108	4.7	70 - 130	30	
m&p-Xylene	ND	2.0	104	106	1.9	96	100	4.1	70 - 130	30	
Methyl ethyl ketone	ND	5.0	76	93	20.1	94	107	12.9	70 - 130	30	
Methyl t-butyl ether (MTBE)	ND	1.0	96	110	13.6	114	122	6.8	70 - 130	30	
Methylene chloride	ND	5.0	93	100	7.3	183	186	1.6	70 - 130	30	m
Naphthalene	ND	5.0	103	115	11.0	92	100	8.3	70 - 130	30	
n-Butylbenzene	ND	1.0	125	123	1.6	90	98	8.5	70 - 130	30	
n-Propylbenzene	ND	1.0	111	109	1.8	97	103	6.0	70 - 130	30	
o-Xylene	ND	2.0	103	104	1.0	97	103	6.0	70 - 130	30	
p-Isopropyltoluene	ND	1.0	116	117	0.9	96	104	8.0	70 - 130	30	
sec-Butylbenzene	ND	1.0	116	115	0.9	97	106	8.9	70 - 130	30	
Styrene	ND	5.0	102	104	1.9	93	99	6.3	70 - 130	30	
tert-Butylbenzene	ND	1.0	108	109	0.9	97	107	9.8	70 - 130	30	
Tetrachloroethene	ND	5.0	105	106	0.9	95	101	6.1	70 - 130	30	
Tetrahydrofuran (THF)	ND	5.0	81	102	23.0	102	115	12.0	70 - 130	30	
Toluene	ND	1.0	99	101	2.0	97	103	6.0	70 - 130	30	

SDG I.D.: GBK79016

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
trans-1,2-Dichloroethene	ND	5.0	101	108	6.7	102	111	8.5	70 - 130	30	
trans-1,3-Dichloropropene	ND	5.0	102	109	6.6	101	105	3.9	70 - 130	30	
trans-1,4-dichloro-2-butene	ND	5.0	116	130	11.4	111	122	9.4	70 - 130	30	
Trichloroethene	ND	5.0	101	104	2.9	101	106	4.8	70 - 130	30	
Trichlorofluoromethane	ND	5.0	109	111	1.8	107	116	8.1	70 - 130	30	
Trichlorotrifluoroethane	ND	5.0	112	116	3.5	110	119	7.9	70 - 130	30	
Vinyl chloride	ND	5.0	111	114	2.7	111	121	8.6	70 - 130	30	
% 1,2-dichlorobenzene-d4	101	%	99	98	1.0	100	101	1.0	70 - 130	30	
% Bromofluorobenzene	97	%	98	100	2.0	98	98	0.0	70 - 130	30	
% Dibromofluoromethane	98	%	91	99	8.4	101	102	1.0	70 - 130	30	
% Toluene-d8	98	%	101	101	0.0	101	100	1.0	70 - 130	30	
Comment:											

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%.

QA/QC Batch 338211 (mg/kg), QC Sample No: BK79026 10X (BK79020, BK79026, BK79027)

Polychlorinated Biphenyls -	Soil										
PCB-1016	ND	0.17	91	90	1.1	104	73	35.0	40 - 140	30	
PCB-1221	ND	0.17							40 - 140	30	
PCB-1232	ND	0.17							40 - 140	30	
PCB-1242	ND	0.17							40 - 140	30	
PCB-1248	ND	0.17							40 - 140	30	
PCB-1254	ND	0.17							40 - 140	30	
PCB-1260	ND	0.17	92	93	1.1	99	75	27.6	40 - 140	30	
PCB-1262	ND	0.17							40 - 140	30	
PCB-1268	ND	0.17							40 - 140	30	
% DCBP (Surrogate Rec)	91	%	89	91	2.2	101	74	30.9	30 - 150	30	
% TCMX (Surrogate Rec)	80	%	95	95	0.0	106	73	36.9	30 - 150	30	
QA/QC Batch 341853 (ug/L), QC	Sample	e No: BN09532 (BK79026)									
Semivolatiles by SIM											
2-Methylnaphthalene	ND	0.05	91	84	8.0				30 - 130	20	
Acenaphthene	ND	0.05	86	79	8.5				30 - 130	20	
Acenaphthylene	ND	0.04	81	73	10.4				30 - 130	20	
Anthracene	ND	0.02	101	98	3.0				30 - 130	20	
Benz(a)anthracene	ND	0.02	104	101	2.9				30 - 130	20	
Benzo(a)pyrene	ND	0.02	98	95	3.1				30 - 130	20	
Benzo(b)fluoranthene	ND	0.02	110	113	2.7				30 - 130	20	
Benzo(ghi)perylene	ND	0.02	72	71	1.4				30 - 130	20	
Benzo(k)fluoranthene	ND	0.02	109	101	7.6				30 - 130	20	
Chrysene	ND	0.02	93	92	1.1				30 - 130	20	
Dibenz(a,h)anthracene	ND	0.01	87	83	4.7				30 - 130	20	
Fluoranthene	ND	0.04	98	95	3.1				30 - 130	20	
Fluorene	ND	0.05	87	83	4.7				30 - 130	20	
Indeno(1,2,3-cd)pyrene	ND	0.02	63	61	3.2				30 - 130	20	
Naphthalene	ND	0.05	56	50	11.3				30 - 130	20	
Phenanthrene	ND	0.05	87	85	2.3				30 - 130	20	
Pyrene	ND	0.02	99	98	1.0				30 - 130	20	
% 2-Fluorobiphenyl	68	%	68	58	15.9				30 - 130	20	
% Nitrobenzene-d5	64	%	49	43	13.0				30 - 130	20	
% Terphenyl-d14	94	%	94	89	5.5				30 - 130	20	

Comment:

Additional 8270 criteria: 20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 341676 (ug/L), C	2C Samp	le No: BN10304 (BK79026)									
Polychlorinated Biphenyl	<u>s</u>										
PCB-1016	ND	0.050	67	76	12.6				40 - 140	20	
PCB-1221	ND	0.050							40 - 140	20	
PCB-1232	ND	0.050							40 - 140	20	
PCB-1242	ND	0.050							40 - 140	20	
PCB-1248	ND	0.050							40 - 140	20	
PCB-1254	ND	0.050							40 - 140	20	
PCB-1260	ND	0.050	77	86	11.0				40 - 140	20	
PCB-1262	ND	0.050							40 - 140	20	
PCB-1268	ND	0.050							40 - 140	20	
% DCBP (Surrogate Rec)	78	%	89	88	1.1				30 - 150	20	
% TCMX (Surrogate Rec) Comment:	49	%	61	77	23.2				30 - 150	20	r

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

m = This parameter is outside laboratory MS/MSD specified recovery limits.

r = This parameter is outside laboratory RPD specified recovery limits.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director April 18, 2016

Monday, April 18, 2016

Criteria: CT: GBM, RC

State: CT

Sample Criteria Exceedences Report

GBK79016 - FO-PCB

SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
BK79020	\$8100SMR	Benzo(a)pyrene	CT / SEMIVOLATILE ORGANIC COMP / GB PMC (mg/kg	1100	240	1000	1000	ug/Kg
BK79020	\$8100SMR	Benz(a)anthracene	CT / SEMIVOLATILE ORGANIC COMP / GB PMC (mg/kg	1200	240	1000	1000	ug/Kg
BK79020	\$8100SMR	Benz(a)anthracene	CT / SEMIVOLATILE ORGANIC COMP / RES DEC (mg/k	1200	240	1000	1000	ug/Kg
BK79020	\$8100SMR	Benzo(a)pyrene	CT / SEMIVOLATILE ORGANIC COMP / RES DEC (mg/k	1100	240	1000	1000	ug/Kg
BK79020	\$ETPH_SMR	Ext. Petroleum HC	CT / PESTICIDES, PCB's, TPH, a / RES DEC (mg/kg)	810	260	500	500	mg/Kg
BK79026	\$8100SMR	Benz(a)anthracene	CT / SEMIVOLATILE ORGANIC COMP / GB PMC (mg/kg	1100	240	1000	1000	ug/Kg
BK79026	\$8100SMR	Benz(a)anthracene	CT / SEMIVOLATILE ORGANIC COMP / RES DEC (mg/k	1100	240	1000	1000	ug/Kg
BK79026	\$PCB_SOXR	PCB-1221	CT / PESTICIDES, PCB's, TPH, a / RES DEC (mg/kg)	ND	17000	1000	1000	ug/Kg
BK79026	\$PCB_SOXR	PCB-1268	CT / PESTICIDES, PCB's, TPH, a / RES DEC (mg/kg)	ND	17000	1000	1000	ug/Kg
BK79026	\$PCB_SOXR	PCB-1232	CT / PESTICIDES, PCB's, TPH, a / RES DEC (mg/kg)	ND	17000	1000	1000	ug/Kg
BK79026	\$PCB_SOXR	PCB-1242	CT / PESTICIDES, PCB's, TPH, a / RES DEC (mg/kg)	ND	17000	1000	1000	ug/Kg
BK79026	\$PCB_SOXR	PCB-1248	CT / PESTICIDES, PCB's, TPH, a / RES DEC (mg/kg)	ND	17000	1000	1000	ug/Kg
BK79026	\$PCB_SOXR	PCB-1254	CT / PESTICIDES, PCB's, TPH, a / RES DEC (mg/kg)	180000	17000	1000	1000	ug/Kg
BK79026	\$PCB_SOXR	PCB-1260	CT / PESTICIDES, PCB's, TPH, a / RES DEC (mg/kg)	ND	17000	1000	1000	ug/Kg
BK79026	\$PCB_SOXR	PCB-1262	CT / PESTICIDES, PCB's, TPH, a / RES DEC (mg/kg)	ND	17000	1000	1000	ug/Kg
BK79026	\$PCB_SOXR	PCB-1016	CT / PESTICIDES, PCB's, TPH, a / RES DEC (mg/kg)	ND	17000	1000	1000	ug/Kg

Phoenix Laboratories does not assume responsibility for the data contained in this report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

ы

Reasonable Confidence Protocol Laboratory Analysis QA/QC Certification Form

Labo	oratory Name:	Phoe	nix Enviro	nmental Labs,	Inc.	Client:		Fuss 8	k O'Neill,	Inc.	
Proje	ect Location:	MERI	DEN HOS	PITAL		Project	Number:				
Labo	oratory Sample	e ID(s):	BK7901 BK7902	6, BK79017, E 6, BK79027, E	3K790 3K790	19, BK79 28, BK79	020, BK790 029	22, BK	79023, E	3K79024,	1
Sam	pling Date(s):	3/14/2	2016								
RCP	Methods Use	d:									
✓ 13	311/1312 🖌 60	10	7000	7196	✔ 74	470/7471	8081		EPH		TO15
80	082 🗌 81	51	✔ 8260	✔ 8270	✓ E ⁻	TPH	9010/901	2	VPH		
1.	For each analyti specified QA/QC any criteria fallir method-specific	ical met C perfor ng outsio Reasor	hod referer mance crite de of accep nable Conf	nced in this labo eria followed, in table guideline dence Protocol	oratory cluding s, as sp docum	report par the requirection the requirection the the requirection the requirection the report the requirection the report part of the report part of the report the report part of the report part of the report part of the report the report part of the report pa	ckage, were a irement to exp the CT DEP	all olain	✔ Yes	🗆 No	
1a.	Were the metho	od speci	fied preser	vation and hold	ing time	e requirer	nents met?		□ Yes	✓ No	
1b.	EPH and VPH n significant modi	nethods fications	only: Was s (see secti	the VPH or EF on 11.3 of resp	PH met ective I	hod cond RCP meth	ucted without nods)		□ Yes	🗆 No	✓ NA
2.	Were all sample described on the	es receiv e assoc	ved by the iated Chair	aboratory in a o -of-Custody do	conditic cumen	on consist t(s)?	ent with that		✔ Yes	🗌 No	
3.	Were samples r	eceived	l at an appi	opriate tempera	ature (<	< 6 Degre	es C)?		✓ Yes	🗌 No	□ NA
4.	Were all QA/QC Protocol docum	perforr ents acl	nance crite neived? Se	ria specified in e Section: PCB	the Re Narrat	asonable ion.	Confidence		□ Yes	✓ No	
5a.	Were reporting	limits sp	ecified or I	eferenced on th	ne chai	n-of-custo	ody?		✓ Yes	🗌 No	
5b.	Were these repo	orting lir	nits met?						✓ Yes	□ No	
6.	For each analyti results reported presented in the	for all c Reaso	hod referer constituents nable Conf	nced in this labo identified in the idence Protoco	oratory e methe I docun	report pao od-specifi nents?	ckage, were c analyte lists	3	□ Yes	✓ No	□ NA
7.	Are project-spec	cific mat	rix spikes a	and laboratory o	duplicat	es includ	ed in the data	set?	□ Yes	✓ No	□ NA

Note: For all questions to which the response was "No" (with the exception of question #5a, #7), additional information must be provided in an attached narrative. If the answer to question #1, #1A or 1B is "No", the data package does not meet the requirements for "Reasonable Confidence".

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete.

Authorized Signature:

Ethan See

Date: Monday, April 18, 2016

Printed Name: Ethan Lee

Position: Project Manager

RCP Certification Report

April 18, 2016

SDG I.D.: GBK79016

SDG Comments

Metals Analysis:

The client requested a shorter list of elements than the 6010 RCP list. Only the RCRA 8 Metals are reported as requested on the chain of custody.

8270 Semi-volatile Organics:

The client requested a short list for 8270 RCP Semivolatile. Only the PAH constituents are reported as requested on the chain-ofcustody.

BK79026 - The holding time limit was exceeded for SPLP PCB extraction. No significant bias is suspected.

ETPH Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument:

AU-FID1 03/17/16-2

Jeff Bucko, Chemist 03/17/16

BK79020

The initial calibration (ETPH304I) RSD for the compound list was less than 30% except for the following compounds: None. The continuing calibration %D for the compound list was less than 30% except for the following compounds:None.

AU-FID11 03/17/16-1 Jeff Bucko, Chemist 03/17/16

BK79024, BK79026

The initial calibration (ETPH304I) RSD for the compound list was less than 30% except for the following compounds: None. The continuing calibration %D for the compound list was less than 30% except for the following compounds:None.

AU-FID11 03/18/16-1

BK79017, BK79019, BK79022, BK79023, BK79027

The initial calibration (ETPH304I) RSD for the compound list was less than 30% except for the following compounds: None. The continuing calibration %D for the compound list was less than 30% except for the following compounds:None.

AUFID-D1 03/17/16-1

Jeff Bucko, Chemist 03/17/16

Jeff Bucko, Chemist 03/18/16

BK79016

The initial calibration (ETPH314I) RSD for the compound list was less than 30% except for the following compounds: None. The continuing calibration %D for the compound list was less than 30% except for the following compounds:None.

QC (Batch Specific):

Batch 338082 (BK78737)

BK79016, BK79017, BK79019, BK79020, BK79022, BK79023, BK79024, BK79026, BK79027 All LCS recoveries were within 60 - 120 with the following exceptions: None.

Mercury Narration

Were all QA/QC performance criteria specified in the analytical method achieved? Yes.

Instrument:

MERLIN 03/17/16 13:12 Rick Schweitzer, Chemist 03/17/16

BK79016, BK79020, BK79022, BK79023, BK79024, BK79026, BK79027

The method preparation blank contains all of the acids and reagents as the samples; the instrument blanks do not.

Certification Report

April 18, 2016

SDG I.D.: GBK79016

Mercury Narration

The initial calibration met all criteria including a standard run at or below the reporting level.

All calibration verification standards (ICV, CCV) met criteria.

All calibration blank verification standards (ICB, CCB) met criteria.

The matrix spike sample is used to identify spectral interfernce for each batch of samples, if within 85-115%, no interference is observed and no further action is taken.

The following Initial Calibration Verification (ICV) compounds did not meet criteria: None.

The following Continuing Calibration Verification (CCV) compounds did not meet criteria: None.

MERLIN 04/11/16 08:44

Rick Schweitzer, Chemist 04/11/16

BK79027

The method preparation blank contains all of the acids and reagents as the samples; the instrument blanks do not.

The initial calibration met all criteria including a standard run at or below the reporting level.

All calibration verification standards (ICV, CCV) met criteria.

All calibration blank verification standards (ICB, CCB) met criteria.

The matrix spike sample is used to identify spectral interfernce for each batch of samples, if within 85-115%, no interference is observed and no further action is taken.

The following Initial Calibration Verification (ICV) compounds did not meet criteria: None.

The following Continuing Calibration Verification (CCV) compounds did not meet criteria: None.

QC (Batch Specific):

Batch 338263 (BK78679)

BK79016, BK79020, BK79022, BK79023, BK79024, BK79026, BK79027

All LCS recoveries were within 70 - 130 with the following exceptions: None.

All LCSD recoveries were within 70 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

Additional Mercury criteria: LCS acceptance range for waters is 80-120% and for soils is 70-130%.

Batch 341768 (BN09527)

BK79027

All LCS recoveries were within 70 - 130 with the following exceptions: None.

Additional Mercury criteria: LCS acceptance range for waters is 80-120% and for soils is 70-130%.

ICP Metals Narration

Were all QA/QC performance criteria specified in the analytical method achieved? Yes.

Instrument:

ARCOS 03/16/16 18:07 E

07 Emily Kolominskaya, Laura Kinnin, Chemist 03/16/16

BK79016, BK79020, BK79022, BK79023, BK79024, BK79026, BK79027

The linear range is defined daily by the calibration range.

The following Initial Calibration Verification (ICV) compounds did not meet criteria: None.

The following Continuing Calibration Verification (CCV) compounds did not meet criteria: None.

The following ICP Interference Check (ICSAB) compounds did not meet criteria: None.

ARCOS 03/17/16 22:18 Emily Kolominskaya, Laura Kinnin, Chemist 03/17/16

BK79016, BK79020, BK79022, BK79023

The linear range is defined daily by the calibration range.

The following Initial Calibration Verification (ICV) compounds did not meet criteria: None.

Certification Report

April 18, 2016

SDG I.D.: GBK79016

ICP Metals Narration

The following Continuing Calibration Verification (CCV) compounds did not meet criteria: None. The following ICP Interference Check (ICSAB) compounds did not meet criteria: None.

ARCOS 04/11/16 18:19

Emily Kolominskaya, Laura Kinnin, Chemist 04/11/16

BK79020, BK79026

The linear range is defined daily by the calibration range. The following Initial Calibration Verification (ICV) compounds did not meet criteria: None.

The following Continuing Calibration Verification (CCV) compounds did not meet criteria: None. The following ICP Interference Check (ICSAB) compounds did not meet criteria: None.

ARCOS 04/14/16 16:20

Emily Kolominskaya, Laura Kinnin, Chemist 04/14/16

BK79023

The linear range is defined daily by the calibration range.

The following Initial Calibration Verification (ICV) compounds did not meet criteria: None. The following Continuing Calibration Verification (CCV) compounds did not meet criteria: None. The following ICP Interference Check (ICSAB) compounds did not meet criteria: None.

QC (Batch Specific):

Batch 338226 (BK78641)

BK79026, BK79027 All LCS recoveries were within 75 - 125 with the following exceptions: None.

Batch 338229 (BK79024)

BK79024 All LCS recoveries were within 75 - 125 with the following exceptions: None.

Batch 338344 (BK79866)

BK79016, BK79020, BK79022

All LCS recoveries were within 75 - 125 with the following exceptions: None.

Batch 338345 (BK79757)

BK79023

All LCS recoveries were within 75 - 125 with the following exceptions: None.

Batch 341772 (BK79032)

BK79020, BK79023, BK79026 All LCS recoveries were within 75 - 125 with the following exceptions: None.

PAH Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument:

 CHEM25 03/16/16-1
 Damien Drobinski, Chemist 03/16/16

 BK79017, BK79019, BK79020, BK79022, BK79023, BK79024, BK79026, BK79027

Initial Calibration Verification (CHEM25/BN_0315):

RCP Certification Report

April 18, 2016

SDG I.D.: GBK79016

PAH Narration

The following compounds had %RSDs >20%: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM25/0316_04-BN_0315):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

100% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet minimum response factors: None.

PCB Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? No.

QC Batch 341676 (Samples: BK79026) ----

The LCS/LCSD RPD exceeds method criteria for one or more surrogates, therefore there may be variability in the reported result. (%TCMX)

Instrument:

AU-ECD24 04/12/16-1

Adam Werner, Chemist 04/12/16

BK79026

The initial calibration (PC0330AI) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC0330BI) RSD for the compound list was less than 20% except for the following compounds: None. The continuing calibration %D for the compound list was less than 15% except for the following compounds:None.

AU-ECD3 03/17/16-1

Adam Werner, Chemist 03/17/16

BK79026

The initial calibration (PC0229AI) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC0229BI) RSD for the compound list was less than 20% except for the following compounds: None. The continuing calibration %D for the compound list was less than 15% except for the following compounds:None.

AU-ECD5 03/17/16-1

Adam Werner, Chemist 03/17/16

BK79020, BK79026, BK79027

The initial calibration (PC0314AI) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC0314BI) RSD for the compound list was less than 20% except for the following compounds: None. The continuing calibration %D for the compound list was less than 15% except for the following compounds:None.

QC (Batch Specific):

Batch 338211 (BK79026)

BK79020, BK79026, BK79027

All LCS recoveries were within 40 - 140 with the following exceptions: None. All LCSD recoveries were within 40 - 140 with the following exceptions: None. All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

Batch 341676 (BN10304)

BK79026

RCP Certification Report

April 18, 2016

SDG I.D.: GBK79016

PCB Narration

All LCS recoveries were within 40 - 140 with the following exceptions: None.

All LCSD recoveries were within 40 - 140 with the following exceptions: None.

All LCS/LCSD RPDs were less than 20% with the following exceptions: % TCMX (Surrogate Rec)(23.2%)

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

SVOA Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument:

CHEM05 03/17/16-1

Damien Drobinski, Chemist 03/17/16

BK79026

Initial Calibration Verification (CHEM05/SV_0314):

99% of target compounds met criteria.

The following compounds had %RSDs >20%: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM05/0317_02-SV_0314):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

Damien Drobinski, Chemist 03/16/16

99% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet minimum response factors: None.

CHEM06 03/16/16-1

BK79016

The DDT breakdown and pentachlorophenol & benzidine peak tailing were evaluated in the DFTPP tune and were found to be in control.

Initial Calibration Verification (CHEM06/SV_0316):

99% of target compounds met criteria.

The following compounds had %RSDs >20%: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM06/0316_14-SV_0316):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

100% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet minimum response factors: None.

CHEM27 04/13/16-1 Damien Drobinski, Chemist 04/13/16

BK79026

Initial Calibration Verification (CHEM27/SV_0412): 93% of target compounds met criteria.

RCP Certification Report

April 18, 2016

SDG I.D.: GBK79016

SVOA Narration

The following compounds had %RSDs >20%: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM27/0413_02-SV_0412): Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None. 99% of target compounds met criteria. The following compounds did not meet % deviation criteria: None. The following compounds did not meet maximum % deviations: None. The following compounds did not meet recommended response factors: None. The following compounds did not meet minimum response factors: None.

QC (Batch Specific):

Batch 338207 (BK79016)

BK79016, BK79017, BK79019, BK79020, BK79022, BK79023, BK79024, BK79026, BK79027 All LCS recoveries were within 30 - 130 with the following exceptions: None.

SVOASIM Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument:

CHEM04 04/12/16-1

Damien Drobinski, Chemist 04/12/16

BK79026

The DDT breakdown and pentachlorophenol & benzidine peak tailing were evaluated in the DFTPP tune and were found to be in control.

In the event that lower detection levels were requested, the samples may have been analyzed by selective ion monitoring (SIM) mode.

If PAH/base neutral were requested, Phoenix utilized a method that contained a shortened list, so some of the compounds in the narrative may be non-applicable.

Initial Calibration Verification (CHEM04/SIM_0404):

96% of target compounds met criteria.

The following compounds had %RSDs >20%: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM04/0412_02A-SIM_0404):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None. 100% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet minimum response factors: None.

QC (Batch Specific):

RCP Certification Report

April 18, 2016

SDG I.D.: GBK79016

SVOASIM Narration

Batch 341853 (BN09532)

BK79026

All LCS recoveries were within 30 - 130 with the following exceptions: None.

All LCSD recoveries were within 30 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 20% with the following exceptions: None.

Additional 8270 criteria:20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

VOA Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument:

CHEM14 03/17/16-1

Jane Li, Chemist 03/17/16

BK79023, BK79024, BK79026, BK79028, BK79029

Initial Calibration Verification (CHEM14/VT-0315):

98% of target compounds met criteria.

The following compounds had %RSDs >20%: Acetone 28% (20%), Bromoform 21% (20%)

The following compounds did not meet recommended response factors: None.

The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM14/0317_06-VT-0315):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

100% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet minimum response factors: None.

QC (Batch Specific):

Batch 338872 (BK79023)

BK79023, BK79024, BK79026, BK79028, BK79029

All LCS recoveries were within 70 - 130 with the following exceptions: None.

All LCSD recoveries were within 70 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%.

Temperature Narration

The samples in this delivery group were received at 3°C. (Note acceptance criteria is above freezing up to 6°C)

FUSS & O'NI (860) 646-2469 • www.Fand	EILL X46 Hartford R 55 Quarry Road 0.com 1419 Richland S	oad, Manchester, CT I, Trumbull, CT 0661 Street, Columbia, SC 2	06040 C	 78 Interstate Drive, 317 Iron Horse Way 380 Washington Stree 	West Springfield, MA 01089 , Suite 204, Providence, RI 02908 t, Suite 301, Poughkeepsie, NY	□ Other	Zuc Juc
CHAIN	I-OF-CUSTO	DY REC	ORD	34915		24-Hour* □ 72-Hour* 48-Hour* ★Standard (days	stand ⇒ *Surcharge Applies
Project NAME		Project Locati	NC		PROJECT NUMBER		LABORATORY
Meriden Hu	/ ptigo	IMeride	5	_	20120232.	240	Phoes 1x
REPORT TO: Spetanie	WIESZCHERK	A David	Ceor	Analysis			Containers
INVOICE TO:				Kequest			100
F. F.		ſ	1,1				1300 1000 100 100 100 100 100 100 100 10
Source Codes: MW=Monitoring Well PW=Potable	Water T=Treatment Facilit	v S=Soil B	Sediment		to the second	Contraction of the second seco	1000 100 100 100 100 100 100 100 100 10
SW=Surface Water ST=Stormwa X=Other	ter W=Waste A=Aii	r C=Concrete		SC S	PAR SEC	The set of	1250 EX 250 EX 2 1250 EX 250 EX 2 1250 EX 250 EX 2
Item Transfer Check No. 1 2 3 4	Sample Number	Source Date Code Sample	d Sampled	ALL STAT	1 1 103 1 10	Defect Costs	1000 - 10000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1
1 / 11761	40314-01	5 3/14	1000				0106L
77	- 02M		1015	1 1			79017
3 /	- 03		ы Ъ				4011 79018
~ ~	Mho -		1100				PIOPL
2	- o2		1115	 / 	>		020PL
	N 20-		1120				Hall TGO21
× 0	1		1130	> ·	>		TCOPT
0 8	- 08		1230		>		79023
	001	_	13.30	<pre>> / /</pre>	>		79024
> > >	No1 - 1	→ →	1345		17		Hall 79025
Transfer Relinquished By Number		ccepted By	Date	e Time Cha	rge Exceptions: 🗆 CT Tax Exemp Duplicates	t □ QA/QC □ OtherBlanks (Item Nos:	
- D'(est	40 42	leter	3/14)	16 1800 Rep	orting and Detection Limit Requir	ements: 🗆 RCP Deliverables 🗆 M	ICP CAM Cert.
2 40 brezer	0.000	TAAA	3/10/12	1 100 1	لالله المحرم المحرم المحرم المحرم المحرم المحرم المحرمة المحرمة المحرمة المحرمة المحرمة المحرمة المحرمة المحرمة A construction of the second	20	
4				5	Hold Sampler	where for addition	h anglyses

FUSS & O'NEILL (860) 646-2469 • www.liandO.com	146 Hartford Road, Manchester, CT 06040 56 Quarry Road, Trumbull, CT 06611 1419 Richland Street, Columbia, SC 29201	 78 Interstate Drive, West Spring 317 Iron Horse Way, Suite 204, 80 Washingron Street, Suite 301 	field, MA 01089 Providence, R1 02908 Poughkeepsie, NY	3 W C
CHAIN-OF	-CUSTODY RECORI) 34916	7 24-Hour* 72-Hour* 8-Hour* 55-andard 5	instround Other(days) days) *Surcharge Applies
PROJECT NAME	PROJECT LOCATION	Pro	JECT NUMBER	LABORATORY
Meriden Hospital	Meriden, CT	2	0120232, 640	Phoenrx
REPORT TO: Stefenie Wiersz	chalen + Devid Cool	Analysis		Containers
Invoice To:		Request		1 1 1 1 1 1 23
P.O. No.:				
Sampler's Signature:	CA Date: 3/14/16			1000 1000 100 000 100 0000 100 00000000
Source Codes: MW=Monitoring Well PW=Potable Water SW=Surface Water ST=Stormwater	T=Tr:atment I:acility S=Soil B=Sedimen W=Waste A=Air C=Concrete	t tog	to the second se	is Differences in Dif
X=Other TRIP BLANK		a solution	A A BER CE	22 20 20 20 20 20 20 20 20 20 20 20 20 2
item Transfer Check Sample No.	Number Source Date Tr Code Sampled Sam	Died LONYOU'L OF	A list to A triat Con	10 e.N 20.05 - 20.0
HIEO319711 11 11 11	-11 S 3/14/16 140	xe 1/1/1/		TQQAL
1 / 1	-12 1 1 14	20 1111		79027
13 /	-18 X 1740	×		7902K
T / H	-19 × PI-	× ×		79029
Transfer Relinquished By Number	Accepted By	Date Time Charge Excepti	ons: □ CT Tax Exempt □ QA/QC □ Other. Duplicates Z Blanks (Item Nos:	
1 Th Coolu	FAO Frezer 3	Image: Number line Reporting and line Image: Number line Image: Number line Image: Number line Image: Number line	Detection Limit Requirements: XRCP Deliverables	🗆 MCP CAM Cert.
3		Additional Con	unents:	
4		Ĵ.	had semple volumes for ad	ditual Analas

Bobbi - Phoenixlabs

From: Stefanie Wierszchalek [SWierszchalek@fando.com]

Sent: Friday, April 08, 2016 2:41 PM

To: Bobbi - Phoenixlabs

Subject: GBK79016 - Add On Analyses

Good afternoon Bobbi,

I was looking at some results from soil samples we had submitted back in March and I was hoping to have a few additional SPLP analyses run as follows:

Lab Report GBK79016 Sample 1176160314-05 (Lab Sample BK79020): Sample 1176160314-08 (Lab Sample BK79023): Sample 1176160314-11 (Lab Sample BK79026): Sample 1176160314-12 (Lab Sample BK79027): Sample 1176160314-23 (Lab Sample BK79032):

SPLP Lead & SPLP Mercury SPLP Lead & SPLP Chromium SPLP Lead, SPLP Chromium, SPLP PCBs & SPLP PAHs SPLP Mercury SPLP Lead

Please do not hesitate to contact me if you have any questions or need more information regarding these add-ons.

Thank you,

Fuss & O'Neill, Inc | 146 Hartford Road | Manchester, CT 06040

860.646.2469 x5503 swierszchalek@fando.com www.fando.com

This e-mail message and any files transmitted with it are the exclusive intellectual property of Fuss & O'Neill. This message and any attached files may be privileged and confidential. If you have received this message in error, please delete this e-mail and attached files and immediately notify Fuss & O'Neill by sending a reply e-mail to the sender of this message. Thank you.

Bobbi - Phoenixlabs

From: Stefanie Wierszchalek [SWierszchalek@fando.com]

Sent: Friday, April 08, 2016 2:44 PM

To: Bobbi - Phoenixlabs

Subject: RE: GBK79016 - Add On Analyses

Hi Bobbi,

I apologize however I made an error in the email request below.

For Sample 1176160314-05 (Lab Sample BK79020); please run SPLP Lead only (do not run SPLP Mercury).

Sorry for any confusion.

Thanks,

 Stefanie Wierszchalek

 Hydrogeologist

 Fuss & O'Neill, Inc | 146 Hartford Road | Manchester, CT 06040

 860.646.2469 x5503 | swierszchalek@fando.com |

 www.fando.com | twitter | facebook | linkedin

From: Stefanie Wierszchalek Sent: Friday, April 08, 2016 2:41 PM To: 'Bobbi - Phoenixlabs' Subject: GBK79016 - Add On Analyses

Good afternoon Bobbi,

I was looking at some results from soil samples we had submitted back in March and I was hoping to have a few additional SPLP analyses run as follows:

Lab Report GBK79016 Sample 1176160314-05 (Lab Sample BK79020): Sample 1176160314-08 (Lab Sample BK79023): Sample 1176160314-11 (Lab Sample BK79026): Sample 1176160314-12 (Lab Sample BK79027): Sample 1176160314-23 (Lab Sample BK79032):

SPLP Lead & SPLP Mercury SPLP Lead & SPLP Chromium SPLP Lead, SPLP Chromium, SPLP PCBs & SPLP PAHs SPLP Mercury SPLP Lead

Please do not hesitate to contact me if you have any questions or need more information regarding these add-ons.

Thank you,

Stefanie Wierszchalek Hydrogeologist

Fuss & O'Neill, Inc | 146 Hartford Road | Manchester, CT 06040

860.646.2469 x5503 swierszchalek@fando.com www.fando.com

This e-mail message and any files transmitted with it are the exclusive intellectual property of Fuss & O'Neill. This message and any attached files may be privileged and confidential. If you have received this message in error, please delete this e-mail and attached files and immediately notify Fuss & O'Neill by sending a reply e-mail to the sender of this message. Thank you.

Thursday, April 14, 2016

Attn: Ms. Stefanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Project ID: MERIDEN HOSPITAL Sample ID#s: BK79030 - BK79034, BK79036

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

Enclosed are revised Analysis Report pages. Please replace and discard the original pages. If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

Stille

Phyllis/Shiller Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #MA-CT-007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

Analysis Report

April 14, 2016

FOR: Attn: Ms. Stefanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample Informa	ation	Custody Inform	nation	<u>Date</u>	<u>Time</u>
Matrix:	SOIL	Collected by:	DC	03/15/16	10:30
Location Code:	F&O-PCB	Received by:	LB	03/16/16	9:54
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	20120232.C40				

Laboratory Data

SDG ID: GBK79030 Phoenix ID: BK79030

Project ID:MERIDEN HOSPITALClient ID:1176160314-21

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Field Extraction	Completed				03/15/16		SW5035A
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
1,1,1-Trichloroethane	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
1,1,2,2-Tetrachloroethane	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
1,1,2-Trichloroethane	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
1,1-Dichloroethane	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
1,1-Dichloroethene	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
1,1-Dichloropropene	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
1,2,3-Trichlorobenzene	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
1,2,3-Trichloropropane	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
1,2,4-Trichlorobenzene	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
1,2,4-Trimethylbenzene	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
1,2-Dibromo-3-chloropropane	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
1,2-Dibromoethane	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
1,2-Dichlorobenzene	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
1,2-Dichloroethane	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
1,2-Dichloropropane	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
1,3,5-Trimethylbenzene	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
1,3-Dichlorobenzene	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
1,3-Dichloropropane	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
1,4-Dichlorobenzene	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
2,2-Dichloropropane	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
2-Chlorotoluene	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
2-Hexanone	ND	1300	ug/Kg	50	03/17/16	JLI	SW8260
2-Isopropyltoluene	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
4-Chlorotoluene	ND	250	ug/Kg	50	03/17/16	JLI	SW8260

Client ID: 1176160314-21

Parameter Result PQL Units Dilution Date/Time By Reference 4-Methyl-2-pentanone ND 1300 ug/Kg 50 03/17/16 JLI SW8260 Acetone ND 500 ug/Kg 50 03/17/16 JLI SW8260 Benzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 Bromochloromethane ND 250 ug/Kg 50 03/17/16 JLI SW8260 Bromodichloromethane ND 250 ug/Kg 50 03/17/16 JLI SW8260 Bromodichloromethane ND 250 ug/Kg 50 03/17/16 JLI SW8260 Carbon tetrachoride ND 250 ug/Kg 50 03/17/16 JLI SW8260 Chlorobenzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 Chloroberthane ND 250 ug/Kg 50 03/17/16 JLI <th></th> <th></th> <th>RL/</th> <th></th> <th></th> <th></th> <th></th> <th></th>			RL/					
4-Methyl-2-pentanone ND 1300 ug/Kg 50 03/17/16 JLI SW8260 Accylonitrile ND 5000 ug/Kg 50 03/17/16 JLI SW8260 Benzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 Bromochloromethane ND 250 ug/Kg 50 03/17/16 JLI SW8260 Bromochloromethane ND 250 ug/Kg 50 03/17/16 JLI SW8260 Bromochloromethane ND 250 ug/Kg 50 03/17/16 JLI SW8260 Carbon Disulfide ND 250 ug/Kg 50 03/17/16 JLI SW8260 Carbon tetrachloride ND 250 ug/Kg 50 03/17/16 JLI SW8260 Chloroethane ND 250 ug/Kg 50 03/17/16 JLI SW8260 Chloroethane ND 250 ug/Kg 50 03/17/16 JLI	Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
AcetoneND5000ug/kq5003/17/16JLSW2260AcrylonitrileND250ug/kq5003/17/16JLSW260BromobenzeneND250ug/kq5003/17/16JLSW260BromodichloromethaneND250ug/kq5003/17/16JLSW260BromodichloromethaneND250ug/kq5003/17/16JLSW260BromodichloromethaneND250ug/kq5003/17/16JLSW260BromodichloromethaneND250ug/kq5003/17/16JLSW260Carbon DisulfideND250ug/kq5003/17/16JLSW260Carbon DisulfideND250ug/kq5003/17/16JLSW260ChloroethaneND250ug/kq5003/17/16JLSW260ChloroethaneND250ug/kq5003/17/16JLSW260ChloroethaneND250ug/kq5003/17/16JLSW260ChloroethaneND250ug/kq5003/17/16JLSW260DibromochloromethaneND250ug/kq5003/17/16JLSW260DibromochloromethaneND250ug/kq5003/17/16JLSW260DibromochloromethaneND250ug/kq5003/17/16JLSW260DibromochloromethaneND250	4-Methyl-2-pentanone	ND	1300	ug/Kg	50	03/17/16	JLI	SW8260
AcrylonitrileND500ug/kg5003/17/16J.LSW8260BenzeneND250ug/kg5003/17/16J.LSW8260BromobenzeneND250ug/kg5003/17/16J.LSW8260BromodichloromethaneND250ug/kg5003/17/16J.LSW8260BromodichloromethaneND250ug/kg5003/17/16J.LSW8260BromodichloromethaneND250ug/kg5003/17/16J.LSW8260Carbon DisulfideND250ug/kg5003/17/16J.LSW8260Carbon DisulfideND250ug/kg5003/17/16J.LSW8260ChlorobenzeneND250ug/kg5003/17/16J.LSW8260ChloroberhaneND250ug/kg5003/17/16J.LSW8260ChloroberhaneND250ug/kg5003/17/16J.LSW8260Cis-1,2-DichloroptopeneND250ug/kg5003/17/16J.LSW8260DibromochromethaneND250ug/kg5003/17/16J.LSW8260DibromochromethaneND250ug/kg5003/17/16J.LSW8260DibromochromethaneND250ug/kg5003/17/16J.LSW8260DibromochromethaneND250ug/kg5003/17/16J.LSW8260Dibromochrom	Acetone	ND	5000	ug/Kg	50	03/17/16	JLI	SW8260
BenzeneND250ug/kg5003/17/16J.LSW8260BromochloromethaneND250ug/kg5003/17/16J.LSW8260BromochloromethaneND250ug/kg5003/17/16J.LSW8260BromochloromethaneND250ug/kg5003/17/16J.LSW8260BromochloromethaneND250ug/kg5003/17/16J.LSW8260Carbon DisulfideND250ug/kg5003/17/16J.LSW8260Carbon DisulfideND250ug/kg5003/17/16J.LSW8260ChloroethaneND250ug/kg5003/17/16J.LSW8260ChloroethaneND250ug/kg5003/17/16J.LSW8260ChloroethaneND250ug/kg5003/17/16J.LSW8260ChloroethaneND250ug/kg5003/17/16J.LSW8260ChloroethaneND250ug/kg5003/17/16J.LSW8260DibromochloromethaneND250ug/kg5003/17/16J.LSW8260DibromchloromethaneND250ug/kg5003/17/16J.LSW8260EthylbenzeneND250ug/kg5003/17/16J.LSW8260EthylbenzeneND250ug/kg5003/17/16J.LSW8260EthylbenzeneND250<	Acrylonitrile	ND	500	ug/Kg	50	03/17/16	JLI	SW8260
Bromobenzene ND 250 ug/kg 50 03/17/16 JLI SW8260 Bromochloromethane ND 250 ug/kg 50 03/17/16 JLI SW8260 Bromodchloromethane ND 250 ug/kg 50 03/17/16 JLI SW8260 Bromodchloromethane ND 250 ug/kg 50 03/17/16 JLI SW8260 Carbon Disulfide ND 250 ug/kg 50 03/17/16 JLI SW8260 Chorobenzene ND 250 ug/kg 50 03/17/16 JLI SW8260 Chloroform ND 250 ug/kg 50 03/17/16 JLI SW8260 Chloroform ND 250 ug/kg 50 03/17/16 JLI SW8260 Chloromethane ND 250 ug/kg 50 03/17/16 JLI SW8260 Dibromochloromethane ND 250 ug/kg 50 03/17/16 JLI <	Benzene	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
Bromochloromethane ND 250 ug/kg 50 03/17/16 JLI SW8260 Bromodichloromethane ND 250 ug/kg 50 03/17/16 JLI SW8260 Bromotorm ND 250 ug/kg 50 03/17/16 JLI SW8260 Carbon Disulfide ND 250 ug/kg 50 03/17/16 JLI SW8260 Carbon Disulfide ND 250 ug/kg 50 03/17/16 JLI SW8260 Chlorobenzene ND 250 ug/kg 50 03/17/16 JLI SW8260 Chloroform ND 250 ug/kg 50 03/17/16 JLI SW8260 cis-1,2-Dichloroethene ND 250 ug/kg 50 03/17/16 JLI SW8260 Dibromomethane ND 250 ug/kg 50 03/17/16 JLI SW8260 Dibromomethane ND 250 ug/kg 50 03/17/16 JLI	Bromobenzene	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
Bromodichloromethane ND 250 ug/Kg 50 03/17/16 JLI SW8260 Bromodrm ND 250 ug/Kg 50 03/17/16 JLI SW8260 Bromomethane ND 250 ug/Kg 50 03/17/16 JLI SW8260 Carbon Disulfide ND 250 ug/Kg 50 03/17/16 JLI SW8260 Chlorobenzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 Chloromethane ND 250 ug/Kg 50 03/17/16 JLI SW8260 Chloromethane ND 250 ug/Kg 50 03/17/16 JLI SW8260 Chloromethane ND 250 ug/Kg 50 03/17/16 JLI SW8260 Dibromochloromethane ND 250 ug/Kg 50 03/17/16 JLI SW8260 Dibromochloromethane ND 250 ug/Kg 50 03/17/16 JLI <t< td=""><td>Bromochloromethane</td><td>ND</td><td>250</td><td>ug/Kg</td><td>50</td><td>03/17/16</td><td>JLI</td><td>SW8260</td></t<>	Bromochloromethane	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
Bromoform ND 250 ug/kg 50 03/17/16 JLI SW8260 Bromomethane ND 250 ug/kg 50 03/17/16 JLI SW8260 Carbon Disulfide ND 250 ug/kg 50 03/17/16 JLI SW8260 Chlorobenzene ND 250 ug/kg 50 03/17/16 JLI SW8260 Chlorobenzene ND 250 ug/kg 50 03/17/16 JLI SW8260 Chloroform ND 250 ug/kg 50 03/17/16 JLI SW8260 Chloroform ND 250 ug/kg 50 03/17/16 JLI SW8260 Dishorochloromethane ND 250 ug/kg 50 03/17/16 JLI SW8260 Dishorochloromethane ND 250 ug/kg 50 03/17/16 JLI SW8260 Dishorochloromethane ND 250 ug/kg 50 03/17/16 JLI SW8	Bromodichloromethane	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
Bromomethane ND 250 ug/Kg 50 03/17/16 JLI SW8260 Carbon Disulfide ND 250 ug/Kg 50 03/17/16 JLI SW8260 Carbon tetrachloride ND 250 ug/Kg 50 03/17/16 JLI SW8260 Chlorobenzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 Chlorobethane ND 250 ug/Kg 50 03/17/16 JLI SW8260 Chlorobethane ND 250 ug/Kg 50 03/17/16 JLI SW8260 cis-1,2-Dichloroptopene ND 250 ug/Kg 50 03/17/16 JLI SW8260 Dibromochloromethane ND 250 ug/Kg 50 03/17/16 JLI SW8260 Dibromochloromethane ND 250 ug/Kg 50 03/17/16 JLI SW8260 Ethylbenzene ND 250 ug/Kg 50 03/17/16 JLI </td <td>Bromoform</td> <td>ND</td> <td>250</td> <td>ug/Kg</td> <td>50</td> <td>03/17/16</td> <td>JLI</td> <td>SW8260</td>	Bromoform	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
Carbon Disulfide ND 250 ug/Kg 50 03/17/16 JLI SW8260 Carbon tetrachloride ND 250 ug/Kg 50 03/17/16 JLI SW8260 Chlorobenzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 Chloroethane ND 250 ug/Kg 50 03/17/16 JLI SW8260 Chloroethane ND 250 ug/Kg 50 03/17/16 JLI SW8260 Chloromethane ND 250 ug/Kg 50 03/17/16 JLI SW8260 Dibromochloromethane ND 250 ug/Kg 50 03/17/16 JLI SW8260 Dibromochloromethane ND 250 ug/Kg 50 03/17/16 JLI SW8260 Dishorochloromethane ND 250 ug/Kg 50 03/17/16 JLI SW8260 Ethylbenzene ND 250 ug/Kg 50 03/17/16 JLI	Bromomethane	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
Carbon tetrachloride ND 250 ug/Kg 50 03/17/16 JLI SW8260 Chlorobenzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 Chloroform ND 250 ug/Kg 50 03/17/16 JLI SW8260 Chloroform ND 250 ug/Kg 50 03/17/16 JLI SW8260 Chloroform ND 250 ug/Kg 50 03/17/16 JLI SW8260 cis-1,2-Dichloroptpene ND 250 ug/Kg 50 03/17/16 JLI SW8260 Dibromochloromethane ND 250 ug/Kg 50 03/17/16 JLI SW8260 Dibromomethane ND 250 ug/Kg 50 03/17/16 JLI SW8260 Ethylbenzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 Isopropylbenzene ND 250 ug/Kg 50 03/17/16 JLI <td< td=""><td>Carbon Disulfide</td><td>ND</td><td>250</td><td>ug/Kg</td><td>50</td><td>03/17/16</td><td>JLI</td><td>SW8260</td></td<>	Carbon Disulfide	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
Chlorobenzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 Chloroethane ND 250 ug/Kg 50 03/17/16 JLI SW8260 Chloroothane ND 250 ug/Kg 50 03/17/16 JLI SW8260 Chloromethane ND 250 ug/Kg 50 03/17/16 JLI SW8260 cis-1,2-Dichloroptene ND 250 ug/Kg 50 03/17/16 JLI SW8260 cis-1,3-Dichloroptene ND 250 ug/Kg 50 03/17/16 JLI SW8260 Dibromochloromethane ND 250 ug/Kg 50 03/17/16 JLI SW8260 Dichorodifluoromethane ND 250 ug/Kg 50 03/17/16 JLI SW8260 Ethylbenzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 Isopropylbenzene ND 250 ug/Kg 50 03/17/16 JLI </td <td>Carbon tetrachloride</td> <td>ND</td> <td>250</td> <td>ug/Kg</td> <td>50</td> <td>03/17/16</td> <td>JLI</td> <td>SW8260</td>	Carbon tetrachloride	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
Chloroethane ND 250 ug/Kg 50 03/17/16 JLI SW8260 Chloroform ND 250 ug/Kg 50 03/17/16 JLI SW8260 Chloromethane ND 250 ug/Kg 50 03/17/16 JLI SW8260 cis-1,2-Dichloropthene ND 250 ug/Kg 50 03/17/16 JLI SW8260 Dibromochloromethane ND 250 ug/Kg 50 03/17/16 JLI SW8260 Dibromomethane ND 250 ug/Kg 50 03/17/16 JLI SW8260 Dichlorodifluoromethane ND 250 ug/Kg 50 03/17/16 JLI SW8260 Ethylbenzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 Isopropylbenzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 Methyl Ethyl Ketone ND 250 ug/Kg 50 03/17/16 JLI <td>Chlorobenzene</td> <td>ND</td> <td>250</td> <td>ug/Kg</td> <td>50</td> <td>03/17/16</td> <td>JLI</td> <td>SW8260</td>	Chlorobenzene	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
Chloroform ND 250 ug/Kg 50 03/17/16 JLI SW8260 Chloromethane ND 250 ug/Kg 50 03/17/16 JLI SW8260 cis-1,2-Dichloroethene ND 250 ug/Kg 50 03/17/16 JLI SW8260 cis-1,3-Dichloropropene ND 250 ug/Kg 50 03/17/16 JLI SW8260 Dibromochloromethane ND 250 ug/Kg 50 03/17/16 JLI SW8260 Dichoromethane ND 250 ug/Kg 50 03/17/16 JLI SW8260 Ethylbenzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 Isopropylbenzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 Methyl Ethyl Ketone ND 250 ug/Kg 50 03/17/16 JLI SW8260 Methyl Ethyl Ketone ND 250 ug/Kg 50 03/17/16 <td< td=""><td>Chloroethane</td><td>ND</td><td>250</td><td>ug/Kg</td><td>50</td><td>03/17/16</td><td>JLI</td><td>SW8260</td></td<>	Chloroethane	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
Chloromethane ND 250 ug/Kg 50 03/17/16 JLI SW8260 cis-1,2-Dichloroethene ND 250 ug/Kg 50 03/17/16 JLI SW8260 cis-1,3-Dichloropropene ND 250 ug/Kg 50 03/17/16 JLI SW8260 Dibromochloromethane ND 250 ug/Kg 50 03/17/16 JLI SW8260 Dibromomethane ND 250 ug/Kg 50 03/17/16 JLI SW8260 Dichlorodifluoromethane ND 250 ug/Kg 50 03/17/16 JLI SW8260 Ethylbenzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 Isopropylbenzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 Methyl Ethyl Ketone ND 250 ug/Kg 50 03/17/16 JLI SW8260 Naphthalene ND 250 ug/Kg 50 03/17/16	Chloroform	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
cis-1,2-Dichloroethene ND 250 ug/kg 50 03/17/16 JLI SW8260 cis-1,3-Dichloropropene ND 250 ug/kg 50 03/17/16 JLI SW8260 Dibromochloromethane ND 250 ug/kg 50 03/17/16 JLI SW8260 Dibromoethane ND 250 ug/kg 50 03/17/16 JLI SW8260 Dichorodifluoromethane ND 250 ug/kg 50 03/17/16 JLI SW8260 Ethylbenzene ND 250 ug/kg 50 03/17/16 JLI SW8260 Isopropylbenzene ND 250 ug/kg 50 03/17/16 JLI SW8260 Methyl Ethyl Ketone ND 250 ug/kg 50 03/17/16 JLI SW8260 Methyl Ethyl Ketone ND 250 ug/kg 50 03/17/16 JLI SW8260 Naphthalene ND 250 ug/kg 50 03/17/16	Chloromethane	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
cis-1,3-Dichloropropene ND 250 ug/Kg 50 03/17/16 JLI SW8260 Dibromochloromethane ND 250 ug/Kg 50 03/17/16 JLI SW8260 Dibromomethane ND 250 ug/Kg 50 03/17/16 JLI SW8260 Dichlorodifluoromethane ND 250 ug/Kg 50 03/17/16 JLI SW8260 Ethylbenzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 Isopropylbenzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 MethylEnzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 MethylEthyl Ketone ND 250 ug/Kg 50 03/17/16 JLI SW8260 MethylEne chloride ND 250 ug/Kg 50 03/17/16 JLI SW8260 Naphthalene ND 250 ug/Kg 50 03/17/16	cis-1,2-Dichloroethene	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
Dibromochloromethane ND 250 ug/Kg 50 03/17/16 JLI SW8260 Dibromomethane ND 250 ug/Kg 50 03/17/16 JLI SW8260 Dichlorodifluoromethane ND 250 ug/Kg 50 03/17/16 JLI SW8260 Ethylbenzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 Isopropylbenzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 Methyl Ethyl Ketone ND 250 ug/Kg 50 03/17/16 JLI SW8260 Methyl Ethyl Ketone ND 250 ug/Kg 50 03/17/16 JLI SW8260 Methyl Ethyl Ketone ND 250 ug/Kg 50 03/17/16 JLI SW8260 Nethyl Ethyl Ketone ND 250 ug/Kg 50 03/17/16 JLI SW8260 Naphthalene ND 250 ug/Kg 50 03/17/16	cis-1,3-Dichloropropene	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
Dibromomethane ND 250 ug/Kg 50 03/17/16 JLI SW8260 Dichlorodifluoromethane ND 250 ug/Kg 50 03/17/16 JLI SW8260 Ethylbenzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 Hexachlorobutadiene ND 250 ug/Kg 50 03/17/16 JLI SW8260 Isopropylbenzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 m&p-Xylene ND 250 ug/Kg 50 03/17/16 JLI SW8260 Methyl Ethyl Ketone ND 3000 ug/Kg 50 03/17/16 JLI SW8260 Methyl t-butyl ether (MTBE) ND 250 ug/Kg 50 03/17/16 JLI SW8260 Naphthalene ND 250 ug/Kg 50 03/17/16 JLI SW8260 n-Propylbenzene ND 250 ug/Kg 50 03/17/16	Dibromochloromethane	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
Dichlorodifluoromethane ND 250 ug/Kg 50 03/17/16 JLI SW8260 Ethylbenzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 Hexachlorobutadiene ND 250 ug/Kg 50 03/17/16 JLI SW8260 Isopropylbenzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 m&p-Xylene ND 250 ug/Kg 50 03/17/16 JLI SW8260 Methyl Ethyl Ketone ND 250 ug/Kg 50 03/17/16 JLI SW8260 Methyl t-butyl ether (MTBE) ND 250 ug/Kg 50 03/17/16 JLI SW8260 Naphthalene ND 250 ug/Kg 50 03/17/16 JLI SW8260 NPotylbenzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 NPotylbenzene ND 250 ug/Kg 50 03/17/16 JLI<	Dibromomethane	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
Ethylbenzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 Hexachlorobutadiene ND 250 ug/Kg 50 03/17/16 JLI SW8260 Isopropylbenzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 m&p-Xylene ND 250 ug/Kg 50 03/17/16 JLI SW8260 Methyl Ethyl Ketone ND 3000 ug/Kg 50 03/17/16 JLI SW8260 Methyl t-butyl ether (MTBE) ND 250 ug/Kg 50 03/17/16 JLI SW8260 Naphthalene ND 250 ug/Kg 50 03/17/16 JLI SW8260 n-Butylbenzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 n-Propylbenzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 o-Xylene ND 250 ug/Kg 50 03/17/16 JLI	Dichlorodifluoromethane	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
Hexachlorobutadiene ND 250 ug/Kg 50 03/17/16 JLI SW8260 Isopropylbenzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 m&p-Xylene ND 250 ug/Kg 50 03/17/16 JLI SW8260 Methyl Ethyl Ketone ND 3000 ug/Kg 50 03/17/16 JLI SW8260 Methyl Ethyl Ketone ND 250 ug/Kg 50 03/17/16 JLI SW8260 Methyl t-butyl ether (MTBE) ND 250 ug/Kg 50 03/17/16 JLI SW8260 Naphthalene ND 250 ug/Kg 50 03/17/16 JLI SW8260 n-Propylbenzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 o-Xylene ND 250 ug/Kg 50 03/17/16 JLI SW8260 sec-Butylbenzene ND 250 ug/Kg 50 03/17/16 JLI <td>Ethylbenzene</td> <td>ND</td> <td>250</td> <td>ug/Kg</td> <td>50</td> <td>03/17/16</td> <td>JLI</td> <td>SW8260</td>	Ethylbenzene	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
Isopropylbenzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 m&p-Xylene ND 250 ug/Kg 50 03/17/16 JLI SW8260 Methyl Ethyl Ketone ND 3000 ug/Kg 50 03/17/16 JLI SW8260 Methyl t-butyl ether (MTBE) ND 250 ug/Kg 50 03/17/16 JLI SW8260 Nethylene chloride ND 500 ug/Kg 50 03/17/16 JLI SW8260 Naphthalene ND 250 ug/Kg 50 03/17/16 JLI SW8260 n-Butylbenzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 n-Propylbenzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 o-Xylene ND 250 ug/Kg 50 03/17/16 JLI SW8260 sec-Butylbenzene ND 250 ug/Kg 50 03/17/16 JLI	Hexachlorobutadiene	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
m&p-Xylene ND 250 ug/Kg 50 03/17/16 JLI SW8260 Methyl Ethyl Ketone ND 3000 ug/Kg 50 03/17/16 JLI SW8260 Methyl t-butyl ether (MTBE) ND 250 ug/Kg 50 03/17/16 JLI SW8260 Methylene chloride ND 500 ug/Kg 50 03/17/16 JLI SW8260 Naphthalene ND 250 ug/Kg 50 03/17/16 JLI SW8260 n-Butylbenzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 n-Propylbenzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 o-Xylene ND 250 ug/Kg 50 03/17/16 JLI SW8260 sec-Butylbenzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 Styrene ND 250 ug/Kg 50 03/17/16 JLI	Isopropylbenzene	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
Methyl Ethyl Ketone ND 3000 ug/Kg 50 03/17/16 JLI SW8260 Methyl t-butyl ether (MTBE) ND 250 ug/Kg 50 03/17/16 JLI SW8260 Methylene chloride ND 500 ug/Kg 50 03/17/16 JLI SW8260 Naphthalene ND 250 ug/Kg 50 03/17/16 JLI SW8260 n-Butylbenzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 n-Propylbenzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 o-Xylene ND 250 ug/Kg 50 03/17/16 JLI SW8260 p-lsopropyltoluene ND 250 ug/Kg 50 03/17/16 JLI SW8260 Styrene ND 250 ug/Kg 50 03/17/16 JLI SW8260 tert-Butylbenzene ND 250 ug/Kg 50 03/17/16 JLI	m&p-Xylene	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
Methyl t-butyl ether (MTBE) ND 250 ug/Kg 50 03/17/16 JLI SW8260 Methylene chloride ND 500 ug/Kg 50 03/17/16 JLI SW8260 Naphthalene ND 250 ug/Kg 50 03/17/16 JLI SW8260 n-Butylbenzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 n-Propylbenzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 o-Xylene ND 250 ug/Kg 50 03/17/16 JLI SW8260 p-lsopropyltoluene ND 250 ug/Kg 50 03/17/16 JLI SW8260 sec-Butylbenzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 Styrene ND 250 ug/Kg 50 03/17/16 JLI SW8260 tert-Butylbenzene ND 250 ug/Kg 50 03/17/16 JLI	Methyl Ethyl Ketone	ND	3000	ug/Kg	50	03/17/16	JLI	SW8260
Methylene chloride ND 500 ug/Kg 50 03/17/16 JLI SW8260 Naphthalene ND 250 ug/Kg 50 03/17/16 JLI SW8260 n-Butylbenzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 n-Propylbenzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 o-Xylene ND 250 ug/Kg 50 03/17/16 JLI SW8260 p-lsopropyltoluene ND 250 ug/Kg 50 03/17/16 JLI SW8260 sec-Butylbenzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 sec-Butylbenzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 Styrene ND 250 ug/Kg 50 03/17/16 JLI SW8260 Tetrachloroethene ND 250 ug/Kg 50 03/17/16 JLI SW8260	Methyl t-butyl ether (MTBE)	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
Naphthalene ND 250 ug/Kg 50 03/17/16 JLI SW8260 n-Butylbenzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 n-Propylbenzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 o-Xylene ND 250 ug/Kg 50 03/17/16 JLI SW8260 p-lsopropyltoluene ND 250 ug/Kg 50 03/17/16 JLI SW8260 sec-Butylbenzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 styrene ND 250 ug/Kg 50 03/17/16 JLI SW8260 tert-Butylbenzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 tert-Butylbenzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 Tetrachloroethene ND 250 ug/Kg 50 03/17/16 JLI SW8260	Methylene chloride	ND	500	ug/Kg	50	03/17/16	JLI	SW8260
n-Butylbenzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 n-Propylbenzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 o-Xylene ND 250 ug/Kg 50 03/17/16 JLI SW8260 p-Isopropyltoluene ND 250 ug/Kg 50 03/17/16 JLI SW8260 sec-Butylbenzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 sec-Butylbenzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 styrene ND 250 ug/Kg 50 03/17/16 JLI SW8260 tert-Butylbenzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 Tetrachloroethene ND 250 ug/Kg 50 03/17/16 JLI SW8260 Tetrachloroethene ND 250 ug/Kg 50 03/17/16 JLI SW8260 Tetrachloroethene ND 500 ug/Kg 50 0	Naphthalene	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
n-Propylbenzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 o-Xylene ND 250 ug/Kg 50 03/17/16 JLI SW8260 p-Isopropyltoluene ND 250 ug/Kg 50 03/17/16 JLI SW8260 sec-Butylbenzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 Styrene ND 250 ug/Kg 50 03/17/16 JLI SW8260 tert-Butylbenzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 tert-Butylbenzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 Tetrachloroethene ND 250 ug/Kg 50 03/17/16 JLI SW8260 Tetrachloroethene ND 250 ug/Kg 50 03/17/16 JLI SW8260 Tetrachloroethene ND 500 ug/Kg 50 03/17/16 JLI <	n-Butylbenzene	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
o-Xylene ND 250 ug/Kg 50 03/17/16 JLI SW8260 p-lsopropyltoluene ND 250 ug/Kg 50 03/17/16 JLI SW8260 sec-Butylbenzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 Styrene ND 250 ug/Kg 50 03/17/16 JLI SW8260 tert-Butylbenzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 tert-Butylbenzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 Tetrachloroethene ND 250 ug/Kg 50 03/17/16 JLI SW8260 Tetrahydrofuran (THF) ND 500 ug/Kg 50 03/17/16 JLI SW8260	n-Propylbenzene	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
p-Isopropyltoluene ND 250 ug/Kg 50 03/17/16 JLI SW8260 sec-Butylbenzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 Styrene ND 250 ug/Kg 50 03/17/16 JLI SW8260 tert-Butylbenzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 Tetrachloroethene ND 250 ug/Kg 50 03/17/16 JLI SW8260 Tetrachloroethene ND 250 ug/Kg 50 03/17/16 JLI SW8260 Tetrachloroethene ND 500 ug/Kg 50 03/17/16 JLI SW8260	o-Xylene	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
sec-Butylbenzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 Styrene ND 250 ug/Kg 50 03/17/16 JLI SW8260 tert-Butylbenzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 Tetrachloroethene ND 250 ug/Kg 50 03/17/16 JLI SW8260 Tetrahydrofuran (THF) ND 500 ug/Kg 50 03/17/16 JLI SW8260	p-Isopropyltoluene	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
Styrene ND 250 ug/Kg 50 03/17/16 JLI SW8260 tert-Butylbenzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 Tetrachloroethene ND 250 ug/Kg 50 03/17/16 JLI SW8260 Tetrahydrofuran (THF) ND 500 ug/Kg 50 03/17/16 JLI SW8260	sec-Butylbenzene	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
tert-Butylbenzene ND 250 ug/Kg 50 03/17/16 JLI SW8260 Tetrachloroethene ND 250 ug/Kg 50 03/17/16 JLI SW8260 Tetrahydrofuran (THF) ND 500 ug/Kg 50 03/17/16 JLI SW8260	Styrene	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
Tetrachloroethene ND 250 ug/Kg 50 03/17/16 JLI SW8260 Tetrahydrofuran (THF) ND 500 ug/Kg 50 03/17/16 JLI SW8260	tert-Butylbenzene	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
Tetrahydrofuran (THF) ND 500 ug/Kg 50 03/17/16 JLI SW8260	Tetrachloroethene	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
	Tetrahydrofuran (THF)	ND	500	ug/Kg	50	03/17/16	JLI	SW8260
Toluene ND 250 ug/Kg 50 03/17/16 JLI SW8260	Toluene	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
Total Xylenes ND 250 ug/Kg 50 03/17/16 JLI SW8260	Total Xylenes	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
trans-1,2-Dichloroethene ND 250 ug/Kg 50 03/17/16 JLI SW8260	trans-1,2-Dichloroethene	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
trans-1,3-Dichloropropene ND 250 ug/Kg 50 03/17/16 JLI SW8260	trans-1,3-Dichloropropene	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
trans-1,4-dichloro-2-butene ND 500 ug/Kg 50 03/17/16 JLI SW8260	trans-1,4-dichloro-2-butene	ND	500	ug/Kg	50	03/17/16	JLI	SW8260
Trichloroethene ND 250 ug/Kg 50 03/17/16 JLI SW8260	Trichloroethene	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
Trichlorofluoromethane ND 250 ug/Kg 50 03/17/16 JLI SW8260	Trichlorofluoromethane	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
Trichlorotrifluoroethane ND 250 ug/Kg 50 03/17/16 JLI SW8260	Trichlorotrifluoroethane	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
Vinyl chloride ND 250 ug/Kg 50 03/17/16 JLI SW8260	Vinyl chloride	ND	250	ug/Kg	50	03/17/16	JLI	SW8260
QA/QC Surrogates	QA/QC Surrogates							
% 1,2-dichlorobenzene-d4 96 % 50 03/17/16 JLI 70 - 130 %	% 1,2-dichlorobenzene-d4	96		%	50	03/17/16	JLI	70 - 130 %
% Bromofluorobenzene 98 % 50 03/17/16 JLI 70 - 130 %	% Bromofluorobenzene	98		%	50	03/17/16	JLI	70 - 130 %

Client ID: 1176160314-21

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
% Dibromofluoromethane	98		%	50	03/17/16	JLI	70 - 130 %
% Toluene-d8	98		%	50	03/17/16	JLI	70 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Results are reported on an ``as received`` basis, and are not corrected for dry weight., TRIP BLANK INCLUDED.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director April 14, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

April 14, 2016

FOR: Attn: Ms. Stefanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample Informa	ation	Custody Inform	nation	<u>Date</u>	<u>Time</u>
Matrix:	SOIL	Collected by:	DC	03/15/16	10:35
Location Code:	F&O-PCB	Received by:	LB	03/16/16	9:54
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	20120232.C40				

Laboratory Data

SDG ID: GBK79030 Phoenix ID: BK79031

Project ID:	MERIDEN HOSPITAL
Client ID:	1176160314-22

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
Field Extraction	Completed				03/15/16		SW5035A
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
1,1,1-Trichloroethane	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
1,1,2,2-Tetrachloroethane	ND	3.0	ug/Kg	1	03/17/16	JLI	SW8260
1,1,2-Trichloroethane	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
1,1-Dichloroethane	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
1,1-Dichloroethene	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
1,1-Dichloropropene	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
1,2,3-Trichlorobenzene	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
1,2,3-Trichloropropane	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
1,2,4-Trichlorobenzene	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
1,2,4-Trimethylbenzene	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
1,2-Dibromo-3-chloropropane	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
1,2-Dibromoethane	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
1,2-Dichlorobenzene	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
1,2-Dichloroethane	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
1,2-Dichloropropane	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
1,3,5-Trimethylbenzene	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
1,3-Dichlorobenzene	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
1,3-Dichloropropane	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
1,4-Dichlorobenzene	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
2,2-Dichloropropane	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
2-Chlorotoluene	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
2-Hexanone	ND	25	ug/Kg	1	03/17/16	JLI	SW8260
2-Isopropyltoluene	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
4-Chlorotoluene	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260

Client ID: 1176160314-22

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
4-Methyl-2-pentanone	ND	25	ug/Kg	1	03/17/16	JLI	SW8260
Acetone	ND	250	ug/Kg	1	03/17/16	JLI	SW8260
Acrylonitrile	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
Benzene	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
Bromobenzene	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
Bromochloromethane	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
Bromodichloromethane	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
Bromoform	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
Bromomethane	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
Carbon Disulfide	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
Carbon tetrachloride	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
Chlorobenzene	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
Chloroethane	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
Chloroform	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
Chloromethane	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
cis-1.2-Dichloroethene	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
cis-1.3-Dichloropropene	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
Dibromochloromethane	ND	3.0	ug/Kg	1	03/17/16	JLI	SW8260
Dibromomethane	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
Dichlorodifluoromethane	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
Ethylbenzene	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
Hexachlorobutadiene	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
Isopropylbenzene	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
m&p-Xvlene	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
Methyl Ethyl Ketone	ND	30	ug/Ka	1	03/17/16	JLI	SW8260
Methyl t-butyl ether (MTBE)	ND	10	ug/Kg	1	03/17/16	JLI	SW8260
Methylene chloride	ND	10	ug/Kg	1	03/17/16	JLI	SW8260
Naphthalene	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
n-Butvlbenzene	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
n-Propylbenzene	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
o-Xvlene	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
p-Isopropyltoluene	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
sec-Butylbenzene	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
Styrene	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
tert-Butvlbenzene	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
Tetrachloroethene	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
Tetrahydrofuran (THF)	ND	10	ug/Kg	1	03/17/16	JLI	SW8260
Toluene	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
Total Xylenes	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
trans-1.2-Dichloroethene	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
trans-1.3-Dichloropropene	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
trans-1,4-dichloro-2-butene	ND	10	ug/Kg	1	03/17/16	JLI	SW8260
Trichloroethene	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
Trichlorofluoromethane	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
Trichlorotrifluoroethane	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
Vinyl chloride	ND	5.0	ug/Kg	1	03/17/16	JLI	SW8260
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	99		%	1	03/17/16	JLI	70 - 130 %
% Bromofluorobenzene	99		%	1	03/17/16	JLI	70 - 130 %

Client ID: 1176160314-22

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
% Dibromofluoromethane	99		%	1	03/17/16	JLI	70 - 130 %
% Toluene-d8	99		%	1	03/17/16	JLI	70 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Results are reported on an ``as received`` basis, and are not corrected for dry weight., TRIP BLANK INCLUDED.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director April 14, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

April 14, 2016

FOR: Attn: Ms. Stefanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample Informa	ation	Custody Inform	nation	<u>Date</u>	<u>Time</u>
Matrix:	SOIL	Collected by:	DC	03/15/16	11:25
Location Code:	F&O-PCB	Received by:	LB	03/16/16	9:54
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	20120232.C40				

Laboratory Data

SDG ID: GBK79030 Phoenix ID: BK79032

Project ID:	MERIDEN HOSPITAL
Client ID:	1176160314-23

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Silver	< 0.34	0.34	mg/Kg	1	03/17/16	LK	SW6010C
Arsenic	3.3	0.7	mg/Kg	1	03/17/16	LK	SW6010C
Barium	68.6	0.34	mg/Kg	1	03/17/16	LK	SW6010C
Cadmium	< 0.34	0.34	mg/Kg	1	03/17/16	LK	SW6010C
Chromium	13.6	0.34	mg/Kg	1	03/17/16	LK	SW6010C
Mercury	0.04	0.03	mg/Kg	1	03/17/16	RS	SW7471B
Lead	34.6	0.34	mg/Kg	1	03/17/16	LK	SW6010C
Selenium	< 1.4	1.4	mg/Kg	1	03/17/16	LK	SW6010C
SPLP Lead	< 0.010	0.010	mg/L	1	04/12/16	LK	SW6010C
SPLP Metals Digestion	Completed				04/11/16	1/1	SW3005A
Percent Solid	89		%		03/16/16	W	SW846-%Solid
Soil Extraction SVOA PAH	Completed				03/16/16	BB/CKV	SW3545A
Extraction of CT ETPH	Completed				03/16/16	BB/CK	SW3545A
Mercury Digestion	Completed				03/17/16	W/W	SW7471B
SPLP Extraction for Metals	Completed				04/08/16	I	SW1312
Total Metals Digest	Completed				03/16/16	G/AG	SW3050B
Field Extraction	Completed				03/15/16		SW5035A
TPH by GC (Extractab	le Products	<u>5)</u>					
Ext. Petroleum HC	330	110	mg/Kg	2	03/18/16	JRB	CTETPH 8015D
Identification	**		mg/Kg	2	03/18/16	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	59		%	2	03/18/16	JRB	50 - 150 %
Volatiles							
1,1,1,2-Tetrachloroethane	ND	4.4	ug/Kg	1	03/17/16	JLI	SW8260
1,1,1-Trichloroethane	ND	4.4	ug/Kg	1	03/17/16	JLI	SW8260
1,1,2,2-Tetrachloroethane	ND	2.6	ug/Kg	1	03/17/16	JLI	SW8260

Client ID: 1176160314-23

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
1,1,2-Trichloroethane	ND	4.4	ug/Kg	1	03/17/16	JLI	SW8260
1,1-Dichloroethane	ND	4.4	ug/Kg	1	03/17/16	JLI	SW8260
1,1-Dichloroethene	ND	4.4	ug/Kg	1	03/17/16	JLI	SW8260
1,1-Dichloropropene	ND	4.4	ug/Kg	1	03/17/16	JLI	SW8260
1,2,3-Trichlorobenzene	ND	4.4	ug/Kg	1	03/17/16	JLI	SW8260
1,2,3-Trichloropropane	ND	4.4	ug/Kg	1	03/17/16	JLI	SW8260
1,2,4-Trichlorobenzene	ND	4.4	ug/Kg	1	03/17/16	JLI	SW8260
1,2,4-Trimethylbenzene	ND	4.4	ug/Kg	1	03/17/16	JLI	SW8260
1,2-Dibromo-3-chloropropane	ND	4.4	ug/Kg	1	03/17/16	JLI	SW8260
1,2-Dibromoethane	ND	4.4	ug/Kg	1	03/17/16	JLI	SW8260
1,2-Dichlorobenzene	ND	4.4	ug/Kg	1	03/17/16	JLI	SW8260
1,2-Dichloroethane	ND	4.4	ug/Kg	1	03/17/16	JLI	SW8260
1,2-Dichloropropane	ND	4.4	ug/Kg	1	03/17/16	JLI	SW8260
1,3,5-Trimethylbenzene	ND	4.4	ug/Kg	1	03/17/16	JLI	SW8260
1,3-Dichlorobenzene	ND	4.4	ug/Kg	1	03/17/16	JLI	SW8260
1,3-Dichloropropane	ND	4.4	ug/Kg	1	03/17/16	JLI	SW8260
1,4-Dichlorobenzene	ND	4.4	ug/Kg	1	03/17/16	JLI	SW8260
2,2-Dichloropropane	ND	4.4	ug/Kg	1	03/17/16	JLI	SW8260
2-Chlorotoluene	ND	4.4	ug/Kg	1	03/17/16	JLI	SW8260
2-Hexanone	ND	22	ug/Kg	1	03/17/16	JLI	SW8260
2-Isopropyltoluene	ND	4.4	ug/Kg	1	03/17/16	JLI	SW8260
4-Chlorotoluene	ND	4.4	ug/Kg	1	03/17/16	JLI	SW8260
4-Methyl-2-pentanone	ND	22	ug/Kg	1	03/17/16	JLI	SW8260
Acetone	ND	220	ug/Kg	1	03/17/16	JLI	SW8260
Acrylonitrile	ND	4.4	ug/Kg	1	03/17/16	JLI	SW8260
Benzene	ND	4.4	ug/Kg	1	03/17/16	JLI	SW8260
Bromobenzene	ND	4.4	ug/Kg	1	03/17/16	JLI	SW8260
Bromochloromethane	ND	4.4	ug/Kg	1	03/17/16	JLI	SW8260
Bromodichloromethane	ND	4.4	ug/Kg	1	03/17/16	JLI	SW8260
Bromoform	ND	4.4	ug/Kg	1	03/17/16	JLI	SW8260
Bromomethane	ND	4.4	ug/Kg	1	03/17/16	JLI	SW8260
Carbon Disulfide	ND	4.4	ug/Kg	1	03/17/16	JLI	SW8260
Carbon tetrachloride	ND	4.4	ug/Kg	1	03/17/16	JLI	SW8260
Chlorobenzene	ND	4.4	ug/Kg	1	03/17/16	JLI	SW8260
Chloroethane	ND	4.4	ug/Kg	1	03/17/16	JLI	SW8260
Chloroform	ND	4.4	ug/Kg	1	03/17/16	JLI	SW8260
Chloromethane	ND	4.4	ug/Kg	1	03/17/16	JLI	SW8260
cis-1,2-Dichloroethene	ND	4.4	ug/Kg	1	03/17/16	JLI	SW8260
cis-1,3-Dichloropropene	ND	4.4	ug/Kg	1	03/17/16	JLI	SW8260
Dibromochloromethane	ND	2.6	ug/Kg	1	03/17/16	JLI	SW8260
Dibromomethane	ND	4.4	ug/Kg	1	03/17/16	JLI	SW8260
Dichlorodifluoromethane	ND	4.4	ug/Kg	1	03/17/16	JLI	SW8260
Ethylbenzene	ND	4.4	ug/Kg	1	03/17/16	JLI	SW8260
Hexachlorobutadiene	ND	4.4	ug/Kg	1	03/17/16	JLI	SW8260
Isopropylbenzene	ND	4.4	ug/Kg	1	03/17/16	JLI	SW8260
m&p-Xylene	ND	4.4	ug/Kg	1	03/17/16	JLI	SW8260
Methyl Ethyl Ketone	ND	26	ug/Kg	1	03/17/16	JLI	SW8260
Methyl t-butyl ether (MTBE)	ND	8.8	ug/Kg	1	03/17/16	JLI	SW8260
Methylene chloride	ND	8.8	ug/Kg	1	03/17/16	JLI	SW8260

Client ID: 1176160314-23

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Naphthalene	ND	4.4	ug/Kg	1	03/17/16	JLI	SW8260
n-Butylbenzene	ND	4.4	ug/Kg	1	03/17/16	JLI	SW8260
n-Propylbenzene	ND	4.4	ug/Kg	1	03/17/16	JLI	SW8260
o-Xylene	ND	4.4	ug/Kg	1	03/17/16	JLI	SW8260
p-Isopropyltoluene	ND	4.4	ug/Kg	1	03/17/16	JLI	SW8260
sec-Butylbenzene	ND	4.4	ug/Kg	1	03/17/16	JLI	SW8260
Styrene	ND	4.4	ug/Kg	1	03/17/16	JLI	SW8260
tert-Butylbenzene	ND	4.4	ug/Kg	1	03/17/16	JLI	SW8260
Tetrachloroethene	ND	4.4	ug/Kg	1	03/17/16	JLI	SW8260
Tetrahydrofuran (THF)	ND	8.8	ug/Kg	1	03/17/16	JLI	SW8260
Toluene	ND	4.4	ug/Kg	1	03/17/16	JLI	SW8260
Total Xylenes	ND	4.4	ug/Kg	1	03/17/16	JLI	SW8260
trans-1,2-Dichloroethene	ND	4.4	ug/Kg	1	03/17/16	JLI	SW8260
trans-1,3-Dichloropropene	ND	4.4	ug/Kg	1	03/17/16	JLI	SW8260
trans-1,4-dichloro-2-butene	ND	8.8	ug/Kg	1	03/17/16	JLI	SW8260
Trichloroethene	ND	4.4	ug/Kg	1	03/17/16	JLI	SW8260
Trichlorofluoromethane	ND	4.4	ug/Kg	1	03/17/16	JLI	SW8260
Trichlorotrifluoroethane	ND	4.4	ug/Kg	1	03/17/16	JLI	SW8260
Vinyl chloride	ND	4.4	ug/Kg	1	03/17/16	JLI	SW8260
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	99		%	1	03/17/16	JLI	70 - 130 %
% Bromofluorobenzene	97		%	1	03/17/16	JLI	70 - 130 %
% Dibromofluoromethane	94		%	1	03/17/16	JLI	70 - 130 %
% Toluene-d8	96		%	1	03/17/16	JLI	70 - 130 %
Polynuclear Aromatic	НС						
2-Methylnaphthalene	ND	260	ug/Kg	1	03/17/16	DD	SW8270D
Acenaphthene	ND	260	ug/Kg	1	03/17/16	DD	SW8270D
Acenaphthylene	ND	260	ug/Kg	1	03/17/16	DD	SW8270D
Anthracene	ND	260	ug/Kg	1	03/17/16	DD	SW8270D
Benz(a)anthracene	320	260	ug/Kg	1	03/17/16	DD	SW8270D
Benzo(a)pyrene	270	260	ug/Kg	1	03/17/16	DD	SW8270D
Benzo(b)fluoranthene	260	260	ug/Kg	1	03/17/16	DD	SW8270D
Benzo(ghi)pervlene	ND	260	ug/Kg	1	03/17/16	DD	SW8270D
Benzo(k)fluoranthene	ND	260	ug/Kg	1	03/17/16	DD	SW8270D
Chrysene	350	260	ug/Kg	1	03/17/16	DD	SW8270D
Dibenz(a.h)anthracene	ND	260	ug/Kg	1	03/17/16	DD	SW8270D
Fluoranthene	720	260	ug/Kg	1	03/17/16	DD	SW8270D
Fluorene	ND	260	ug/Kg	1	03/17/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	260	ug/Kg	1	03/17/16	DD	SW8270D
Naphthalene	ND	260	ug/Kg	1	03/17/16	DD	SW8270D
Phenanthrene	520	260	ug/Kg	1	03/17/16	DD	SW8270D
Pyrene	580	260	ug/Kg	1	03/17/16	DD	SW8270D
QA/QC Surrogates							
% 2-Fluorobiphenvl	61		%	1	03/17/16	DD	30 - 130 %
% Nitrobenzene-d5	65		%	1	03/17/16	DD	30 - 130 %
% Terphenyl-d14	56		%	1	03/17/16	DD	30 - 130 %

Project ID: MERIDEN H	OSPITAL				Pł	noeni	x I.D.: BK79	032
Client ID: 1176160314-	-23							
		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference	

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

TPH Comment:

**Petroleum hydrocarbon chromatogram contains a multicomponent hydrocarbon distribution in the range of C26 to C36. The sample was quantitated against a C9-C36 alkane hydrocarbon standard.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director April 14, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

April 14, 2016

FOR: Attn: Ms. Stefanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample Informa	ation	Custody Inform	nation	<u>Date</u>	<u>Time</u>
Matrix:	SOIL	Collected by:	DC	03/15/16	12:00
Location Code:	F&O-PCB	Received by:	LB	03/16/16	9:54
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	20120232.C40				

Laboratory Data

SDG ID: GBK79030 Phoenix ID: BK79033

Project ID:	MERIDEN HOSPITAL
Client ID:	1176160314-24

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
Silver	< 0.33	0.33	mg/Kg	1	03/17/16	LK	SW6010C
Arsenic	2.2	0.7	mg/Kg	1	03/17/16	LK	SW6010C
Barium	83.9	0.33	mg/Kg	1	03/17/16	LK	SW6010C
Cadmium	< 0.33	0.33	mg/Kg	1	03/17/16	LK	SW6010C
Chromium	11.7	0.33	mg/Kg	1	03/17/16	LK	SW6010C
Mercury	< 0.03	0.03	mg/Kg	1	03/18/16	MA	SW7471B
Lead	13.3	0.33	mg/Kg	1	03/17/16	LK	SW6010C
Selenium	< 1.3	1.3	mg/Kg	1	03/17/16	LK	SW6010C
Percent Solid	92		%		03/16/16	W	SW846-%Solid
Soil Extraction SVOA PAH	Completed				03/16/16	BB/CKV	SW3545A
Extraction of CT ETPH	Completed				03/16/16	BB/CK	SW3545A
Mercury Digestion	Completed				03/18/16	W/W	SW7471B
Total Metals Digest	Completed				03/16/16	G/AG	SW3050B
TPH by GC (Extractat	ole Products	5)					
Ext. Petroleum HC	150	110	mg/Kg	2	03/19/16	JRB	CTETPH 8015D
Identification	**		mg/Kg	2	03/19/16	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	67		%	2	03/19/16	JRB	50 - 150 %
Polynuclear Aromatic	: HC						
2-Methylnaphthalene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Acenaphthene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Acenaphthylene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Anthracene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Benz(a)anthracene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Benzo(a)pyrene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Benzo(b)fluoranthene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D

Project ID: MERIDEN HOSPITAL Client ID: 1176160314-24

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Benzo(ghi)perylene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Benzo(k)fluoranthene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Chrysene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Fluoranthene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Fluorene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Naphthalene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Phenanthrene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Pyrene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
QA/QC Surrogates							
% 2-Fluorobiphenyl	69		%	1	03/17/16	DD	30 - 130 %
% Nitrobenzene-d5	70		%	1	03/17/16	DD	30 - 130 %
% Terphenyl-d14	64		%	1	03/17/16	DD	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

TPH Comment:

**Petroleum hydrocarbon chromatogram contains a multicomponent hydrocarbon distribution in the range of C26 to C36. The sample was quantitated against a C9-C36 alkane hydrocarbon standard.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director April 14, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

April 14, 2016

FOR: Attn: Ms. Stefanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample Informa	ation	Custody Inform	nation	<u>Date</u>	<u>Time</u>
Matrix:	SOIL	Collected by:	DC	03/15/16	12:15
Location Code:	F&O-PCB	Received by:	LB	03/16/16	9:54
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	20120232.C40				

Laboratory Data

SDG ID: GBK79030 Phoenix ID: BK79034

Project ID:	MERIDEN HOSPITAL
Client ID:	1176160314-25

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Silver	< 0.33	0.33	mg/Kg	1	03/17/16	LK	SW6010C
Arsenic	2.0	0.7	mg/Kg	1	03/17/16	LK	SW6010C
Barium	69.4	0.33	mg/Kg	1	03/17/16	LK	SW6010C
Cadmium	< 0.33	0.33	mg/Kg	1	03/17/16	LK	SW6010C
Chromium	11.1	0.33	mg/Kg	1	03/17/16	LK	SW6010C
Mercury	< 0.03	0.03	mg/Kg	1	03/18/16	MA	SW7471B
Lead	12.3	0.33	mg/Kg	1	03/17/16	LK	SW6010C
Selenium	< 1.3	1.3	mg/Kg	1	03/17/16	LK	SW6010C
Percent Solid	93		%		03/16/16	W	SW846-%Solid
Soil Extraction SVOA PAH	Completed				03/16/16	BB/CKV	SW3545A
Extraction of CT ETPH	Completed				03/16/16	BB/CK	SW3545A
Mercury Digestion	Completed				03/18/16	W/W	SW7471B
Total Metals Digest	Completed				03/16/16	G/AG	SW3050B
TPH by GC (Extractat	ole Products	<u>5)</u>					
Ext. Petroleum HC	ND	110	mg/Kg	2	03/19/16	JRB	CTETPH 8015D
Identification	ND		mg/Kg	2	03/19/16	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	66		%	2	03/19/16	JRB	50 - 150 %
Polynuclear Aromatic	: HC						
2-Methylnaphthalene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Acenaphthene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Acenaphthylene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Anthracene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Benz(a)anthracene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Benzo(a)pyrene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Benzo(b)fluoranthene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D

Client ID: 1176160314-25

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Benzo(ghi)perylene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Benzo(k)fluoranthene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Chrysene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Fluoranthene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Fluorene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Naphthalene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Phenanthrene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Pyrene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
QA/QC Surrogates							
% 2-Fluorobiphenyl	71		%	1	03/17/16	DD	30 - 130 %
% Nitrobenzene-d5	74		%	1	03/17/16	DD	30 - 130 %
% Terphenyl-d14	64		%	1	03/17/16	DD	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director April 14, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

April 14, 2016

FOR: Attn: Ms. Stefanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample Informa	ation	Custody Inform	nation	<u>Date</u>	<u>Time</u>
Matrix:	SOIL	Collected by:	DC	03/15/16	12:45
Location Code:	F&O-PCB	Received by:	LB	03/16/16	9:54
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	20120232.C40				

Laboratory Data

SDG ID: GBK79030 Phoenix ID: BK79036

Project ID:	MERIDEN HOSPITAL
Client ID:	1176160314-27

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
Silver	< 0.36	0.36	mg/Kg	1	03/17/16	LK	SW6010C
Arsenic	2.6	0.7	mg/Kg	1	03/17/16	LK	SW6010C
Barium	53.6	0.36	mg/Kg	1	03/17/16	LK	SW6010C
Cadmium	< 0.36	0.36	mg/Kg	1	03/17/16	LK	SW6010C
Chromium	9.08	0.36	mg/Kg	1	03/17/16	LK	SW6010C
Mercury	< 0.03	0.03	mg/Kg	1	03/18/16	MA	SW7471B
Lead	6.76	0.36	mg/Kg	1	03/17/16	LK	SW6010C
Selenium	< 1.4	1.4	mg/Kg	1	03/17/16	LK	SW6010C
Percent Solid	93		%		03/16/16	W	SW846-%Solid
Soil Extraction SVOA PAH	Completed				03/16/16	BB/CKV	SW3545A
Extraction of CT ETPH	Completed				03/16/16	BB/CK	SW3545A
Mercury Digestion	Completed				03/18/16	W/W	SW7471B
Total Metals Digest	Completed				03/16/16	G/AG	SW3050B
TPH by GC (Extractab	le Products	<u>s)</u>					
Ext. Petroleum HC	ND	54	mg/Kg	1	03/18/16	JRB	CTETPH 8015D
Identification	ND		mg/Kg	1	03/18/16	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	99		%	1	03/18/16	JRB	50 - 150 %
Polynuclear Aromatic	HC						
2-Methylnaphthalene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Acenaphthene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Acenaphthylene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Anthracene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Benz(a)anthracene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Benzo(a)pyrene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Benzo(b)fluoranthene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D

Project ID: MERIDEN HOSPITAL

Client ID: 1176160314-27

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Benzo(ghi)perylene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Benzo(k)fluoranthene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Chrysene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Fluoranthene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Fluorene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Naphthalene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Phenanthrene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
Pyrene	ND	250	ug/Kg	1	03/17/16	DD	SW8270D
QA/QC Surrogates							
% 2-Fluorobiphenyl	71		%	1	03/17/16	DD	30 - 130 %
% Nitrobenzene-d5	74		%	1	03/17/16	DD	30 - 130 %
% Terphenyl-d14	64		%	1	03/17/16	DD	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director April 14, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045

Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

April 14, 2016

QA/QC Data

SDG I.D.: GBK79030

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 338226 (mg/kg), (2C Sam	ple No:	BK7864 ²	1 (BK790)32, BK	79033,	BK7903	34, BK7	'9036)					
ICP Metals - Soil														
Arsenic	BRL	0.66	9.4	8.19	13.8	114			99.2			75 - 125	30	
Barium	BRL	0.33	70.4	58.7	18.1	109			94.8			75 - 125	30	
Cadmium	BRL	0.33	<0.37	<0.37	NC	102			88.9			75 - 125	30	
Chromium	BRL	0.33	33.9	40.2	17.0	108			96.8			75 - 125	30	
Lead	BRL	0.33	46.9	45.4	3.30	107			94.5			75 - 125	30	
Selenium	BRL	1.3	<1.5	<1.5	NC	112			92.5			75 - 125	30	
Silver	BRL	0.33	<0.37	<0.37	NC	107			104			75 - 125	30	
QA/QC Batch 338263 (mg/kg), 0	C Sam	ple No:	BK78679	9 (BK790)32)									
Mercury - Soil	BRL	0.03	<0.03	<0.03	NC	123	125	1.6	126			70 - 130	30	m
Comment:														
Additional Mercury criteria: LCS ac	ceptanc	e range f	or waters i	is 80-1209	% and fo	r soils is	\$ 70-1309	%.						
QA/QC Batch 341772 (mg/L), Q	C Samp	ole No: E	3K79032	(BK7903	32)									
ICP Metals - SPLP Extrac	tion													
Lead	BRL	0.010	<0.010	<0.010	NC	97.7			99.7			75 - 125	20	
QA/QC Batch 338445 (mg/kg), 0	C Sam	ple No:	BK79866	6 (BK790)33, BK	79034,	BK790	36)						
Mercury - Soil	BRL	0.03	<0.03	<0.03	NC	94.3			109			70 - 130	30	
Comment:														
Additional Mercury criteria: LCS ac	ceptanc	e range f	or waters i	is 80-120°	% and fo	or soils is	s 70-1309	%.						

m = This parameter is outside laboratory MS/MSD specified recovery limits.

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

April 14, 2016

QA/QC Data

SDG I.D.: GBK79030

Parameter	Blank	Blk RL		LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 338082 (mg/	Kg), QC Sam	ple No: Bk	(78737 (BK79032, B	K79033	, BK790	34, BK	79036)					
TPH by GC (Extractat	ole Produc	ts) - Soil										
Ext. Petroleum HC	ND	50		64			65	56	14.9	30 - 130	30	
% n-Pentacosane	73	%		90			98	76	25.3	50 - 150	30	
QA/QC Batch 338207 (ug/k	(g), QC Sam	ole No: BK	79016 (BK79032, BK	79033,	BK7903	84, BK7	9036)					
Polynuclear Aromatic	HC - Soil											
2-Methylnaphthalene	ND	230		68			74	87	16.1	30 - 130	30	
Acenaphthene	ND	230		76			76	87	13.5	30 - 130	30	
Acenaphthylene	ND	230		72			74	83	11.5	30 - 130	30	
Anthracene	ND	230		78			76	89	15.8	30 - 130	30	
Benz(a)anthracene	ND	230		81			76	89	15.8	30 - 130	30	
Benzo(a)pyrene	ND	230		76			73	84	14.0	30 - 130	30	
Benzo(b)fluoranthene	ND	230		80			74	88	17.3	30 - 130	30	
Benzo(ghi)perylene	ND	230		80			77	86	11.0	30 - 130	30	
Benzo(k)fluoranthene	ND	230		77			72	87	18.9	30 - 130	30	
Chrysene	ND	230		84			80	94	16.1	30 - 130	30	
Dibenz(a,h)anthracene	ND	230		78			77	87	12.2	30 - 130	30	
Fluoranthene	ND	230		81			80	92	14.0	30 - 130	30	
Fluorene	ND	230		79			80	90	11.8	30 - 130	30	
Indeno(1,2,3-cd)pyrene	ND	230		79			78	86	9.8	30 - 130	30	
Naphthalene	ND	230		66			71	82	14.4	30 - 130	30	
Phenanthrene	ND	230		78			76	89	15.8	30 - 130	30	
Pyrene	ND	230		84			82	96	15.7	30 - 130	30	
% 2-Fluorobiphenyl	49	%		67			69	78	12.2	30 - 130	30	
% Nitrobenzene-d5	48	%		65			72	88	20.0	30 - 130	30	
% Terphenyl-d14	57	%		78			77	91	16.7	30 - 130	30	
Comment:												
Additional 8270 critoria: 20%	of compounds	can be out	ido of accontanco crito	ria ac la	an ac roc	ovorvic	at loast	100/ (1)	aid curre	antoc		

Additional 8270 criteria: 20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

QA/QC Batch 338872 (ug/kg), QC Sample No: BK79023 (BK79030 (50X) , BK79031, BK79032)

<u>Volatiles - Soil</u>										
1,1,1,2-Tetrachloroethane N	D 5.	0.0	105	109	3.7	104	109	4.7	70 - 130	30
1,1,1-Trichloroethane N	D 5.	.0	103	108	4.7	107	116	8.1	70 - 130	30
1,1,2,2-Tetrachloroethane N	D 3.	.0	99	111	11.4	105	114	8.2	70 - 130	30
1,1,2-Trichloroethane N	D 5.	i.0	91	99	8.4	99	105	5.9	70 - 130	30
1,1-Dichloroethane N	D 5.	i.0	100	106	5.8	106	113	6.4	70 - 130	30
1,1-Dichloroethene N	D 5.	i.0	113	115	1.8	112	120	6.9	70 - 130	30
1,1-Dichloropropene N	D 5.	i.0	110	111	0.9	103	110	6.6	70 - 130	30
1,2,3-Trichlorobenzene N	D 5.	i.0	110	118	7.0	76	82	7.6	70 - 130	30
1,2,3-Trichloropropane N	D 5.	i.0	97	107	9.8	110	119	7.9	70 - 130	30
1,2,4-Trichlorobenzene N	D 5.	i.0	115	122	5.9	80	83	3.7	70 - 130	30
1,2,4-Trimethylbenzene N	D 1.	.0	111	112	0.9	98	105	6.9	70 - 130	30

QA/QC Data

SDG I.D.: GBK79030

		DIV	105		105	MS	MCD	MC	% Poc	% חחם	
Parameter	Blank	RL	203 %	%	RPD	%	W3D %	RPD	Limits	Limits	
1 2 Dibromo 3 chloropropape	ND	5.0	07	115	17.0	110	140	16.2	70 - 130	30	
1 2-Dibromoethane	ND	5.0	97	108	10.7	106	140	3.7	70 - 130	30	m
1 2-Dichlorobenzene	ND	5.0	105	108	2.8	93	99	6.3	70 - 130	30	
1 2-Dichloroethane	ND	5.0	98	106	7.8	107	111	3.7	70 - 130	30	
1.2-Dichloropropane	ND	5.0	98	103	5.0	101	107	5.8	70 - 130	30	
1.3.5-Trimethylbenzene	ND	1.0	111	111	0.0	99	106	6.8	70 - 130	30	
1.3-Dichlorobenzene	ND	5.0	112	113	0.9	93	98	5.2	70 - 130	30	
1.3-Dichloropropane	ND	5.0	96	103	7.0	102	108	5.7	70 - 130	30	
1,4-Dichlorobenzene	ND	5.0	108	111	2.7	92	96	4.3	70 - 130	30	
2.2-Dichloropropane	ND	5.0	109	112	2.7	102	112	9.3	70 - 130	30	
2-Chlorotoluene	ND	5.0	112	112	0.0	101	110	8.5	70 - 130	30	
2-Hexanone	ND	25	84	102	19.4	101	109	7.6	70 - 130	30	
2-Isopropyltoluene	ND	5.0	113	113	0.0	98	107	8.8	70 - 130	30	
4-Chlorotoluene	ND	5.0	111	111	0.0	96	103	7.0	70 - 130	30	
4-Methyl-2-pentanone	ND	25	84	101	18.4	101	114	12.1	70 - 130	30	
Acetone	ND	10	73	86	16.4	96	109	12.7	70 - 130	30	
Acrylonitrile	ND	5.0	89	104	15.5	104	118	12.6	70 - 130	30	
Benzene	ND	1.0	101	103	2.0	102	107	4.8	70 - 130	30	
Bromobenzene	ND	5.0	107	110	2.8	102	109	6.6	70 - 130	30	
Bromochloromethane	ND	5.0	95	105	10.0	104	110	5.6	70 - 130	30	
Bromodichloromethane	ND	5.0	105	111	5.6	107	112	4.6	70 - 130	30	
Bromoform	ND	5.0	102	115	12.0	101	112	10.3	70 - 130	30	
Bromomethane	ND	5.0	113	117	3.5	114	122	6.8	70 - 130	30	
Carbon Disulfide	ND	5.0	113	116	2.6	102	113	10.2	70 - 130	30	
Carbon tetrachloride	ND	5.0	106	109	2.8	104	113	8.3	70 - 130	30	
Chlorobenzene	ND	5.0	103	106	2.9	96	101	5.1	70 - 130	30	
Chloroethane	ND	5.0	109	111	1.8	108	118	8.8	70 - 130	30	
Chloroform	ND	5.0	99	104	4.9	105	112	6.5	70 - 130	30	
Chloromethane	ND	5.0	103	101	2.0	104	111	6.5	70 - 130	30	
cis-1,2-Dichloroethene	ND	5.0	95	100	5.1	97	105	7.9	70 - 130	30	
cis-1,3-Dichloropropene	ND	5.0	100	108	7.7	100	104	3.9	70 - 130	30	
Dibromochloromethane	ND	3.0	106	115	8.1	108	114	5.4	70 - 130	30	
Dibromomethane	ND	5.0	94	107	12.9	105	110	4.7	70 - 130	30	
Dichlorodifluoromethane	ND	5.0	122	122	0.0	116	126	8.3	70 - 130	30	
Ethylbenzene	ND	1.0	104	107	2.8	99	102	3.0	70 - 130	30	
Hexachlorobutadiene	ND	5.0	119	119	0.0	66	77	15.4	70 - 130	30	m
Isopropylbenzene	ND	1.0	109	110	0.9	103	108	4.7	70 - 130	30	
m&p-Xylene	ND	2.0	104	106	1.9	96	100	4.1	70 - 130	30	
Methyl ethyl ketone	ND	5.0	76	93	20.1	94	107	12.9	70 - 130	30	
Methyl t-butyl ether (MTBE)	ND	1.0	96	110	13.6	114	122	6.8	70 - 130	30	
Methylene chloride	ND	5.0	93	100	7.3	183	186	1.6	70 - 130	30	m
Naphthalene	ND	5.0	103	115	11.0	92	100	8.3	70 - 130	30	
n-Butylbenzene	ND	1.0	125	123	1.6	90	98	8.5	70 - 130	30	
n-Propylbenzene	ND	1.0	111	109	1.8	97	103	6.0	70 - 130	30	
o-Xylene	ND	2.0	103	104	1.0	97	103	6.0	70 - 130	30	
p-Isopropyltoluene	ND	1.0	116	117	0.9	96	104	8.0	70 - 130	30	
sec-Butylbenzene	ND	1.0	116	115	0.9	97	106	8.9	70 - 130	30	
Styrene	ND	5.0	102	104	1.9	93	99	6.3	70 - 130	30	
tert-Butylbenzene	ND	1.0	108	109	0.9	97	107	9.8	70 - 130	30	
Tetrachloroethene	ND	5.0	105	106	0.9	95	101	6.1	70 - 130	30	
Tetrahydrofuran (THF)	ND	5.0	81	102	23.0	102	115	12.0	70 - 130	30	
Toluene	ND	1.0	99	101	2.0	97	103	6.0	70 - 130	30	
trans-1,2-Dichloroethene	ND	5.0	101	108	6.7	102	111	8.5	70 - 130	30	

QA/QC Data

SDG I.D.: GBK79030

Parameter	Blank	Blk RL		LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
trans-1,3-Dichloropropene	ND	5.0		102	109	6.6	101	105	3.9	70 - 130	30
trans-1,4-dichloro-2-butene	ND	5.0		116	130	11.4	111	122	9.4	70 - 130	30
Trichloroethene	ND	5.0		101	104	2.9	101	106	4.8	70 - 130	30
Trichlorofluoromethane	ND	5.0		109	111	1.8	107	116	8.1	70 - 130	30
Trichlorotrifluoroethane	ND	5.0		112	116	3.5	110	119	7.9	70 - 130	30
Vinyl chloride	ND	5.0		111	114	2.7	111	121	8.6	70 - 130	30
% 1,2-dichlorobenzene-d4	101	%		99	98	1.0	100	101	1.0	70 - 130	30
% Bromofluorobenzene	97	%		98	100	2.0	98	98	0.0	70 - 130	30
% Dibromofluoromethane	98	%		91	99	8.4	101	102	1.0	70 - 130	30
% Toluene-d8	98	%		101	101	0.0	101	100	1.0	70 - 130	30
Comment:											
Additional 8260 criteria: 10% of	LCS/LCSD	compound	s can be outside of accep	otance c	riteria as	long as	recover	y is 40-1	60%.		

m = This parameter is outside laboratory MS/MSD specified recovery limits.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis Shiller, Laboratory Director April 14, 2016

Thursday, A	April 14, 2016		Sample Criteria	Exceedences Report				Page 1 of 1
State:	CT: GBM, RC		GBK7	9030 - FO-PCB				A se a b sa i a
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	RL Criteria	Analysis Units

*** No Data to Display ***

Phoenix Laboratories does not assume responsibility for the data contained in this report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

Reasonable Confidence Protocol Laboratory Analysis QA/QC Certification Form

Labo	oratory Na	me: Phoe	enix Environ	mental Labs	, Inc. Client:	Fus	s & O'Neill,	Inc.	
Proje	ect Locati	on: MER	IDEN HOS	PITAL	Project	Number:			
Labo	oratory Sa	mple ID(s)	: BK79030), BK79031, I	BK79032, BK79	033, BK79034, I	BK79036		
Sam	pling Date	e(s): 3/15/	2016						
RCP	Methods	Used:							
1:	311/1312	✓ 6010	7000	7196	✔ 7470/7471	8081	EPH		TO15
80	082	8151	✔ 8260	✔ 8270	ETPH	9010/9012			
1.	For each a specified G any criteria method-sp	nalytical me QA/QC perfo a falling outs becific Reasc	thod referen rmance crite ide of accept onable Confid	ced in this labo ria followed, in able guideline dence Protoco	oratory report pao acluding the requi es, as specified in I documents?	ckage, were all rement to explain the CT DEP	✓ Yes	□ No	
1a.	Were the r	method spec	ified preserv	ation and hold	ling time requiren	nents met?	✓ Yes	🗆 No	
1b.	EPH and V significant	/PH methods modification	s only: Was s (see sectio	the VPH or EF on 11.3 of resp	PH method condu ective RCP meth	ucted without lods)	□ Yes	🗆 No	✓ NA
2.	Were all sa described	amples recei on the assoc	ived by the la ciated Chain	aboratory in a contract of the second s	condition consistence condition consistence construction	ent with that	✓ Yes	🗌 No	
3.	Were sam	ples receive	d at an appro	opriate temper	ature (< 6 Degree	es C)?	✓ Yes	🗌 No	□ NA
4.	Were all Q Protocol do	A/QC perfor	mance criter chieved?	ia specified in	the Reasonable	Confidence	✓ Yes	🗌 No	
5a.	Were repo	orting limits s	pecified or re	eferenced on t	he chain-of-custo	ody?	✓ Yes	🗆 No	
5b.	Were these	e reporting li	imits met?				✓ Yes	🗆 No	□ NA
6.	For each a results rep presented	nalytical me orted for all in the Reaso	thod referen constituents onable Confi	ced in this labo identified in th dence Protoco	oratory report pag e method-specifi l documents?	ckage, were c analyte lists	□ Yes	✓ No	□ NA
7.	Are project	t-specific ma	atrix spikes a	nd laboratory o	duplicates include	ed in the data set?	Yes	✓ No	

Note: For all questions to which the response was "No" (with the exception of question #5a, #7), additional information must be provided in an attached narrative. If the answer to question #1, #1A or 1B is "No", the data package does not meet the requirements for "Reasonable Confidence".

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete.

Authorized Signature:

Ethan See

Date: Thursday, April 14, 2016

Printed Name: Ethan Lee

Position: Project Manager

Nov 2007

RCP Certification Report

April 14, 2016

SDG I.D.: GBK79030

SDG Comments

Metals Analysis:

The client requested a shorter list of elements than the 6010 RCP list. Only the RCRA 8 Metals are reported as requested on the chain of custody.

8270 Semi-volatile Organics:

The client requested a short list for 8270 RCP Semivolatile. Only the PAH constituents are reported as requested on the chain-ofcustody.

ETPH Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument:

AU-FID1 03/18/16-2

Jeff Bucko, Chemist 03/18/16

BK79032, BK79033, BK79034

The initial calibration (ETPH304I) RSD for the compound list was less than 30% except for the following compounds: None. The continuing calibration %D for the compound list was less than 30% except for the following compounds:None.

AU-FID11 03/18/16-1

Jeff Bucko, Chemist 03/18/16

BK79036

The initial calibration (ETPH304I) RSD for the compound list was less than 30% except for the following compounds: None. The continuing calibration %D for the compound list was less than 30% except for the following compounds:None.

QC (Batch Specific):

Batch 338082 (BK78737)

BK79032, BK79033, BK79034, BK79036

All LCS recoveries were within 60 - 120 with the following exceptions: None.

Mercury Narration

Were all QA/QC performance criteria specified in the analytical method achieved? Yes.

Instrument:

MERLIN 03/17/16 13:41

Rick Schweitzer, Chemist 03/17/16

BK79032

The method preparation blank contains all of the acids and reagents as the samples; the instrument blanks do not.

The initial calibration met all criteria including a standard run at or below the reporting level.

All calibration verification standards (ICV, CCV) met criteria.

All calibration blank verification standards (ICB, CCB) met criteria.

The matrix spike sample is used to identify spectral interfernce for each batch of samples, if within 85-115%, no interference is observed and no further action is taken.

The following Initial Calibration Verification (ICV) compounds did not meet criteria: None.

The following Continuing Calibration Verification (CCV) compounds did not meet criteria: None.

Mike Arsenault, Chemist 03/18/16

MERLIN 03/18/16 09:25

BK79033, BK79034, BK79036

The method preparation blank contains all of the acids and reagents as the samples; the instrument blanks do not. The initial calibration met all criteria including a standard run at or below the reporting level.

Certification Report

April 14, 2016

SDG I.D.: GBK79030

Mercury Narration

All calibration verification standards (ICV, CCV) met criteria.

All calibration blank verification standards (ICB, CCB) met criteria.

The matrix spike sample is used to identify spectral interfernce for each batch of samples, if within 85-115%, no interference is observed and no further action is taken.

The following Initial Calibration Verification (ICV) compounds did not meet criteria: None.

The following Continuing Calibration Verification (CCV) compounds did not meet criteria: CCV 03/18/16 10:03: Mercury 72% (80-120)

QC (Batch Specific):

Batch 338263 (BK78679)

BK79032

All LCS recoveries were within 70 - 130 with the following exceptions: None.

All LCSD recoveries were within 70 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

Additional Mercury criteria: LCS acceptance range for waters is 80-120% and for soils is 70-130%.

Batch 338445 (BK79866)

BK79033, BK79034, BK79036

All LCS recoveries were within 70 - 130 with the following exceptions: None.

Additional Mercury criteria: LCS acceptance range for waters is 80-120% and for soils is 70-130%.

ICP Metals Narration

ARCOS 03/16/16 18:07

Were all QA/QC performance criteria specified in the analytical method achieved? Yes.

Instrument:

Laura Kinnin, Chemist 03/16/16

BK79032, BK79033, BK79034, BK79036

The linear range is defined daily by the calibration range.

The following Initial Calibration Verification (ICV) compounds did not meet criteria: None. The following Continuing Calibration Verification (CCV) compounds did not meet criteria: None. The following ICP Interference Check (ICSAB) compounds did not meet criteria: None.

ARCOS 04/11/16 18:19

Laura Kinnin, Chemist 04/11/16

BK79032

The linear range is defined daily by the calibration range.

The following Initial Calibration Verification (ICV) compounds did not meet criteria: None.

The following Continuing Calibration Verification (CCV) compounds did not meet criteria: None.

The following ICP Interference Check (ICSAB) compounds did not meet criteria: None.

QC (Batch Specific):

Batch 338226 (BK78641)

BK79032, BK79033, BK79034, BK79036 All LCS recoveries were within 75 - 125 with the following exceptions: None.

Batch 341772 (BK79032)

BK79032

Certification Report

April 14, 2016

SDG I.D.: GBK79030

ICP Metals Narration

CHEM25 03/16/16-1

All LCS recoveries were within 75 - 125 with the following exceptions: None.

PAH Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument:

Damien Drobinski, Chemist 03/16/16

BK79032, BK79033, BK79034, BK79036

Initial Calibration Verification (CHEM25/BN_0315):

100% of target compounds met criteria.

The following compounds had %RSDs >20%: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM25/0316_04-BN_0315):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

100% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet minimum response factors: None.

SVOA Narration

Were all QA/QC performance criteria specified in the analytical method achieved? Yes.

QC (Batch Specific):

Batch 338207 (BK79016)

BK79032, BK79033, BK79034, BK79036

All LCS recoveries were within 30 - 130 with the following exceptions: None.

VOA Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument:

CHEM14 03/17/16-1

Jane Li, Chemist 03/17/16

BK79030, BK79031, BK79032

Initial Calibration Verification (CHEM14/VT-0315): 98% of target compounds met criteria. The following compounds had %RSDs >20%: Acetone 28% (20%), Bromoform 21% (20%) The following compounds did not meet recommended response factors: None. The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM14/0317_06-VT-0315): Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

RCP Certification Report

April 14, 2016

SDG I.D.: GBK79030

VOA Narration

100% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet minimum response factors: None.

QC (Batch Specific):

Batch 338872 (BK79023)

BK79030, BK79031, BK79032

All LCS recoveries were within 70 - 130 with the following exceptions: None.

All LCSD recoveries were within 70 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%.

Temperature Narration

The samples in this delivery group were received at 3° C. (Note acceptance criteria is above freezing up to 6° C)

Stuc Pho	Turnational 172-Hour* 0ther Atandard (S days)	LABORATORY				105% (10 10 10 10 10 10 10 10 10 10 10 10 10 1	12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	SEEC. LOX LY STORES SEC. S.	74030	19031	19032	79033	1903H	HING TROJE	7605L	2006L1NH	QC □ Other) (Item Nos:)	CP Deliverables 🛛 MCP CAM Cert.	し	
ate Drive, West Springfield, MA 01089 Horse Way, Suite 204, Providence, RI 02908 agton Street, Suite 301, Poughteepsie, NY □Other_)18	Project Number		sis set			and the second of the second o	22 C C C S S S C S S S S S S S S S S S S								363	me Charge Exceptions: CT Tax Exempt X(A/Q) me	A Reporting and Detection Limit Requirements: 🗙	El GB DMC A Les TS	
ord Road, Manchester, CT 06040	ODY RECORD 349	Project Location	11-21-04-61 , 27	Naly Conc Analy Reque		Date: 7/15/16	² acility S=Soil B=Sediment A=Air C=Concrete	Source Date Time Code Sampled Sampled	X 3/15/16 1030	X 1 1035	5 II25 V	1266	1212	1230	1245	1 136	Accepted By Date Ti	freezer 3/15/11 100	10/10/10 10/10/10/10/10/10/10/10/10/10/10/10/10/1	HUNNA PILANA
FUSS & O'NEILL 146 Harté 860) 646-2469 • www.FandO.com 1419 Richl	CHAIN-OF-CUST	oject NAME	1961 HOSPITAL	"Stefanie Nierszehake 4		gnature: D' d C +	ng Weil PW=Potable Water T=Treatment I ater ST=Stormwater W=Waste I TTP BAN	sfer Check Sample Number 2 3 4	1776160315-21	22-	- 23	- 24	-25	156	t2-	7 - 28	Relinquished By	D. Cor	H ofreran DY	
		PR V	2	KEPORT IC INVOICE TC	P.O. No.:	Sampler's S.	Source Codes MW=Monitor SW=Surface V X=Other	Item Trar No. 1	16 /	\ اد	14/	18 /	19	1 02	NN	1/20	Transfer Number	1	~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0 4

Tuesday, March 29, 2016

Attn: Mr Dave Cook Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Project ID: FORMER MERIDEN HOSPITAL Sample ID#s: BK87138

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

X.le

Phyllis/Shiller Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #MA-CT-007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

Analysis Report

March 29, 2016

FOR: Attn: Mr Dave Cook Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample Informa	ation	Custody Inform	Custody Information		
Matrix:	SOLID	Collected by:	DC	03/23/16	11:00
Location Code:	F&O	Received by:	LK	03/24/16	11:00
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	20120232.C40		Data		

Laboratory Data

SDG ID: GBK87138 Phoenix ID: BK87138

Project ID: FORMER MERIDEN HOSPITAL

Client ID: 1176160323-07

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
Percent Solid	94		%		03/24/16	W	SW846-%Solid
Extraction for PCB	Completed				03/24/16	QQ/R	SW3540C
PCB (Soxhlet SW35	<u>40C)</u>						
PCB-1016	ND	350	ug/Kg	10	03/25/16	AW	SW8082A
PCB-1221	ND	350	ug/Kg	10	03/25/16	AW	SW8082A
PCB-1232	ND	350	ug/Kg	10	03/25/16	AW	SW8082A
PCB-1242	ND	350	ug/Kg	10	03/25/16	AW	SW8082A
PCB-1248	ND	350	ug/Kg	10	03/25/16	AW	SW8082A
PCB-1254	ND	350	ug/Kg	10	03/25/16	AW	SW8082A
PCB-1260	ND	350	ug/Kg	10	03/25/16	AW	SW8082A
PCB-1262	ND	350	ug/Kg	10	03/25/16	AW	SW8082A
PCB-1268	ND	350	ug/Kg	10	03/25/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	81		%	10	03/25/16	AW	30 - 150 %
% TCMX	37		%	10	03/25/16	AW	30 - 150 %

Project ID: FORMER MERIDEN HOSPITAL Phoenix I.D.: BK87138 Client ID: 1176160323-07 RL/ Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director March 29, 2016 Reviewed and Released by: Bobbi Aloisa, Vice President

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045

Tel. (860) 645-1102 Fax (860) 645-0823

OA/OC Report March 29, 2016

QA/QC Data

SDG I.D.: GBK87138

Parameter	Blank	Blk RL		LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 339164 (ug/K	g), QC Sam	ole No: BK8	37041 10X (BK8	37138)								
Polychlorinated Bipher	nyls - Solia	<u>k</u>										
PCB-1016	ND	170		71	87	20.3				40 - 140	30	
PCB-1221	ND	170								40 - 140	30	
PCB-1232	ND	170								40 - 140	30	
PCB-1242	ND	170								40 - 140	30	
PCB-1248	ND	170								40 - 140	30	
PCB-1254	ND	170								40 - 140	30	
PCB-1260	ND	170		80	97	19.2				40 - 140	30	
PCB-1262	ND	170								40 - 140	30	
PCB-1268	ND	170								40 - 140	30	
% DCBP (Surrogate Rec)	96	%		90	103	13.5				30 - 150	30	
% TCMX (Surrogate Rec) Comment:	77	%		41	72	54.9				30 - 150	30	r

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

r = This parameter is outside laboratory RPD specified recovery limits.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director March 29, 2016

Tuesday, March 29, 2016		Sample Criteria	Exceedences Report				Page 1 of 1
Criteria: CT: RC		GBI	(87138 - FO				
State: CT SampNo Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	RL Criteria	Analysis Units
-	-						

*** No Data to Display ***

Phoenix Laboratories does not assume responsibility for the data contained in this report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

Reasonable Confidence Protocol Laboratory Analysis QA/QC Certification Form

Laborato	boratory Name: Phoenix Environmental Labs, Inc. Client: Fuss & O'Neill, Inc.										
Project Lo	ocation:	FORM	ER MERIE	DEN HOSPIT	AL	Project	Number:				
Laborato	Laboratory Sample ID(s): BK87138										
Sampling Date(s): 3/23/2016											
RCP Methods Used:											
1311/13	12 🗌 60 ⁻	10	7000	7196	7	470/7471	8081		EPH		TO15
✔ 8082	81	51	8260	8270	E	TPH	9010/901	12	VPH		
1. For e speci any c meth	I. For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria falling outside of acceptable guidelines, as specified in the CT DEP method-specific Reasonable Confidence Protocol documents?										
1a. Were	Were the method specified preservation and holding time requirements met? Ves 🗆 No										
1b. EPH and VPH methods only: Was the VPH or EPH method conducted without significant modifications (see section 11.3 of respective RCP methods) □ Yes □ No ✓ NA											
2. Were descr	2. Were all samples received by the laboratory in a condition consistent with that described on the associated Chain-of-Custody document(s)? ✓ Yes □ No										
3. Were	e samples re	eceived a	at an appro	priate tempera	ature (< 6 Degree	es C)?		✓ Yes	🗌 No	\Box NA
4. Were Proto	Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents acheived? See Section: PCB Narration.										
5a. Were	Were reporting limits specified or referenced on the chain-of-custody?										
5b. Were	Were these reporting limits met?										
6. For eresult prese	. For each analytical method referenced in this laboratory report package, were results reported for all constituents identified in the method-specific analyte lists presented in the Reasonable Confidence Protocol documents? ✓ Yes □ No □ NA										
7. Are p	oroject-spec	ific matrix	x spikes an	ld laboratory d	uplica	ates include	ed in the data	a set?	□ Yes	✓ No	

Note: For all questions to which the response was "No" (with the exception of question #5a, #7), additional information must be provided in an attached narrative. If the answer to question #1, #1A or 1B is "No", the data package does not meet the requirements for "Reasonable Confidence".

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete.

Authorized Signature:

Ethan See

Date: Tuesday, March 29, 2016

Printed Name: Ethan Lee

Position: Project Manager

Nov 2007

RCP Certification Report

March 29, 2016

SDG I.D.: GBK87138

PCB Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? No. **QC Batch 339164 (Samples: BK87138): ----**

The LCS/LCSD RPD exceeds the method criteria for one or more surrogates, therefore there may be variability in the reported result. (% TCMX (Surrogate Rec))

Instrument:

AU-ECD1 03/25/16-1

Adam Werner, Chemist 03/25/16

BK87138

The initial calibration (PC0321AI) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC0321BI) RSD for the compound list was less than 20% except for the following compounds: None. The continuing calibration %D for the compound list was less than 15% except for the following compounds:None.

QC (Batch Specific):

Batch 339164 (BK87041)

BK87138

All LCS recoveries were within 40 - 140 with the following exceptions: None.

All LCSD recoveries were within 40 - 140 with the following exceptions: None.

- All LCS/LCSD RPDs were less than 30% with the following exceptions: % TCMX (Surrogate Rec)(54.9%)
- A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

Temperature Narration

The samples were received at 5C with cooling initiated. (Note acceptance criteria is above freezing up to 6° C)

FUSS & O'NEILL	 Hartford Road, Manchester, CT 06040 66 Quarry Road, Trumbull, CT 06611 11419 Richland Street, Columbia, SC 29201 	 78 Interstate Drive, West Springfield, MA 01089 317 Iron Horse Way, Suite 204, Providence, R1 02908 80 Washington Street, Suite 301, Poughkeepsie, NY 	5°un
CHAIN-OF-C	USTODY RECORD	34920 34 ^{8-Hon}	ur* □72-Hour* □ Other(days) ur* □72-Hour* □ Other(days)
PROJECT NAME Former Meriden Ho	PROJECT LOCATION DSV1791 MP/141	PROJECT NUMBER	HO MORATORY
REPORT TO: Stefanic Wicss	Echale + Daid Cuok	Analysis Request	Containers
Sampler's Signature: D-1 QC- Sampler's Signature: D-1 QC- Source Codes: MW=Monitoring Well PW=Potable Water T=T SW=Surface Water ST=Stormwater W=h	$- Date: \frac{2}{25}/\frac{6}{6}$ Treatment Facility S=Soil B=Sediment Waste A=Air C=Concrete	Contraction of the second seco	100 000 000 00000000000000000000000000
X=Other	oer Source Date Time Code Sampled Sample	2000 - 20	Desci De
1 X / 1176160323.	-07 C 3/23/16/100		STI38
Transfer Relinquished By Number	Accepted By Dc	ate Time Charge Exceptions: CT Tax Exempt	2A/QC Other) lanks (Item Nos:)
1 D. Cont 2 Heckarde 3 Maric alt.	4.0 h 4.	2/14 (1530 Reporting and Detection Limit Requirements: 24/14 07:55 RL WSt be = 24/16 11:00 Les Doc	KtCP Deliverables DMCP CAM Cert.
	2		

Friday, April 01, 2016

Attn: Mr Dave Cook Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Project ID: FORMER MERIDEN HOSPITAL Sample ID#s: BK87132 - BK87137

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

Alille.

Phyllis/Shiller Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #MA-CT-007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

Analysis Report

April 01, 2016

FOR: Attn: Mr Dave Cook Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample Information

Matrix:	GROUND WATER
Location Code:	F&O
Rush Request:	Standard
P.O.#:	20120232.C40

Custody Information							
Collected by:	DC						
Received by:	LK						
Analyzed by:	see "By" below						

DI /

Date Time 03/23/16 03/24/16 11:00

Laboratory Data

. .

SDG ID: GBK87132 Phoenix ID: BK87132

9:30

FORMER MERIDEN HOSPITAL Project ID:

Client ID:

1176160323-01

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Volatiles							
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	1	03/25/16	ΜΗ	SW8260
1,1,1-Trichloroethane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	1	03/25/16	MH	SW8260
1,1,2-Trichloroethane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,1-Dichloroethane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,1-Dichloroethene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,1-Dichloropropene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,2,3-Trichlorobenzene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,2,3-Trichloropropane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,2,4-Trichlorobenzene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,2,4-Trimethylbenzene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,2-Dibromo-3-chloropropane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,2-Dibromoethane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,2-Dichlorobenzene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,2-Dichloroethane	ND	0.60	ug/L	1	03/25/16	MH	SW8260
1,2-Dichloropropane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,3,5-Trimethylbenzene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,3-Dichlorobenzene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,3-Dichloropropane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,4-Dichlorobenzene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
2,2-Dichloropropane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
2-Chlorotoluene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
2-Hexanone	ND	5.0	ug/L	1	03/25/16	MH	SW8260
2-Isopropyltoluene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
4-Chlorotoluene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
4-Methyl-2-pentanone	ND	5.0	ug/L	1	03/25/16	MH	SW8260

Descentes	D It	RL/	11.25			-	
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Acetone	ND	25	ug/L	1	03/25/16	MH	SW8260
Acrylonitrile	ND	5.0	ug/L	1	03/25/16	MH	SW8260
Benzene	ND	0.70	ug/L	1	03/25/16	MH	SW8260
Bromobenzene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
Bromochloromethane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
Bromodichloromethane	ND	0.50	ug/L	1	03/25/16	MH	SW8260
Bromoform	ND	1.0	ug/L	1	03/25/16	MH	SW8260
Bromomethane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
Carbon Disulfide	ND	5.0	ug/L	1	03/25/16	MH	SW8260
Carbon tetrachloride	ND	1.0	ug/L	1	03/25/16	MH	SW8260
Chlorobenzene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
Chloroethane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
Chloroform	ND	1.0	ug/L	1	03/25/16	MH	SW8260
Chloromethane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
cis-1,2-Dichloroethene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
cis-1,3-Dichloropropene	ND	0.40	ug/L	1	03/25/16	MH	SW8260
Dibromochloromethane	ND	0.50	ug/L	1	03/25/16	MH	SW8260
Dibromomethane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
Dichlorodifluoromethane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
Ethylbenzene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
Hexachlorobutadiene	ND	0.40	ug/L	1	03/25/16	MH	SW8260
Isopropylbenzene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
m&p-Xylene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
Methyl ethyl ketone	ND	5.0	ug/L	1	03/25/16	MH	SW8260
Methyl t-butyl ether (MTBE)	ND	1.0	ug/L	1	03/25/16	MH	SW8260
Methylene chloride	ND	1.0	ug/L	1	03/25/16	MH	SW8260
Naphthalene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
n-Butylbenzene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
n-Propylbenzene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
o-Xylene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
p-Isopropyltoluene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
sec-Butylbenzene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
Styrene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
tert-Butylbenzene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
Tetrachloroethene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
Tetrahydrofuran (THF)	ND	2.5	ug/L	1	03/25/16	MH	SW8260
Toluene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
Total Xylenes	ND	1.0	ug/L	1	03/25/16	MH	SW8260
trans-1,2-Dichloroethene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
trans-1,3-Dichloropropene	ND	0.40	ug/L	1	03/25/16	MH	SW8260
trans-1,4-dichloro-2-butene	ND	5.0	ug/L	1	03/25/16	MH	SW8260
Trichloroethene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
Trichlorofluoromethane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
Trichlorotrifluoroethane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
Vinvl chloride	ND	1.0	ug/L	1	03/25/16	МН	SW8260
QA/QC Surrogates			5				
% 1.2-dichlorobenzene-d4	99		%	1	03/25/16	МН	70 - 130 %
% Bromofluorobenzene	94		%	1	03/25/16	МН	70 - 130 %
% Dibromofluoromethane	96		%	1	03/25/16	МН	70 - 130 %

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
% Toluene-d8	98		%	1	03/25/16	MH	70 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

TRIP BLANK INCLUDED.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director April 01, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

April 01, 2016

FOR: Attn: Mr Dave Cook Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample Information

Matrix:	GROUND WATER
Location Code:	F&O
Rush Request:	Standard
P.O.#:	20120232.C40

Custody InformationCollected by:DCReceived by:LKAnalyzed by:see "By" below

Laboratory Data

SDG ID: GBK87132

Date

03/23/16

03/24/16

Time

10:25

11:00

Phoenix ID: BK87133

Project ID: FORMER MERIDEN HOSPITAL

Client ID: 1176

1176160323-02

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
Silver	< 0.001	0.001	mg/L	1	03/26/16	LK	SW6010C
Arsenic	< 0.004	0.004	mg/L	1	03/26/16	LK	SW6010C
Barium	0.096	0.002	mg/L	1	03/26/16	LK	SW6010C
Cadmium	< 0.001	0.001	mg/L	1	03/26/16	LK	SW6010C
Chromium	< 0.001	0.001	mg/L	1	03/26/16	LK	SW6010C
Mercury	< 0.0002	0.0002	mg/L	1	03/28/16	M/R	SW7470A
Lead	< 0.002	0.002	mg/L	1	03/26/16	LK	SW6010C
Selenium	< 0.010	0.010	mg/L	1	03/26/16	LK	SW6010C
Mercury Digestion	Completed				03/28/16	W/W	SW7470A
Semi-Volatile Extraction	Completed				03/24/16	E/D	SW3520C
Total Metals Digestion	Completed				03/24/16	AG	
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,1,1-Trichloroethane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	1	03/25/16	MH	SW8260
1,1,2-Trichloroethane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,1-Dichloroethane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,1-Dichloroethene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,1-Dichloropropene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,2,3-Trichlorobenzene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,2,3-Trichloropropane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,2,4-Trichlorobenzene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,2,4-Trimethylbenzene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,2-Dibromo-3-chloropropane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,2-Dibromoethane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,2-Dichlorobenzene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,2-Dichloroethane	ND	0.60	ug/L	1	03/25/16	MH	SW8260

		RL/			D / / T	-	5 (
Parameter	Result	PQL	Units	Dilution	Date/Time	ВУ	Reference
1,2-Dichloropropane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,3,5-Trimethylbenzene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,3-Dichlorobenzene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,3-Dichloropropane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,4-Dichlorobenzene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
2,2-Dichloropropane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
2-Chlorotoluene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
2-Hexanone	ND	5.0	ug/L	1	03/25/16	MH	SW8260
2-Isopropyltoluene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
4-Chlorotoluene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
4-Methyl-2-pentanone	ND	5.0	ug/L	1	03/25/16	MH	SW8260
Acetone	ND	25	ug/L	1	03/25/16	MH	SW8260
Acrylonitrile	ND	5.0	ug/L	1	03/25/16	MH	SW8260
Benzene	ND	0.70	ug/L	1	03/25/16	MH	SW8260
Bromobenzene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
Bromochloromethane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
Bromodichloromethane	ND	0.50	ug/L	1	03/25/16	MH	SW8260
Bromoform	ND	1.0	ug/L	1	03/25/16	MH	SW8260
Bromomethane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
Carbon Disulfide	ND	5.0	ug/L	1	03/25/16	MH	SW8260
Carbon tetrachloride	ND	1.0	ug/L	1	03/25/16	MH	SW8260
Chlorobenzene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
Chloroethane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
Chloroform	ND	1.0	ug/L	1	03/25/16	MH	SW8260
Chloromethane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
cis-1,2-Dichloroethene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
cis-1,3-Dichloropropene	ND	0.40	ug/L	1	03/25/16	MH	SW8260
Dibromochloromethane	ND	0.50	ug/L	1	03/25/16	MH	SW8260
Dibromomethane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
Dichlorodifluoromethane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
Ethylbenzene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
Hexachlorobutadiene	ND	0.40	ug/L	1	03/25/16	MH	SW8260
Isopropylbenzene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
m&p-Xylene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
Methyl ethyl ketone	ND	5.0	ug/L	1	03/25/16	MH	SW8260
Methyl t-butyl ether (MTBE)	ND	1.0	ug/L	1	03/25/16	MH	SW8260
Methylene chloride	ND	1.0	ug/L	1	03/25/16	MH	SW8260
Naphthalene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
n-Butvlbenzene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
n-Propylbenzene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
o-Xvlene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
p-lsopropyltoluene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
sec-Butylbenzene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
Styrene	ND	1.0	ug/L	1	03/25/16	МН	SW8260
tert-Butylbenzene	ND	1.0	ug/L	1	03/25/16	МН	SW8260
Tetrachloroethene	ND	1.0	ua/L	1	03/25/16	MH	SW8260
Tetrahydrofuran (THF)	ND	2.5	ua/L	1	03/25/16	MH	SW8260
Toluene	ND	1.0	ua/l	1	03/25/16	мн	SW8260
Total Xylenes	ND	1.0		1	03/25/16	мн	SW8260
i otal Aylenes		1.0	ug/L		00/20/10	IVIT I	0110200

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
trans-1,2-Dichloroethene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
trans-1,3-Dichloropropene	ND	0.40	ug/L	1	03/25/16	MH	SW8260
trans-1,4-dichloro-2-butene	ND	5.0	ug/L	1	03/25/16	MH	SW8260
Trichloroethene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
Trichlorofluoromethane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
Trichlorotrifluoroethane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
Vinyl chloride	ND	1.0	ug/L	1	03/25/16	MH	SW8260
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	99		%	1	03/25/16	MH	70 - 130 %
% Bromofluorobenzene	94		%	1	03/25/16	MH	70 - 130 %
% Dibromofluoromethane	98		%	1	03/25/16	MH	70 - 130 %
% Toluene-d8	99		%	1	03/25/16	MH	70 - 130 %
Semivolatiles by SIM							
2-Methylnaphthalene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)
Acenaphthene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)
Acenaphthylene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)
Anthracene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)
Benz(a)anthracene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)
Benzo(a)pyrene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)
Benzo(b)fluoranthene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)
Benzo(ghi)perylene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)
Benzo(k)fluoranthene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)
Chrysene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)
Dibenz(a,h)anthracene	ND	0.01	ug/L	1	03/25/16	DD	SW8270D (SIM)
Fluoranthene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)
Fluorene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)
Indeno(1,2,3-cd)pyrene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)
Naphthalene	ND	0.10	ug/L	1	03/25/16	DD	SW8270D (SIM)
Phenanthrene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)
Pyrene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)
QA/QC Surrogates							
% 2-Fluorobiphenyl	65		%	1	03/25/16	DD	30 - 130 %
% Nitrobenzene-d5	61		%	1	03/25/16	DD	30 - 130 %
% Terphenyl-d14	89		%	1	03/25/16	DD	30 - 130 %

Project ID: FORMER MERIDEN HOSPITAL Phoenix I.D.: BK87133 Client ID: 1176160323-02 RL/ Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director April 01, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

April 01, 2016

FOR: Attn: Mr Dave Cook Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample Information

Matrix:	GROUND WATER
Location Code:	F&O
Rush Request:	Standard
P.O.#:	20120232.C40

Custody InformationCollected by:DCReceived by:LKAnalyzed by:see "By" below

Laboratory Data

RL/

SDG ID: GBK87132

Time

12:18

11:00

Phoenix ID: BK87134

Date

03/23/16

03/24/16

Project ID: FORMER MERIDEN HOSPITAL

Client ID: 11761

1176160323-03

Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
Silver	< 0.001	0.001	mg/L	1	03/26/16	LK	SW6010C
Arsenic	< 0.004	0.004	mg/L	1	03/26/16	LK	SW6010C
Barium	0.461	0.002	mg/L	1	03/26/16	LK	SW6010C
Cadmium	< 0.001	0.001	mg/L	1	03/26/16	LK	SW6010C
Chromium	< 0.001	0.001	mg/L	1	03/26/16	LK	SW6010C
Mercury	< 0.0002	0.0002	mg/L	1	03/28/16	M/R	SW7470A
Lead	< 0.002	0.002	mg/L	1	03/26/16	LK	SW6010C
Selenium	< 0.010	0.010	mg/L	1	03/26/16	LK	SW6010C
Mercury Digestion	Completed				03/28/16	W/W	SW7470A
Semi-Volatile Extraction	Completed				03/24/16	E/D	SW3520C
Total Metals Digestion	Completed				03/24/16	AG	
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,1,1-Trichloroethane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	1	03/25/16	MH	SW8260
1,1,2-Trichloroethane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,1-Dichloroethane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,1-Dichloroethene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,1-Dichloropropene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,2,3-Trichlorobenzene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,2,3-Trichloropropane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,2,4-Trichlorobenzene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,2,4-Trimethylbenzene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,2-Dibromo-3-chloropropane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,2-Dibromoethane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,2-Dichlorobenzene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,2-Dichloroethane	ND	0.60	ug/L	1	03/25/16	MH	SW8260

		RL/				_	
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
1,2-Dichloropropane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,3,5-Trimethylbenzene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,3-Dichlorobenzene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,3-Dichloropropane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,4-Dichlorobenzene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
2,2-Dichloropropane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
2-Chlorotoluene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
2-Hexanone	ND	5.0	ug/L	1	03/25/16	MH	SW8260
2-Isopropyltoluene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
4-Chlorotoluene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
4-Methyl-2-pentanone	ND	5.0	ug/L	1	03/25/16	MH	SW8260
Acetone	ND	25	ug/L	1	03/25/16	MH	SW8260
Acrylonitrile	ND	5.0	ug/L	1	03/25/16	MH	SW8260
Benzene	ND	0.70	ug/L	1	03/25/16	MH	SW8260
Bromobenzene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
Bromochloromethane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
Bromodichloromethane	ND	0.50	ug/L	1	03/25/16	MH	SW8260
Bromoform	ND	1.0	ug/L	1	03/25/16	MH	SW8260
Bromomethane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
Carbon Disulfide	ND	5.0	ug/L	1	03/25/16	MH	SW8260
Carbon tetrachloride	ND	1.0	ug/L	1	03/25/16	MH	SW8260
Chlorobenzene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
Chloroethane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
Chloroform	ND	1.0	ug/L	1	03/25/16	MH	SW8260
Chloromethane	ND	1.0	ua/L	1	03/25/16	МН	SW8260
cis-1.2-Dichloroethene	ND	1.0	ua/L	1	03/25/16	МН	SW8260
cis-1.3-Dichloropropene	ND	0.40	ua/L	1	03/25/16	МН	SW8260
Dibromochloromethane	ND	0.50	ua/L	1	03/25/16	МН	SW8260
Dibromomethane	ND	1.0	ua/L	1	03/25/16	МН	SW8260
Dichlorodifluoromethane	ND	1.0	ug/L	1	03/25/16	МН	SW8260
Ethylbenzene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
Hexachlorobutadiene	ND	0.40	ug/L	1	03/25/16	MH	SW8260
Isopropylbenzene	ND	1.0	ug/l	1	03/25/16	MH	SW8260
m&n-Xylene	ND	1.0	ug/l	1	03/25/16	MH	SW8260
Methyl ethyl ketone	ND	5.0	ug/l	1	03/25/16	MH	SW8260
Methyl t-butyl ether (MTRE)	ND	1.0	ug/l	1	03/25/16	мн	SW8260
Methylene chloride	ND	1.0	ug/L	1	03/25/16	мн	SW8260
Nanhthalene	ND	1.0	ug/l	1	03/25/16	мн	SW8260
n-Butylbenzene	ND	1.0	ug/L	1	03/25/16	мн	SW8260
n-Propylbenzene	ND	1.0	ug/L	1	03/25/16	мн	SW8260
o-Xylene	ND	1.0	ug/L	1	03/25/16	мн	SW8260
	ND	1.0	ug/L	1	03/25/16	мн	SW8260
	ND	1.0	ug/L	1	03/25/16	мн	SW8260
Sec-Butyiberizerie	ND	1.0	ug/L	1	03/25/16	мн	SW(8260
Styrene		1.0	ug/L	1	03/25/16		SW(8260
		1.0	ug/L	1	03/25/16		SW/8260
		2.5	ug/L	1	03/25/16		SW/8260
Teluana		2.0 1.0	ug/L	1	03/25/10		SW0200
		1.0	ug/L	1	03/25/10		SW0200
I OTAL XYIENES	ND	1.0	ug/L	Т	03/25/16	WH	SVV820U

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference	
trans-1,2-Dichloroethene	ND	1.0	ug/L	1	03/25/16	MH	SW8260	
trans-1,3-Dichloropropene	ND	0.40	ug/L	1	03/25/16	MH	SW8260	
trans-1,4-dichloro-2-butene	ND	5.0	ug/L	1	03/25/16	MH	SW8260	
Trichloroethene	ND	1.0	ug/L	1	03/25/16	MH	SW8260	
Trichlorofluoromethane	ND	1.0	ug/L	1	03/25/16	MH	SW8260	
Trichlorotrifluoroethane	ND	1.0	ug/L	1	03/25/16	MH	SW8260	
Vinyl chloride	ND	1.0	ug/L	1	03/25/16	MH	SW8260	
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	99		%	1	03/25/16	MH	70 - 130 %	
% Bromofluorobenzene	94		%	1	03/25/16	MH	70 - 130 %	
% Dibromofluoromethane	100		%	1	03/25/16	MH	70 - 130 %	
% Toluene-d8	98		%	1	03/25/16	MH	70 - 130 %	
Semivolatiles by SIM								
2-Methylnaphthalene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)	
Acenaphthene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)	
Acenaphthylene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)	
Anthracene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)	
Benz(a)anthracene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)	
Benzo(a)pyrene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)	
Benzo(b)fluoranthene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)	
Benzo(ghi)perylene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)	
Benzo(k)fluoranthene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)	
Chrysene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)	
Dibenz(a,h)anthracene	ND	0.01	ug/L	1	03/25/16	DD	SW8270D (SIM)	
Fluoranthene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)	
Fluorene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)	
Indeno(1,2,3-cd)pyrene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)	
Naphthalene	ND	0.10	ug/L	1	03/25/16	DD	SW8270D (SIM)	
Phenanthrene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)	
Pyrene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)	
QA/QC Surrogates								
% 2-Fluorobiphenyl	44		%	1	03/25/16	DD	30 - 130 %	
% Nitrobenzene-d5	23		%	1	03/25/16	DD	30 - 130 %	3
% Terphenyl-d14	87		%	1	03/25/16	DD	30 - 130 %	

Project ID: FORMER MERIDEN HOSPITAL Phoenix I.D.: BK87134 Client ID: 1176160323-03 RL/ Parameter Result PQL Units Dilution Date/Time By Reference

3 = This parameter exceeds laboratory specified limits.

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Semi-Volatile Comment:

Poor surrogate recovery was observed for one acid and/or one base surrogate. The other surrogates associated with this sample were within QA/QC criteria. No significant bias suspected.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director April 01, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

April 01, 2016

FOR: Attn: Mr Dave Cook Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample Information

Matrix:	GROUND WATER
Location Code:	F&O
Rush Request:	Standard
P.O.#:	20120232.C40

Custody InformationCollected by:DCReceived by:LKAnalyzed by:see "By"

Laboratory Data

 Date
 Time

 03/23/16
 13:25

 03/24/16
 11:00

see "By" below

SDG ID: GBK87132

Phoenix ID: BK87135

Project ID: FORMER MERIDEN HOSPITAL

Client ID: 1176160323-04

QA/QC Surrogates

% DCBP

% TCMX

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Silver	< 0.001	0.001	mg/L	1	03/26/16	LK	SW6010C
Arsenic	< 0.004	0.004	mg/L	1	03/26/16	LK	SW6010C
Barium	0.208	0.002	mg/L	1	03/26/16	LK	SW6010C
Cadmium	< 0.001	0.001	mg/L	1	03/26/16	LK	SW6010C
Chromium	< 0.001	0.001	mg/L	1	03/26/16	LK	SW6010C
Mercury	< 0.0002	0.0002	mg/L	1	03/28/16	M/R	SW7470A
Lead	< 0.002	0.002	mg/L	1	03/26/16	LK	SW6010C
Selenium	< 0.010	0.010	mg/L	1	03/26/16	LK	SW6010C
Mercury Digestion	Completed				03/28/16	W/W	SW7470A
PCB Extraction	Completed				03/25/16		SW3510C
Semi-Volatile Extraction	Completed				03/24/16	E/D	SW3520C
Total Metals Digestion	Completed				03/24/16	AG	
Polychlorinated Biphe	<u>enyls</u>						
PCB-1016	ND	0.10	ug/L	1	03/28/16	AW	SW8082A
PCB-1221	ND	0.10	ug/L	1	03/28/16	AW	SW8082A
PCB-1232	ND	0.10	ug/L	1	03/28/16	AW	SW8082A
PCB-1242	ND	0.10	ug/L	1	03/28/16	AW	SW8082A
PCB-1248	ND	0.10	ug/L	1	03/28/16	AW	SW8082A
PCB-1254	ND	0.10	ug/L	1	03/28/16	AW	SW8082A
PCB-1260	ND	0.10	ug/L	1	03/28/16	AW	SW8082A
PCB-1262	ND	0.10	ug/L	1	03/28/16	AW	SW8082A
PCB-1268	ND	0.10	ug/L	1	03/28/16	AW	SW8082A

%

%

1

1

03/28/16

03/28/16

AW

AW

30 - 150 %

30 - 150 %

73

63

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Bv	Reference
						,	
Volatiles							
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,1,1-Trichloroethane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	1	03/25/16	MH	SW8260
1,1,2-Trichloroethane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,1-Dichloroethane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,1-Dichloroethene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,1-Dichloropropene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,2,3-Trichlorobenzene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,2,3-Trichloropropane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,2,4-Trichlorobenzene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,2,4-Trimethylbenzene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,2-Dibromo-3-chloropropane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,2-Dibromoethane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,2-Dichlorobenzene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,2-Dichloroethane	ND	0.60	ug/L	1	03/25/16	MH	SW8260
1,2-Dichloropropane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,3,5-Trimethylbenzene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,3-Dichlorobenzene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,3-Dichloropropane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,4-Dichlorobenzene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
2,2-Dichloropropane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
2-Chlorotoluene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
2-Hexanone	ND	5.0	ug/L	1	03/25/16	MH	SW8260
2-Isopropyltoluene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
4-Chlorotoluene	ND	1.0	ug/L	1	03/25/16	ΜН	SW8260
4-Methyl-2-pentanone	ND	5.0	ug/L	1	03/25/16	ΜН	SW8260
Acetone	ND	25	ug/L	1	03/25/16	ΜН	SW8260
Acrylonitrile	ND	5.0	ug/L	1	03/25/16	ΜН	SW8260
Benzene	ND	0.70	ug/L	1	03/25/16	ΜН	SW8260
Bromobenzene	ND	1.0	ug/L	1	03/25/16	ΜН	SW8260
Bromochloromethane	ND	1.0	ug/L	1	03/25/16	ΜН	SW8260
Bromodichloromethane	ND	0.50	ug/L	1	03/25/16	МН	SW8260
Bromoform	ND	1.0	ug/L	1	03/25/16	МН	SW8260
Bromomethane	ND	1.0	ug/L	1	03/25/16	МН	SW8260
Carbon Disulfide	ND	5.0	ug/L	1	03/25/16	МН	SW8260
Carbon tetrachloride	ND	1.0	ug/L	1	03/25/16	МН	SW8260
Chlorobenzene	ND	1.0	ug/L	1	03/25/16	МН	SW8260
Chloroethane	ND	1.0	ug/L	1	03/25/16	МН	SW8260
Chloroform	ND	1.0	ug/L	1	03/25/16	МН	SW8260
Chloromethane	ND	1.0	ug/L	1	03/25/16	МН	SW8260
cis-1.2-Dichloroethene	ND	1.0	ug/L	1	03/25/16	МН	SW8260
cis-1,3-Dichloropropene	ND	0.40	ua/L	1	03/25/16	MH	SW8260
Dibromochloromethane	ND	0.50	ua/L	1	03/25/16	MH	SW8260
Dibromomethane	ND	1.0	ua/L	1	03/25/16	MH	SW8260
Dichlorodifluoromethane	ND	1.0	ua/L	1	03/25/16	мн	SW8260
Ethylbenzene	ND	1.0	ua/L	1	03/25/16	мн	SW8260
Hexachlorobutadiene	ND	0.40	~ <u>9</u> , = ⊔a/l	1	03/25/16	мн	SW8260
Isopropylbenzene	ND	1.0	ug/L	1	03/25/16	MH	SW8260

Parameter	Result	RL/	Linite	Dilution	Date/Time	Bv	Reference
	ND	1.0	Units		02/25/16	мц	SW/9260
Methyl ethyl ketene		5.0	ug/L	1	03/25/16		SW0200
Methyl t butyl other (MTRE)		1.0	ug/L	1	03/25/16		SW0200
Methylene ebleride		1.0	ug/L	1	03/25/16		SW0200
		1.0	ug/L	1	03/25/16		SW0200
		1.0	ug/L	1	03/25/16		SW0200
n-Butyibenzene		1.0	ug/L	1	03/25/16		SW8260
n-Propyidenzene		1.0	ug/L	1	03/25/16		SW8260
o-Xylene	ND	1.0	ug/L	1	03/25/16		SVV8260
		1.0	ug/L	1	03/25/16		SW8260
Sec-Butyibenzene	ND	1.0	ug/L	1	03/25/16		SVV8260
Styrene	ND	1.0	ug/L	1	03/25/16		SVV8260
	ND	1.0	ug/L	1	03/25/16		SVV8260
l etrachloroethene	ND	1.0	ug/L	1	03/25/16	MH	SVV8260
Tetrahydrofuran (THF)	ND	2.5	ug/L	1	03/25/16	MH	SVV8260
loluene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
Total Xylenes	ND	1.0	ug/L	1	03/25/16	MH	SW8260
trans-1,2-Dichloroethene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
trans-1,3-Dichloropropene	ND	0.40	ug/L	1	03/25/16	MH	SW8260
trans-1,4-dichloro-2-butene	ND	5.0	ug/L	1	03/25/16	MH	SW8260
Trichloroethene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
Trichlorofluoromethane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
Trichlorotrifluoroethane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
Vinyl chloride	ND	1.0	ug/L	1	03/25/16	MH	SW8260
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	98		%	1	03/25/16	MH	70 - 130 %
% Bromofluorobenzene	93		%	1	03/25/16	MH	70 - 130 %
% Dibromofluoromethane	97		%	1	03/25/16	MH	70 - 130 %
% Toluene-d8	98		%	1	03/25/16	MH	70 - 130 %
Semivolatiles by SIM							
2-Methylnaphthalene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)
Acenaphthene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)
Acenaphthylene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)
Anthracene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)
Benz(a)anthracene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)
Benzo(a)pvrene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)
Benzo(b)fluoranthene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)
Benzo(ahi)pervlene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)
Benzo(k)fluoranthene	ND	0.05	ua/L	1	03/25/16	DD	SW8270D (SIM)
Chrysene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)
Dibenz(a b)anthracene	ND	0.01	ug/L	1	03/25/16	DD	SW8270D (SIM)
Fluoranthene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)
Fluorene	ND	0.05	ug/l	1	03/25/16	סס	SW8270D (SIM)
Indeno(1.2.3-cd)pyrepe	ND	0.05	ua/l	1	03/25/16		SW8270D (SIM)
Nanhthalene	ND	0.10	ug/l	1	03/25/16	סס	SW8270D (SIM)
Phenanthrana	ND	0.05	ug/L	1	03/25/16	סס	SW/8270D (SIM)
Pyrana	ND	0.05	ug/L	1	03/25/16	חח	SW8270D (SIM)
0A/QC Surrogates		0.00	ug/L	I	00/20/10	00	
% 2-Fluorobinhenvl	49		%	1	03/25/16	חח	30 - 130 %
% Nitrobenzene-d5	 25		70 0/2	1	03/25/16	חח	30 - 130 %
	55		/0		00/20/10	00	00 100 /0
Project ID: FORMER MERIDEN HOSPITAL Client ID: 1176160323-04

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
% Terphenyl-d14	88		%	1	03/25/16	DD	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Phyllis Shiller, Laboratory Director April 01, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

April 01, 2016

FOR: Attn: Mr Dave Cook Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample Information

Matrix:	GROUND WATER
Location Code:	F&O
Rush Request:	Standard
P.O.#:	20120232.C40

Custody InformationCollected by:DCReceived by:LKAnalyzed by:see "By" below

03/24/16 11:00 SDG ID: GBK87132

Date

03/23/16

Time

14:30

Laboratory Data

Phoenix ID: BK87136

Project ID: FORMER MERIDEN HOSPITAL

Client ID: 1176160323-05

		RL/						
Parameter	Result	PQL	L	Jnits	Dilution	Date/Time	By	Reference
Silver	< 0.001	0.001	r	ng/L	1	03/26/16	LK	SW6010C
Arsenic	< 0.004	0.004	r	ng/L	1	03/26/16	LK	SW6010C
Barium	0.144	0.002	r	ng/L	1	03/26/16	LK	SW6010C
Cadmium	< 0.001	0.001	r	ng/L	1	03/26/16	LK	SW6010C
Chromium	< 0.001	0.001	r	ng/L	1	03/26/16	LK	SW6010C
Mercury	< 0.0002	0.0002	r	ng/L	1	03/28/16	RS	SW7470A
Lead	< 0.002	0.002	r	ng/L	1	03/26/16	LK	SW6010C
Selenium	< 0.010	0.010	r	ng/L	1	03/26/16	LK	SW6010C
Mercury Digestion	Completed					03/28/16	W/W	SW7470A
Semi-Volatile Extraction	Completed					03/24/16	E/D	SW3520C
Total Metals Digestion	Completed					03/24/16	AG	
<u>Volatiles</u>								
1,1,1,2-Tetrachloroethane	ND	1.0	I	ug/L	1	03/25/16	MH	SW8260
1,1,1-Trichloroethane	ND	1.0		ug/L	1	03/25/16	MH	SW8260
1,1,2,2-Tetrachloroethane	ND	0.50		ug/L	1	03/25/16	MH	SW8260
1,1,2-Trichloroethane	ND	1.0		ug/L	1	03/25/16	MH	SW8260
1,1-Dichloroethane	ND	1.0	I	ug/L	1	03/25/16	MH	SW8260
1,1-Dichloroethene	ND	1.0	I	ug/L	1	03/25/16	MH	SW8260
1,1-Dichloropropene	ND	1.0	I	ug/L	1	03/25/16	MH	SW8260
1,2,3-Trichlorobenzene	ND	1.0	I	ug/L	1	03/25/16	MH	SW8260
1,2,3-Trichloropropane	ND	1.0	I	ug/L	1	03/25/16	MH	SW8260
1,2,4-Trichlorobenzene	ND	1.0	I	ug/L	1	03/25/16	MH	SW8260
1,2,4-Trimethylbenzene	ND	1.0	I	ug/L	1	03/25/16	MH	SW8260
1,2-Dibromo-3-chloropropane	ND	1.0	I	ug/L	1	03/25/16	MH	SW8260
1,2-Dibromoethane	ND	1.0	I	ug/L	1	03/25/16	MH	SW8260
1,2-Dichlorobenzene	ND	1.0	I	ug/L	1	03/25/16	MH	SW8260
1,2-Dichloroethane	ND	0.60		ug/L	1	03/25/16	MH	SW8260

Project ID: FORMER MERIDEN HOSPITAL Client ID: 1176160323-05

	D It	RL/	11.16			-	
Parameter	Result	PQL	Units	Dilution	Date/Time	ВУ	Reference
1,2-Dichloropropane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,3,5-Trimethylbenzene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,3-Dichlorobenzene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,3-Dichloropropane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
1,4-Dichlorobenzene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
2,2-Dichloropropane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
2-Chlorotoluene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
2-Hexanone	ND	5.0	ug/L	1	03/25/16	MH	SW8260
2-Isopropyltoluene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
4-Chlorotoluene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
4-Methyl-2-pentanone	ND	5.0	ug/L	1	03/25/16	MH	SW8260
Acetone	ND	25	ug/L	1	03/25/16	MH	SW8260
Acrylonitrile	ND	5.0	ug/L	1	03/25/16	MH	SW8260
Benzene	ND	0.70	ug/L	1	03/25/16	MH	SW8260
Bromobenzene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
Bromochloromethane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
Bromodichloromethane	ND	0.50	ug/L	1	03/25/16	MH	SW8260
Bromoform	ND	1.0	ug/L	1	03/25/16	MH	SW8260
Bromomethane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
Carbon Disulfide	ND	5.0	ug/L	1	03/25/16	MH	SW8260
Carbon tetrachloride	ND	1.0	ug/L	1	03/25/16	MH	SW8260
Chlorobenzene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
Chloroethane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
Chloroform	ND	1.0	ug/L	1	03/25/16	MH	SW8260
Chloromethane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
cis-1,2-Dichloroethene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
cis-1,3-Dichloropropene	ND	0.40	ug/L	1	03/25/16	MH	SW8260
Dibromochloromethane	ND	0.50	ug/L	1	03/25/16	MH	SW8260
Dibromomethane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
Dichlorodifluoromethane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
Ethylbenzene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
Hexachlorobutadiene	ND	0.40	ug/L	1	03/25/16	MH	SW8260
Isopropylbenzene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
m&p-Xvlene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
Methyl ethyl ketone	ND	5.0	ug/L	1	03/25/16	MH	SW8260
Methyl t-butyl ether (MTBE)	ND	1.0	ug/L	1	03/25/16	MH	SW8260
Methylene chloride	ND	1.0	ug/L	1	03/25/16	MH	SW8260
Naphthalene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
n-Butvlbenzene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
n-Propylbenzene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
o-Xvlene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
p-Isopropyltoluene	ND	1.0	ua/L	1	03/25/16	МН	SW8260
sec-Butylbenzene	ND	1.0	ug/L	1	03/25/16	МН	SW8260
Styrene	ND	1.0	ug/L	1	03/25/16	МН	SW8260
tert-Butylbenzene	ND	1.0	ug/l	1	03/25/16	MH	SW8260
Tetrachloroethene	ND	1.0	ua/L	1	03/25/16	MH	SW8260
Tetrahydrofuran (THF)	ND	2.5	ua/L	1	03/25/16	MH	SW8260
Toluene	ND	1.0	ua/l	1	03/25/16	мн	SW8260
Total Xylenes	ND	1.0	ug/l	1	03/25/16	мн	SW8260
i otal Ayleneo		1.0	ug/L		00/20/10	IVIT I	0110200

Project ID: FORMER MERIDEN HOSPITAL Client ID: 1176160323-05

Parameter	Result	RL/ PQL	Units Dilution		Date/Time	By	Reference
trans-1,2-Dichloroethene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
trans-1,3-Dichloropropene	ND	0.40	ug/L	1	03/25/16	MH	SW8260
trans-1,4-dichloro-2-butene	ND	5.0	ug/L	1	03/25/16	MH	SW8260
Trichloroethene	ND	1.0	ug/L	1	03/25/16	MH	SW8260
Trichlorofluoromethane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
Trichlorotrifluoroethane	ND	1.0	ug/L	1	03/25/16	MH	SW8260
Vinyl chloride	ND	1.0	ug/L	1	03/25/16	MH	SW8260
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	102		%	1	03/25/16	MH	70 - 130 %
% Bromofluorobenzene	95		%	1	03/25/16	MH	70 - 130 %
% Dibromofluoromethane	101		%	1	03/25/16	MH	70 - 130 %
% Toluene-d8	100		%	1	03/25/16	MH	70 - 130 %
Semivolatiles by SIM							
2-Methylnaphthalene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)
Acenaphthene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)
Acenaphthylene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)
Anthracene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)
Benz(a)anthracene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)
Benzo(a)pyrene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)
Benzo(b)fluoranthene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)
Benzo(ghi)perylene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)
Benzo(k)fluoranthene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)
Chrysene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)
Dibenz(a,h)anthracene	ND	0.01	ug/L	1	03/25/16	DD	SW8270D (SIM)
Fluoranthene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)
Fluorene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)
Indeno(1,2,3-cd)pyrene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)
Naphthalene	ND	0.10	ug/L	1	03/25/16	DD	SW8270D (SIM)
Phenanthrene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)
Pyrene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)
QA/QC Surrogates							
% 2-Fluorobiphenyl	64		%	1	03/25/16	DD	30 - 130 %
% Nitrobenzene-d5	69		%	1	03/25/16	DD	30 - 130 %
% Terphenyl-d14	90		%	1	03/25/16	DD	30 - 130 %

Project ID: FORMER MERIDEN HOSPITAL Phoenix I.D.: BK87136 Client ID: 1176160323-05 RL/ Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Phyllis Shiller, Laboratory Director April 01, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

April 01, 2016

FOR: Attn: Mr Dave Cook Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample Information

Matrix:	GROUND WATER
Location Code:	F&O
Rush Request:	Standard
P.O.#:	20120232.C40

Custody InformationCollected by:DCReceived by:LKAnalyzed by:see "By" below

_aboratory Data

SDG ID: GBK87132 Phoenix ID: BK87137

Time

14:35

11:00

Date

03/23/16

03/24/16

Project ID: FORMER MERIDEN HOSPITAL

Client ID: 1176160323-06

RL/ Parameter PQL Units Dilution Date/Time Result By Reference Silver < 0.001 0.001 mg/L 1 03/26/16 LK SW6010C Arsenic < 0.004 0.004 mg/L 1 03/26/16 LK SW6010C Barium 0.145 0.002 mg/L 1 03/26/16 LK SW6010C Cadmium < 0.001 0.001 mg/L 1 03/26/16 LK SW6010C < 0.001 0.001 1 03/26/16 LK SW6010C Chromium mg/L Mercury < 0.0002 0.0002 mg/L 1 03/28/16 RS SW7470A < 0.002 03/26/16 SW6010C Lead 0.002 mg/L 1 LK < 0.010 0.010 1 03/26/16 LK SW6010C Selenium mg/L W/W Mercury Digestion Completed 03/28/16 SW7470A Semi-Volatile Extraction Completed 03/24/16 E/D SW3520C 03/24/16 **Total Metals Digestion** Completed AG Volatiles ND 03/26/16 SW8260 1,1,1,2-Tetrachloroethane 1.0 ug/L 1 MH 1,1,1-Trichloroethane ND 1.0 ug/L 1 03/26/16 MH SW8260 ND 0.50 03/26/16 SW8260 1,1,2,2-Tetrachloroethane ug/L 1 MH ND 1.0 ug/L 1 03/26/16 MH SW8260 1,1,2-Trichloroethane SW8260 ND ug/L 03/26/16 1.0 1 MH 1,1-Dichloroethane ND 1.0 ug/L 1 03/26/16 SW8260 1,1-Dichloroethene MH ND 03/26/16 MH SW8260 1.0 ug/L 1 1,1-Dichloropropene ND 1.0 ug/L 1 03/26/16 MH SW8260 1,2,3-Trichlorobenzene ND 1.0 ug/L 1 03/26/16 MH SW8260 1,2,3-Trichloropropane SW8260 ND 1.0 ug/L 1 03/26/16 MH 1,2,4-Trichlorobenzene ND 1.0 ug/L 1 03/26/16 MH SW8260 1,2,4-Trimethylbenzene ND ug/L 1 03/26/16 SW8260 1.0 MH 1,2-Dibromo-3-chloropropane ND 1.0 1 03/26/16 SW8260 ug/L MH 1,2-Dibromoethane ND 1.0 ug/L 1 03/26/16 MH SW8260 1,2-Dichlorobenzene ug/L SW8260 ND 0.60 1 03/26/16 MH 1,2-Dichloroethane

Project ID: FORMER MERIDEN HOSPITAL Client ID: 1176160323-06

_		RL/				_	
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
1,2-Dichloropropane	ND	1.0	ug/L	1	03/26/16	MH	SW8260
1,3,5-Trimethylbenzene	ND	1.0	ug/L	1	03/26/16	MH	SW8260
1,3-Dichlorobenzene	ND	1.0	ug/L	1	03/26/16	MH	SW8260
1,3-Dichloropropane	ND	1.0	ug/L	1	03/26/16	MH	SW8260
1,4-Dichlorobenzene	ND	1.0	ug/L	1	03/26/16	MH	SW8260
2,2-Dichloropropane	ND	1.0	ug/L	1	03/26/16	MH	SW8260
2-Chlorotoluene	ND	1.0	ug/L	1	03/26/16	MH	SW8260
2-Hexanone	ND	5.0	ug/L	1	03/26/16	MH	SW8260
2-Isopropyltoluene	ND	1.0	ug/L	1	03/26/16	MH	SW8260
4-Chlorotoluene	ND	1.0	ug/L	1	03/26/16	MH	SW8260
4-Methyl-2-pentanone	ND	5.0	ug/L	1	03/26/16	MH	SW8260
Acetone	ND	25	ug/L	1	03/26/16	MH	SW8260
Acrylonitrile	ND	5.0	ug/L	1	03/26/16	MH	SW8260
Benzene	ND	0.70	ug/L	1	03/26/16	MH	SW8260
Bromobenzene	ND	1.0	ug/L	1	03/26/16	MH	SW8260
Bromochloromethane	ND	1.0	ug/L	1	03/26/16	MH	SW8260
Bromodichloromethane	ND	0.50	ug/L	1	03/26/16	MH	SW8260
Bromoform	ND	1.0	ug/L	1	03/26/16	MH	SW8260
Bromomethane	ND	1.0	ug/L	1	03/26/16	MH	SW8260
Carbon Disulfide	ND	5.0	ug/L	1	03/26/16	MH	SW8260
Carbon tetrachloride	ND	1.0	ug/L	1	03/26/16	MH	SW8260
Chlorobenzene	ND	1.0	ug/L	1	03/26/16	MH	SW8260
Chloroethane	ND	1.0	ug/L	1	03/26/16	MH	SW8260
Chloroform	ND	1.0	ug/L	1	03/26/16	MH	SW8260
Chloromethane	ND	1.0	ug/L	1	03/26/16	MH	SW8260
cis-1,2-Dichloroethene	ND	1.0	ug/L	1	03/26/16	MH	SW8260
cis-1,3-Dichloropropene	ND	0.40	ug/L	1	03/26/16	MH	SW8260
Dibromochloromethane	ND	0.50	ug/L	1	03/26/16	MH	SW8260
Dibromomethane	ND	1.0	ug/L	1	03/26/16	MH	SW8260
Dichlorodifluoromethane	ND	1.0	ug/L	1	03/26/16	MH	SW8260
Ethylbenzene	ND	1.0	ug/L	1	03/26/16	MH	SW8260
Hexachlorobutadiene	ND	0.40	ug/L	1	03/26/16	MH	SW8260
Isopropylbenzene	ND	1.0	ug/L	1	03/26/16	MH	SW8260
m&p-Xylene	ND	1.0	ug/L	1	03/26/16	MH	SW8260
Methyl ethyl ketone	ND	5.0	ug/L	1	03/26/16	MH	SW8260
Methyl t-butyl ether (MTBE)	ND	1.0	ug/L	1	03/26/16	MH	SW8260
Methylene chloride	ND	1.0	ug/L	1	03/26/16	MH	SW8260
Naphthalene	ND	1.0	ug/L	1	03/26/16	MH	SW8260
n-Butvlbenzene	ND	1.0	ug/L	1	03/26/16	MH	SW8260
n-Propylbenzene	ND	1.0	ug/L	1	03/26/16	MH	SW8260
o-Xvlene	ND	1.0	ug/L	1	03/26/16	MH	SW8260
p-lsopropyltoluene	ND	1.0	ug/L	1	03/26/16	MH	SW8260
sec-Butvlbenzene	ND	1.0	ug/L	1	03/26/16	MH	SW8260
Styrene	ND	1.0	ug/L	1	03/26/16	MH	SW8260
tert-Butvlbenzene	ND	1.0	ug/L	1	03/26/16	MH	SW8260
Tetrachloroethene	ND	1.0	ug/L	1	03/26/16	MH	SW8260
Tetrahvdrofuran (THF)	ND	2.5	ug/L	1	03/26/16	MH	SW8260
Toluene	ND	1.0	ug/L	1	03/26/16	MH	SW8260
Total Xvlenes	ND	1.0	ua/l	1	03/26/16	мн	SW8260
			~				

Project ID: FORMER MERIDEN HOSPITAL Client ID: 1176160323-06

Parameter	Result	RL/ PQL	Units Dilution		Date/Time	Ву	Reference
trans-1,2-Dichloroethene	ND	1.0	ug/L	1	03/26/16	MH	SW8260
trans-1,3-Dichloropropene	ND	0.40	ug/L	1	03/26/16	MH	SW8260
trans-1,4-dichloro-2-butene	ND	5.0	ug/L	1	03/26/16	MH	SW8260
Trichloroethene	ND	1.0	ug/L	1	03/26/16	MH	SW8260
Trichlorofluoromethane	ND	1.0	ug/L	1	03/26/16	MH	SW8260
Trichlorotrifluoroethane	ND	1.0	ug/L	1	03/26/16	MH	SW8260
Vinyl chloride	ND	1.0	ug/L	1	03/26/16	MH	SW8260
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	100		%	1	03/26/16	MH	70 - 130 %
% Bromofluorobenzene	94		%	1	03/26/16	MH	70 - 130 %
% Dibromofluoromethane	102		%	1	03/26/16	MH	70 - 130 %
% Toluene-d8	99		%	1	03/26/16	MH	70 - 130 %
Semivolatiles by SIM							
2-Methylnaphthalene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)
Acenaphthene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)
Acenaphthylene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)
Anthracene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)
Benz(a)anthracene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)
Benzo(a)pyrene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)
Benzo(b)fluoranthene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)
Benzo(ghi)perylene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)
Benzo(k)fluoranthene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)
Chrysene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)
Dibenz(a,h)anthracene	ND	0.01	ug/L	1	03/25/16	DD	SW8270D (SIM)
Fluoranthene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)
Fluorene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)
Indeno(1,2,3-cd)pyrene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)
Naphthalene	ND	0.10	ug/L	1	03/25/16	DD	SW8270D (SIM)
Phenanthrene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)
Pyrene	ND	0.05	ug/L	1	03/25/16	DD	SW8270D (SIM)
QA/QC Surrogates							
% 2-Fluorobiphenyl	57		%	1	03/25/16	DD	30 - 130 %
% Nitrobenzene-d5	50		%	1	03/25/16	DD	30 - 130 %
% Terphenyl-d14	89		%	1	03/25/16	DD	30 - 130 %

Project ID: FORMER MERIDEN HOSPITAL Phoenix I.D.: BK87137 Client ID: 1176160323-06 RL/ Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Phyllis Shiller, Laboratory Director April 01, 2016 Reviewed and Released by: Ethan Lee, Project Manager

QA/QC Report

April 01, 2016

QA/QC Data

SDG I.D.: GBK87132

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 339326 (mg/L),	QC Samp	ole No: I	3K68009	(BK8713	33, BK8	37134, I	BK8713	5, BK87	7136, B	3K87137	')			
ICP Metals - Aqueous														
Arsenic	BRL	0.004	<0.004	<0.004	NC	95.1			98.2			75 - 125	20	
Barium	BRL	0.002	0.008	0.008	NC	96.7			100			75 - 125	20	
Cadmium	BRL	0.001	<0.001	<0.001	NC	95.2			98.7			75 - 125	20	
Chromium	BRL	0.001	<0.001	< 0.001	NC	95.8			99.6			75 - 125	20	
Lead	BRL	0.002	< 0.002	< 0.002	NC	94.5			97.8			75 - 125	20	
Selenium	BRL	0.010	<0.010	<0.010	NC	99.3			98.7			75 - 125	20	
Silver	BRL	0.001	<0.001	<0.001	NC	95.7			99.1			75 - 125	20	
QA/QC Batch 339697 (mg/L),	QC Samp	ole No: I	3K87085	(BK8713	33, BK8	87134, 1	BK8713	5)						
Mercury - Water Comment:	BRL	0.0002	<0.0002	<0.0002	NC	94.7			100			70 - 130	20	
Additional Mercury criteria: LCS	acceptanc	e range f	for waters	is 80-1209	% and fo	or soils is	s 70-1309	%.						
QA/QC Batch 339698 (mg/L),	QC Sam	ble No: I	3K88734	(BK8713	36, BK8	37137)								
Mercury - Water Comment:	BRL	0.0002	<0.0002	<0.0002	NC	100			99.8			70 - 130	20	
Additional Mercury criteria: LCS	acceptanc	e range f	or waters	is 80-120 ^o	% and fo	or soils is	s 70-1309	%.						

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045

Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

April 01, 2016

QA/QC Data

SDG I.D.: GBK87132

Parameter	Blank	Bik RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 340439 (ug/L), QC	Samp	e No: BK87045 (BK87132,	BK87133, B	K87134	, BK87	135)					
Volatiles - Ground Water											
1,1,1,2-Tetrachloroethane	ND	1.0	95	111	15.5				70 - 130	30	
1,1,1-Trichloroethane	ND	1.0	98	110	11.5				70 - 130	30	
1,1,2,2-Tetrachloroethane	ND	0.50	90	107	17.3				70 - 130	30	
1,1,2-Trichloroethane	ND	1.0	85	102	18.2				70 - 130	30	
1,1-Dichloroethane	ND	1.0	92	107	15.1				70 - 130	30	
1,1-Dichloroethene	ND	1.0	102	114	11.1				70 - 130	30	
1,1-Dichloropropene	ND	1.0	101	110	8.5				70 - 130	30	
1,2,3-Trichlorobenzene	ND	1.0	86	99	14.1				70 - 130	30	
1,2,3-Trichloropropane	ND	1.0	91	106	15.2				70 - 130	30	
1,2,4-Trichlorobenzene	ND	1.0	89	105	16.5				70 - 130	30	
1,2,4-Trimethylbenzene	ND	1.0	98	108	9.7				70 - 130	30	
1,2-Dibromo-3-chloropropane	ND	1.0	90	111	20.9				70 - 130	30	
1,2-Dibromoethane	ND	1.0	89	110	21.1				70 - 130	30	
1,2-Dichlorobenzene	ND	1.0	93	106	13.1				70 - 130	30	
1,2-Dichloroethane	ND	1.0	86	104	18.9				70 - 130	30	
1,2-Dichloropropane	ND	1.0	88	104	16.7				70 - 130	30	
1,3,5-Trimethylbenzene	ND	1.0	100	108	7.7				70 - 130	30	
1,3-Dichlorobenzene	ND	1.0	96	108	11.8				70 - 130	30	
1,3-Dichloropropane	ND	1.0	89	105	16.5				70 - 130	30	
1,4-Dichlorobenzene	ND	1.0	95	107	11.9				70 - 130	30	
2,2-Dichloropropane	ND	1.0	92	103	11.3				70 - 130	30	
2-Chlorotoluene	ND	1.0	100	108	7.7				70 - 130	30	
2-Hexanone	ND	5.0	76	104	31.1				70 - 130	30	r
2-Isopropyltoluene	ND	1.0	101	110	8.5				70 - 130	30	
4-Chlorotoluene	ND	1.0	97	106	8.9				70 - 130	30	
4-Methyl-2-pentanone	ND	5.0	77	102	27.9				70 - 130	30	
Acetone	ND	5.0	72	96	28.6				70 - 130	30	
Acrylonitrile	ND	5.0	82	109	28.3				70 - 130	30	
Benzene	ND	0.70	94	106	12.0				70 - 130	30	
Bromobenzene	ND	1.0	98	108	9.7				70 - 130	30	
Bromochloromethane	ND	1.0	90	109	19.1				70 - 130	30	
Bromodichloromethane	ND	0.50	91	107	16.2				70 - 130	30	
Bromoform	ND	1.0	87	109	22.4				70 - 130	30	
Bromomethane	ND	1.0	111	128	14.2				70 - 130	30	
Carbon Disulfide	ND	1.0	110	120	8.7				70 - 130	30	
Carbon tetrachloride	ND	1.0	95	107	11.9				70 - 130	30	
Chlorobenzene	ND	1.0	95	106	10.9				70 - 130	30	
Chloroethane	ND	1.0	111	121	8.6				70 - 130	30	
Chloroform	ND	1.0	90	105	15.4				70 - 130	30	
Chloromethane	ND	1.0	117	130	10.5				70 - 130	30	
cis-1,2-Dichloroethene	ND	1.0	89	105	16.5				70 - 130	30	

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
cis-1,3-Dichloropropene	ND	0.40	83	100	18.6				70 - 130	30	
Dibromochloromethane	ND	0.50	92	110	17.8				70 - 130	30	
Dibromomethane	ND	1.0	85	103	19.1				70 - 130	30	
Dichlorodifluoromethane	ND	1.0	177	190	7.1				70 - 130	30	I.
Ethylbenzene	ND	1.0	100	111	10.4				70 - 130	30	
Hexachlorobutadiene	ND	0.40	97	104	7.0				70 - 130	30	
Isopropylbenzene	ND	1.0	101	106	4.8				70 - 130	30	
m&p-Xylene	ND	1.0	102	114	11.1				70 - 130	30	
Methyl ethyl ketone	ND	5.0	82	111	30.1				70 - 130	30	
Methyl t-butyl ether (MTBE)	ND	1.0	85	111	26.5				70 - 130	30	
Methylene chloride	ND	1.0	85	99	15.2				70 - 130	30	
Naphthalene	ND	1.0	90	106	16.3				70 - 130	30	
n-Butylbenzene	ND	1.0	91	103	12.4				70 - 130	30	
n-Propylbenzene	ND	1.0	97	104	7.0				70 - 130	30	
o-Xylene	ND	1.0	98	111	12.4				70 - 130	30	
p-Isopropyltoluene	ND	1.0	97	108	10.7				70 - 130	30	
sec-Butylbenzene	ND	1.0	97	107	9.8				70 - 130	30	
Styrene	ND	1.0	96	111	14.5				70 - 130	30	
tert-Butylbenzene	ND	1.0	97	106	8.9				70 - 130	30	
Tetrachloroethene	ND	1.0	97	110	12.6				70 - 130	30	
Tetrahydrofuran (THF)	ND	2.5	74	98	27.9				70 - 130	30	
Toluene	ND	1.0	94	107	12.9				70 - 130	30	
trans-1,2-Dichloroethene	ND	1.0	99	112	12.3				70 - 130	30	
trans-1,3-Dichloropropene	ND	0.40	84	101	18.4				70 - 130	30	
trans-1,4-dichloro-2-butene	ND	5.0	79	94	17.3				70 - 130	30	
Trichloroethene	ND	1.0	99	109	9.6				70 - 130	30	
Trichlorofluoromethane	ND	1.0	103	111	7.5				70 - 130	30	
Trichlorotrifluoroethane	ND	1.0	99	109	9.6				70 - 130	30	
Vinyl chloride	ND	1.0	117	130	10.5				70 - 130	30	
% 1,2-dichlorobenzene-d4	99	%	99	99	0.0				70 - 130	30	
% Bromofluorobenzene	93	%	97	101	4.0				70 - 130	30	
% Dibromofluoromethane	101	%	94	98	4.2				70 - 130	30	
% Toluene-d8	99	%	99	100	1.0				70 - 130	30	
Comment:											

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%.

QA/QC Batch 339748 (ug/L), QC Sample No: BK88734 (BK87136, BK87137)

Volatiles - Ground Water

1,1,1,2-Tetrachloroethane	ND	1.0	1	05 1	104	1.0	121	121	0.0	70 - 130	30	
1,1,1-Trichloroethane	ND	1.0	Q	97 1	102	5.0	131	130	0.8	70 - 130	30	m
1,1,2,2-Tetrachloroethane	ND	0.50	1	03 1	102	1.0	114	114	0.0	70 - 130	30	
1,1,2-Trichloroethane	ND	1.0	1	00	99	1.0	114	120	5.1	70 - 130	30	
1,1-Dichloroethane	ND	1.0	Q	97 1	100	3.0	123	122	0.8	70 - 130	30	
1,1-Dichloroethene	ND	1.0	Q	98 1	104	5.9	125	127	1.6	70 - 130	30	
1,1-Dichloropropene	ND	1.0	Q	99 1	104	4.9	114	122	6.8	70 - 130	30	
1,2,3-Trichlorobenzene	ND	1.0	1	11 1	100	10.4	78	100	24.7	70 - 130	30	
1,2,3-Trichloropropane	ND	1.0	1	03 1	104	1.0	114	118	3.4	70 - 130	30	
1,2,4-Trichlorobenzene	ND	1.0	1	07 1	103	3.8	78	99	23.7	70 - 130	30	
1,2,4-Trimethylbenzene	ND	1.0	Q	98 1	102	4.0	97	108	10.7	70 - 130	30	
1,2-Dibromo-3-chloropropane	ND	1.0	1	08 1	104	3.8	114	116	1.7	70 - 130	30	
1,2-Dibromoethane	ND	1.0	1	03 1	105	1.9	118	120	1.7	70 - 130	30	
1,2-Dichlorobenzene	ND	1.0	1	01 1	101	0.0	98	108	9.7	70 - 130	30	

SDG I.D.: GBK87132

Darameter	Blank	Blk Rl	LCS	LCSD		MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
	ND	1.0	4.00			101	100		70 400	2	
1,2-Dichloroethane		1.0	100	98	2.0	121	123	1.6	70 - 130	30	
1,2-Dichloropropane	ND	1.0	97	98	1.0	115	118	2.6	70 - 130	30	
1,3,5-1 rimetnyibenzene		1.0	97	100	3.0	96	108	11.8	70 - 130	30	
1,3-Dichloropenzene		1.0	99 100	100	1.0	91	103	12.4	70 - 130	30	
1,3-Dichlenshangana		1.0	103	103	0.0	119	119	0.0	70 - 130	30	
1,4-Dichloropenzene		1.0	100	101	1.0	93	103	10.2	70 - 130	30	
2,2-Dichloropropane	ND	1.0	92	105	13.2	111	110	0.9	70 - 130	30	
2-Chiorotoluene	ND	1.0	100	100	0.0	100	109	8.6	70 - 130	30	
2-Hexanone	ND	5.0	96	96	0.0	107	110	2.8	70 - 130	30	
2-isopropyltoluene	ND	1.0	97	99	2.0	97	105	1.9	70 - 130	30	
4-Chlorotoluene	ND	1.0	100	100	0.0	94	105	11.1	70 - 130	30	
4-Methyl-2-pentanone	ND	5.0	98	97	1.0	110	114	3.6	70 - 130	30	
Acetone	ND	5.0	84	96	13.3	115	133	14.5	/0 - 130	30	m
Acrylonitrile	ND	5.0	100	104	3.9	116	118	1./	70 - 130	30	
Benzene	ND	0.70	99	99	0.0	11/	121	3.4	70 - 130	30	
Bromobenzene	ND	1.0	101	100	1.0	106	113	6.4	70 - 130	30	
Bromochloromethane	ND	1.0	104	101	2.9	119	121	1.7	70 - 130	30	
Bromodichloromethane	ND	0.50	103	101	2.0	122	127	4.0	70 - 130	30	
Bromotorm	ND	1.0	109	108	0.9	117	118	0.9	70 - 130	30	
Bromomethane	ND	1.0	148	155	4.6	157	188	18.0	70 - 130	30	l,m
Carbon Disulfide	ND	1.0	100	105	4.9	120	127	5.7	70 - 130	30	
Carbon tetrachloride	ND	1.0	97	104	7.0	122	127	4.0	70 - 130	30	
Chlorobenzene	ND	1.0	100	101	1.0	110	113	2.7	70 - 130	30	
Chloroethane	ND	1.0	108	115	6.3	139	138	0.7	70 - 130	30	m
Chloroform	ND	1.0	97	98	1.0	121	122	0.8	70 - 130	30	
Chloromethane	ND	1.0	118	125	5.8	154	157	1.9	70 - 130	30	m
cis-1,2-Dichloroethene	ND	1.0	83	99	17.6	116	118	1.7	70 - 130	30	
cis-1,3-Dichloropropene	ND	0.40	96	98	2.1	110	114	3.6	70 - 130	30	
Dibromochloromethane	ND	0.50	106	106	0.0	120	122	1.7	70 - 130	30	
Dibromomethane	ND	1.0	101	99	2.0	115	120	4.3	70 - 130	30	
Dichlorodifluoromethane	ND	1.0	133	147	10.0	148	163	9.6	70 - 130	30	l,m
Ethylbenzene	ND	1.0	102	105	2.9	110	117	6.2	70 - 130	30	
Hexachlorobutadiene	ND	0.40	96	101	5.1	74	99	28.9	70 - 130	30	
Isopropylbenzene	ND	1.0	97	102	5.0	100	110	9.5	70 - 130	30	
m&p-Xylene	ND	1.0	101	104	2.9	105	112	6.5	70 - 130	30	
Methyl ethyl ketone	ND	5.0	91	104	13.3	117	115	1.7	70 - 130	30	
Methyl t-butyl ether (MTBE)	ND	1.0	101	99	2.0	117	119	1.7	70 - 130	30	
Methylene chloride	ND	1.0	92	91	1.1	109	109	0.0	70 - 130	30	
Naphthalene	ND	1.0	115	103	11.0	96	116	18.9	70 - 130	30	
n-Butylbenzene	ND	1.0	96	102	6.1	75	98	26.6	70 - 130	30	
n-Propylbenzene	ND	1.0	96	98	2.1	89	104	15.5	70 - 130	30	
o-Xylene	ND	1.0	101	104	2.9	111	115	3.5	70 - 130	30	
p-Isopropyltoluene	ND	1.0	99	103	4.0	86	103	18.0	70 - 130	30	
sec-Butylbenzene	ND	1.0	98	104	5.9	93	108	14.9	70 - 130	30	
Styrene	ND	1.0	103	104	1.0	111	114	2.7	70 - 130	30	
tert-Butylbenzene	ND	1.0	95	100	5.1	101	111	9.4	70 - 130	30	
Tetrachloroethene	ND	1.0	98	103	5.0	95	111	15.5	70 - 130	30	
Tetrahydrofuran (THF)	ND	2.5	97	98	1.0	112	114	1.8	70 - 130	30	
Toluene	ND	1.0	98	99	1.0	112	118	5.2	70 - 130	30	
trans-1,2-Dichloroethene	ND	1.0	97	101	4.0	115	120	4.3	70 - 130	30	
trans-1,3-Dichloropropene	ND	0.40	100	100	0.0	113	119	5.2	70 - 130	30	
trans-1,4-dichloro-2-butene	ND	5.0	107	108	0.9	101	105	3.9	70 - 130	30	
Trichloroethene	ND	1.0	99	101	2.0	114	120	5.1	70 - 130	30	

SDG I.D.: GBK87132

r

r

r

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
Trichlorofluoromethane	ND	1.0	108	117	8.0	138	145	4.9	70 - 130	30	m
Trichlorotrifluoroethane	ND	1.0	95	104	9.0	95	109	13.7	70 - 130	30	
Vinyl chloride	ND	1.0	120	129	7.2	156	159	1.9	70 - 130	30	m
% 1,2-dichlorobenzene-d4	101	%	100	100	0.0	98	101	3.0	70 - 130	30	
% Bromofluorobenzene	94	%	100	101	1.0	102	103	1.0	70 - 130	30	
% Dibromofluoromethane	98	%	100	101	1.0	99	99	0.0	70 - 130	30	
% Toluene-d8	99	%	100	100	0.0	99	102	3.0	70 - 130	30	
Comment:											

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%.

QA/QC Batch 339293 (ug/L), QC Sample No: BK88734 (BK87133, BK87134, BK87135, BK87136, BK87137)

Semivolatiles by SIM - Ground Water

2-Methylnaphthalene	ND	0.05
Acenaphthene	ND	0.05
Acenaphthylene	ND	0.04
Anthracene	ND	0.02
Benz(a)anthracene	ND	0.02
Benzo(a)pyrene	ND	0.02
Benzo(b)fluoranthene	ND	0.02
Benzo(ghi)perylene	ND	0.02
Benzo(k)fluoranthene	ND	0.02
Chrysene	ND	0.02
Dibenz(a,h)anthracene	ND	0.01
Fluoranthene	ND	0.04
Fluorene	ND	0.05
Indeno(1,2,3-cd)pyrene	ND	0.02
Naphthalene	ND	0.05
Phenanthrene	ND	0.05
Pyrene	ND	0.02
% 2-Fluorobiphenyl	64	%
% Nitrobenzene-d5	42	%
% Terphenyl-d14	84	%
Comment:		

Additional 8270 criteria:20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

QA/QC Batch 339553 (ug/L), QC Sample No: BK89477 (BK87135)

Polychlorinated Biphenyls - Ground Water

	-						
PCB-1016	ND	0.25	79	74	6.5	40 - 140	20
PCB-1221	ND	0.25				40 - 140	20
PCB-1232	ND	0.25				40 - 140	20
PCB-1242	ND	0.25				40 - 140	20
PCB-1248	ND	0.25				40 - 140	20
PCB-1254	ND	0.25				40 - 140	20
PCB-1260	ND	0.25	92	90	2.2	40 - 140	20
PCB-1262	ND	0.25				40 - 140	20
PCB-1268	ND	0.25				40 - 140	20
% DCBP (Surrogate Rec)	147	%	80	84	4.9	30 - 150	20
% TCMX (Surrogate Rec)	125	%	71	64	10.4	30 - 150	20
Comment:							

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

I = This parameter is outside laboratory LCS/LCSD specified recovery limits.

m = This parameter is outside laboratory MS/MSD specified recovery limits.

r = This parameter is outside laboratory RPD specified recovery limits.

										%	%	
		Blk	l	LCS	LCSD	LCS	MS	MSD	MS	Rec	RPD	
Parameter	Blank	RL		%	%	RPD	%	%	RPD	Limits	Limits	

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

by this

Phyllis/Shiller, Laboratory Director April 01, 2016

Friday, April 01, 2016

BK87137

Criteria: CT: GWP, RV

\$8260GWR

1,2-Dibromoethane

Sample Criteria Exceedences Report

GBK87132 - FO

State:	СТ						RI	Analysis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
BK87133	\$8260GWR	Acrylonitrile	CT / VOLATILE ORGANIC COMPOUND / GWPC (ug/L)	ND	5.0	0.5	0.5	ug/L
BK87133	\$8260GWR	1,2-Dibromoethane	CT / VOLATILE ORGANIC COMPOUND / GWPC (ug/L)	ND	1.0	0.05	0.05	ug/L
BK87134	\$8260GWR	Acrylonitrile	CT / VOLATILE ORGANIC COMPOUND / GWPC (ug/L)	ND	5.0	0.5	0.5	ug/L
BK87134	\$8260GWR	1,2-Dibromoethane	CT / VOLATILE ORGANIC COMPOUND / GWPC (ug/L)	ND	1.0	0.05	0.05	ug/L
BK87135	\$8260GWR	Acrylonitrile	CT / VOLATILE ORGANIC COMPOUND / GWPC (ug/L)	ND	5.0	0.5	0.5	ug/L
BK87135	\$8260GWR	1,2-Dibromoethane	CT / VOLATILE ORGANIC COMPOUND / GWPC (ug/L)	ND	1.0	0.05	0.05	ug/L
BK87136	\$8260GWR	Acrylonitrile	CT / VOLATILE ORGANIC COMPOUND / GWPC (ug/L)	ND	5.0	0.5	0.5	ug/L
BK87136	\$8260GWR	1,2-Dibromoethane	CT / VOLATILE ORGANIC COMPOUND / GWPC (ug/L)	ND	1.0	0.05	0.05	ug/L
BK87137	\$8260GWR	Acrylonitrile	CT / VOLATILE ORGANIC COMPOUND / GWPC (ug/L)	ND	5.0	0.5	0.5	ug/L

CT / VOLATILE ORGANIC COMPOUND / GWPC (ug/L)

ND

1.0

0.05

0.05

ug/L

Phoenix Laboratories does not assume responsibility for the data contained in this report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

Reasonable Confidence Protocol Laboratory Analysis QA/QC Certification Form

Laboratory Name: Phoenix Environmental Labs, Inc. Client: Fuss & O'Neill, Inc.										
Proje	ect Locatio	on: FORM		DEN HOSPI	TAL Projec	t Number:				
Labo	oratory Sai	mple ID(s):	BK87132	, BK87133, I	BK87134, BK8	87135, BK87 [.]	136, BK8	37137		
Sam	pling Date	e(s): 3/23/2	2016							
RCP	Methods	Used:								
☐ 13	311/1312	✔ 6010	7000	7196	✔ 7470/7471	8081	Г	EPH		TO15
✓ 80)82	8151	✔ 8260	✓ 8270	ETPH	9010/90	12	VPH		
1.	For each ar specified Q any criteria method-spe	nalytical met A/QC perfor falling outsion ecific Reason	hod referenc mance criter de of accepta nable Confid	ed in this lab ia followed, ir able guideline ence Protoco	oratory report p ncluding the req es, as specified I documents?	ackage, were uirement to ex in the CT DEF	all ¢plain	✔ Yes	□ No	
1a.	1a. Were the method specified preservation and holding time requirements met? Image: Vestigation of the specified preservation and holding time requirements met?									
1b.	1b. EPH and VPH methods only: Was the VPH or EPH method conducted without significant modifications (see section 11.3 of respective RCP methods) □ Yes □ No ☑ NA								✓ NA	
2.	Were all sa described c	amples receir on the assoc	ved by the la iated Chain-o	boratory in a of-Custody do	condition consist ocument(s)?	stent with that	l	✔ Yes	🗌 No	
3.	Were samp	oles received	l at an appro	priate temper	ature (< 6 Degr	ees C)?		✔ Yes	🗌 No	□ NA
4.	Were all Q/ Protocol do	A/QC perforr	nance criteri heived? See	a specified in Sections: SV	the Reasonabl OASIM Narratio	e Confidence on, VOA Narra	ition.	🗌 Yes	✓ No	
5a.	5a. Were reporting limits specified or referenced on the chain-of-custody? ✓ Yes □ No									
5b.	Were these	e reporting li	nits met?					🗆 Yes	✓ No	□ NA
6.	For each ar results repo presented i	nalytical met orted for all c in the Reaso	hod referenc onstituents i nable Confid	ed in this lab dentified in th ence Protoco	oratory report p le method-spec bl documents?	ackage, were ific analyte list	s	🗌 Yes	✓ No	□ NA
7.	Are project-	-specific mat	trix spikes an	d laboratory	duplicates inclu	ded in the data	a set?	□ Yes	✓ No	□ NA

Note: For all questions to which the response was "No" (with the exception of question #5a, #7), additional information must be provided in an attached narrative. If the answer to question #1, #1A or 1B is "No", the data package does not meet the requirements for "Reasonable Confidence".

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete.

Authorized Signature:

Ethan See

Date: Friday, April 01, 2016

Printed Name: Ethan Lee

Position: Project Manager

Nov 2007

Certification Report

April 01, 2016

SDG I.D.: GBK87132

ICP Metals Narration

Were all QA/QC performance criteria specified in the analytical method achieved? Yes.

Instrument:

ARCOS 03/25/16 13:15 Laura Kinnin, Chemist 03/25/16

BK87133, BK87134, BK87135, BK87136, BK87137

The linear range is defined daily by the calibration range. The following Initial Calibration Verification (ICV) compounds did not meet criteria: None. The following Continuing Calibration Verification (CCV) compounds did not meet criteria: None. The following ICP Interference Check (ICSAB) compounds did not meet criteria: None.

SDG Comments

Metals Analysis:

The client requested a shorter list of elements than the 6010 RCP list. Only the RCRA 8 Metals are reported as requested on the chain of custody.

8270 Semi-volatile Organics:

The client requested a short list for 8270 RCP Semivolatile. Only the PAH constituents are reported as requested on the chain-ofcustody.

Volatile 8260 analysis:

The reporting level for Acrylonitrile is above the GWP criteria.

1,2-Dibromoethane does not meet GWP criteria, this compound is analyzed by GC/ECD to achieve this criteria.

Mercury Narration

Were all QA/QC performance criteria specified in the analytical method achieved? Yes.

Instrument:

MERLIN 03/28/16 08:44 Rick Schweitzer, Tom Cowles, Megan Macomber, Chemist 0

BK87133, BK87134, BK87135, BK87136, BK87137 The following Initial Calibration Verification (ICV) compounds did not meet criteria: None. The following Continuing Calibration Verification (CCV) compounds did not meet criteria: None.

QC (Batch Specific):

Batch 339697 (BK87085)

BK87133, BK87134, BK87135

All LCS recoveries were within 70 - 130 with the following exceptions: None.

Batch 339698 (BK88734)

BK87136, BK87137

All LCS recoveries were within 70 - 130 with the following exceptions: None.

PCB Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument:

RCP Certification Report

April 01, 2016

SDG I.D.: GBK87132

PCB Narration

BK87135

AU-ECD1 03/28/16-1

Adam Werner, Chemist 03/28/16

The initial calibration (PC0321AI) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC0321BI) RSD for the compound list was less than 20% except for the following compounds: None. The continuing calibration %D for the compound list was less than 15% except for the following compounds:None.

QC (Batch Specific):

Batch 339553 (BK89477)

BK87135

All LCS recoveries were within 40 - 140 with the following exceptions: None.

All LCSD recoveries were within 40 - 140 with the following exceptions: None.

All LCS/LCSD RPDs were less than 20% with the following exceptions: None.

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

SVOASIM Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? No.

QC Batch 339293 (Samples: BK87133, BK87134, BK87135, BK87136, BK87137): -----

The LCS/LCSD RPD exceeds the method criteria for one or more analytes, but these analytes were not reported in the sample(s) so no variability is suspected. (2-Methylnaphthalene, Naphthalene)

The LCS/LCSD RPD exceeds the method criteria for one or more surrogates, therefore there may be variability in the reported result. (% Nitrobenzene-d5)

Instrument:

CHEM04 03/25/16-1

Damien Drobinski, Chemist 03/25/16

BK87133, BK87134, BK87135, BK87136, BK87137

The DDT breakdown and pentachlorophenol & benzidine peak tailing were evaluated in the DFTPP tune and were found to be in control.

In the event that lower detection levels were requested, the samples may have been analyzed by selective ion monitoring (SIM) mode.

If PAH/base neutral were requested, Phoenix utilized a method that contained a shortened list, so some of the compounds in the narrative may be non-applicable.

Initial Calibration Verification (CHEM04/SIM_0308): 94% of target compounds met criteria. The following compounds had %RSDs >20%: None. The following compounds did not meet recommended response factors: None.

The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM04/0325_02A-SIM_0308): Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None. 96% of target compounds met criteria.

RCP Certification Report

April 01, 2016

SDG I.D.: GBK87132

SVOASIM Narration

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet minimum response factors: None.

QC (Batch Specific):

Batch 339293 (BK88734)

BK87133, BK87134, BK87135, BK87136, BK87137

All LCS recoveries were within 30 - 130 with the following exceptions: None.

All LCSD recoveries were within 30 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 20% with the following exceptions: % Nitrobenzene-d5(25.8%), 2-Methylnaphthalene(26.8%), Naphthalene(32.3%)

VOA Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? No.

QC Batch 339748 (Samples: BK87136, BK87137): -----

The QC recovery for one or more analytes is above the upper range but were not reported in the sample(s), therefore no significant bias is suspected. (Bromomethane, Dichlorodifluoromethane)

QC Batch 340439 (Samples: BK87132, BK87133, BK87134, BK87135): -----

The LCS and/or the LCSD recovery is above the upper range for one or more analytes that were not reported in the sample(s), therefore no significant bias is suspected. (Dichlorodifluoromethane)

The LCS/LCSD RPD exceeds method criteria for one more analytes that were not reported in the samples, therefore no sample variability is suspected. (2-Hexanone)

Instrument:

CHEM17 03/24/16-2

Michael Hahn, Chemist 03/24/16

BK87132, BK87133, BK87134, BK87135

Initial Calibration Verification (CHEM17/VT-S0323):

100% of target compounds met criteria.

The following compounds had %RSDs >20%: None.

The following compounds did not meet recommended response factors: 1,2-Dibromo-3-chloropropane 0.036 (0.05), 2-Hexanone 0.066 (0.1), 4-Methyl-2-pentanone 0.086 (0.1), Acetone 0.041 (0.1), Methyl ethyl ketone 0.057 (0.1), Tetrahydrofuran (THF) 0.043 (0.05)

The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM17/0324S27-VT-S0323):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

100% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: 1,1,2,2-Tetrachloroethane 0.291 (0.3), 1,2-Dibromo-3-chloropropane 0.034 (0.05), Acrylonitrile 0.041 (0.05), Bromoform 0.091 (0.1), Tetrahydrofuran (THF) 0.031 (0.05)

RCP Certification Report

April 01, 2016

SDG I.D.: GBK87132

VOA Narration

The following compounds did not meet minimum response factors: None.

CHEM17 03/25/16-1

Michael Hahn, Chemist 03/25/16

BK87136, BK87137

Initial Calibration Verification (CHEM17/VT-S0325):

100% of target compounds met criteria.

The following compounds had %RSDs >20%: None.

The following compounds did not meet recommended response factors: 1,2-Dibromo-3-chloropropane 0.035 (0.05), 2-Hexanone 0.061 (0.1), 4-Methyl-2-pentanone 0.081 (0.1), Acetone 0.035 (0.1), Methyl ethyl ketone 0.054 (0.1), Tetrahydrofuran (THF) 0.039 (0.05)

The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM17/0325S10-VT-S0325):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

100% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: 1,1,2,2-Tetrachloroethane 0.283 (0.3), 1,2-Dibromo-3-chloropropane 0.032 (0.05), Acrylonitrile 0.047 (0.05), Tetrahydrofuran (THF) 0.037 (0.05)

The following compounds did not meet minimum response factors: None.

QC (Batch Specific):

Batch 339748 (BK88734)

BK87136, BK87137

All LCS recoveries were within 70 - 130 with the following exceptions: Bromomethane(148%), Dichlorodifluoromethane(133%) All LCSD recoveries were within 70 - 130 with the following exceptions: Bromomethane(155%), Dichlorodifluoromethane(147%) All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

Batch 340439 (BK87045)

BK87132, BK87133, BK87134, BK87135

All LCS recoveries were within 70 - 130 with the following exceptions: Dichlorodifluoromethane(177%) All LCSD recoveries were within 70 - 130 with the following exceptions: Dichlorodifluoromethane(190%) All LCS/LCSD RPDs were less than 30% with the following exceptions: 2-Hexanone(31.1%) A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

Temperature Narration

The samples were received at 5C with cooling initiated. (Note acceptance criteria is above freezing up to 6° C)

Wednesday, May 11, 2016

Attn: Ms. Stefanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Project ID: FORMER MERIDEN HOSPITAL Sample ID#s: BN25698, BN25700, BN25702 - BN25708

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

Alille.

Phyllis/Shiller Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #MA-CT-007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

Analysis Report

FOR: Attn: Ms. Stefanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

May 11, 2016

Sample Informa	ation	Custody Inform	nation	Date	<u>Time</u>
Matrix:	SOIL	Collected by:	DC	05/04/16	9:40
Location Code:	F&O-PCB	Received by:	LB	05/05/16	9:00
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	2012032.C40				

Laboratory Data

SDG ID: GBN25698 Phoenix ID: BN25698

Project ID: FORMER MERIDEN HOSPITAL

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	95		%		05/05/16	W	SW846-%Solid
Soil Extraction SVOA PAH	Completed				05/05/16	BJ/CKV	SW3545A
Extraction of CT ETPH	Completed				05/05/16	JJ/CK	SW3545A
Extraction for PCB	Completed				05/05/16	QQ/I	SW3540C
TPH by GC (Extractab	le Products)					
Ext. Petroleum HC	ND	51	mg/Kg	1	05/06/16	JRB	CTETPH 8015D
Identification	ND		mg/Kg	1	05/06/16	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	64		%	1	05/06/16	JRB	50 - 150 %
PCB (Soxhlet SW3540	<u>)C)</u>						
PCB-1016	ND	0.35	mg/kg	10	05/07/16	AW	SW8082A
PCB-1221	ND	0.35	mg/kg	10	05/07/16	AW	SW8082A
PCB-1232	ND	0.35	mg/kg	10	05/07/16	AW	SW8082A
PCB-1242	ND	0.35	mg/kg	10	05/07/16	AW	SW8082A
PCB-1248	ND	0.35	mg/kg	10	05/07/16	AW	SW8082A
PCB-1254	ND	0.35	mg/kg	10	05/07/16	AW	SW8082A
PCB-1260	ND	0.35	mg/kg	10	05/07/16	AW	SW8082A
PCB-1262	ND	0.35	mg/kg	10	05/07/16	AW	SW8082A
PCB-1268	ND	0.35	mg/kg	10	05/07/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	74		%	10	05/07/16	AW	30 - 150 %
% TCMX	85		%	10	05/07/16	AW	30 - 150 %
Polynuclear Aromatic	HC						
2-Methylnaphthalene	ND	240	ug/Kg	1	05/06/16	DD	SW8270D
Acenaphthene	ND	240	ug/Kg	1	05/06/16	DD	SW8270D

Project ID: FORMER MERIDEN HOSPITAL Client ID: 1176160504-40

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Acenaphthylene	ND	240	ug/Kg	1	05/06/16	DD	SW8270D
Anthracene	ND	240	ug/Kg	1	05/06/16	DD	SW8270D
Benz(a)anthracene	ND	240	ug/Kg	1	05/06/16	DD	SW8270D
Benzo(a)pyrene	ND	240	ug/Kg	1	05/06/16	DD	SW8270D
Benzo(b)fluoranthene	ND	240	ug/Kg	1	05/06/16	DD	SW8270D
Benzo(ghi)perylene	ND	240	ug/Kg	1	05/06/16	DD	SW8270D
Benzo(k)fluoranthene	ND	240	ug/Kg	1	05/06/16	DD	SW8270D
Chrysene	ND	240	ug/Kg	1	05/06/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	240	ug/Kg	1	05/06/16	DD	SW8270D
Fluoranthene	ND	240	ug/Kg	1	05/06/16	DD	SW8270D
Fluorene	ND	240	ug/Kg	1	05/06/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	240	ug/Kg	1	05/06/16	DD	SW8270D
Naphthalene	ND	240	ug/Kg	1	05/06/16	DD	SW8270D
Phenanthrene	ND	240	ug/Kg	1	05/06/16	DD	SW8270D
Pyrene	ND	240	ug/Kg	1	05/06/16	DD	SW8270D
QA/QC Surrogates							
% 2-Fluorobiphenyl	75		%	1	05/06/16	DD	30 - 130 %
% Nitrobenzene-d5	80		%	1	05/06/16	DD	30 - 130 %
% Terphenyl-d14	66		%	1	05/06/16	DD	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis, Shiller, Laboratory Director May 11, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

FOR: Attn: Ms. Stefanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

May 11, 2016

Sample Informa	ation	Custody Inform	nation	<u>Date</u>	<u>Time</u>
Matrix:	SOIL	Collected by:	DC	05/04/16	10:15
Location Code:	F&O-PCB	Received by:	LB	05/05/16	9:00
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	2012032.C40				

Laboratory Data

SDG ID: GBN25698 Phoenix ID: BN25700

Project ID: FORMER MERIDEN HOSPITAL

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	90		%		05/05/16	W	SW846-%Solid
Soil Extraction SVOA PAH	Completed				05/05/16	BJ/CKV	SW3545A
Extraction of CT ETPH	Completed				05/05/16	JJ/CK	SW3545A
Extraction for PCB	Completed				05/05/16	QQ/I	SW3540C
TPH by GC (Extractal	ole Products	<u>)</u>					
Ext. Petroleum HC	ND	54	mg/Kg	1	05/06/16	JRB	CTETPH 8015D
Identification	ND		mg/Kg	1	05/06/16	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	60		%	1	05/06/16	JRB	50 - 150 %
PCB (Soxhlet SW354	<u>0C)</u>						
PCB-1016	ND	0.36	mg/kg	10	05/07/16	AW	SW8082A
PCB-1221	ND	0.36	mg/kg	10	05/07/16	AW	SW8082A
PCB-1232	ND	0.36	mg/kg	10	05/07/16	AW	SW8082A
PCB-1242	ND	0.36	mg/kg	10	05/07/16	AW	SW8082A
PCB-1248	ND	0.36	mg/kg	10	05/07/16	AW	SW8082A
PCB-1254	ND	0.36	mg/kg	10	05/07/16	AW	SW8082A
PCB-1260	ND	0.36	mg/kg	10	05/07/16	AW	SW8082A
PCB-1262	ND	0.36	mg/kg	10	05/07/16	AW	SW8082A
PCB-1268	ND	0.36	mg/kg	10	05/07/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	98		%	10	05/07/16	AW	30 - 150 %
% TCMX	60		%	10	05/07/16	AW	30 - 150 %
Polynuclear Aromatic	<u>: HC</u>						
2-Methylnaphthalene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Acenaphthene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D

Project ID: FORMER MERIDEN HOSPITAL Client ID: 1176160504-42

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
Acenaphthylene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Anthracene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Benz(a)anthracene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Benzo(a)pyrene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Benzo(b)fluoranthene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Benzo(ghi)perylene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Benzo(k)fluoranthene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Chrysene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Fluoranthene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Fluorene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Naphthalene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Phenanthrene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Pyrene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
QA/QC Surrogates							
% 2-Fluorobiphenyl	64		%	1	05/06/16	DD	30 - 130 %
% Nitrobenzene-d5	74		%	1	05/06/16	DD	30 - 130 %
% Terphenyl-d14	60		%	1	05/06/16	DD	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis, Shiller, Laboratory Director May 11, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

FOR: Attn: Ms. Stefanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

May 11, 2016

Sample Information		Custody Inform	nation	<u>Date</u>	<u>Time</u>	
Matrix:	CONCRETE	Collected by:	DC	05/04/16	10:30	
Location Code:	F&O-PCB	Received by:	LB	05/05/16	9:00	
Rush Request:	Standard	Analyzed by:	see "By" below			
P.O.#:	2012032.C40					

Laboratory Data

SDG ID: GBN25698 Phoenix ID: BN25702

Project ID: FORMER MERIDEN HOSPITAL

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	96		%		05/05/16	W	SW846-%Solid
Extraction of CT ETPH	Completed				05/05/16	JJ/CK	SW3545A
Extraction for PCB	Completed				05/05/16	QQ/I	SW3540C
TPH by GC (Extracta	ble Products	;)					
Ext. Petroleum HC	340	52	mg/Kg	1	05/09/16	JRB	CTETPH 8015D
Identification	**		mg/Kg	1	05/09/16	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	78		%	1	05/09/16	JRB	50 - 150 %
PCB (Soxhlet SW354	<u>(0C)</u>						
PCB-1016	ND	0.35	mg/kg	10	05/06/16	AW	SW8082A
PCB-1221	ND	0.35	mg/kg	10	05/06/16	AW	SW8082A
PCB-1232	ND	0.35	mg/kg	10	05/06/16	AW	SW8082A
PCB-1242	ND	0.35	mg/kg	10	05/06/16	AW	SW8082A
PCB-1248	ND	0.35	mg/kg	10	05/06/16	AW	SW8082A
PCB-1254	ND	0.35	mg/kg	10	05/06/16	AW	SW8082A
PCB-1260	ND	0.35	mg/kg	10	05/06/16	AW	SW8082A
PCB-1262	ND	0.35	mg/kg	10	05/06/16	AW	SW8082A
PCB-1268	ND	0.35	mg/kg	10	05/06/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	79		%	10	05/06/16	AW	30 - 150 %
% TCMX	82		%	10	05/06/16	AW	30 - 150 %

Project ID: FORMER MERIDEN HOSPITAL Phoenix I.D.: BN25702 Client ID: 1176160504-44 RL/ Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

TPH Comment:

**Petroleum hydrocarbon chromatogram contains a multicomponent hydrocarbon distribution in the range of C9 to C36. The sample was quantitated against a C9-C36 alkane hydrocarbon standard.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director May 11, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

May 11, 2016

FOR: Attn: Ms. Stefanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample Information

Matrix:	CONCRETE
Location Code:	F&O-PCB
Rush Request:	Standard
P.O.#:	2012032.C40

Custody InformationCollected by:DCReceived by:LBAnalyzed by:see "By" below

Laboratory Data

SDG ID: GBN25698 Phoenix ID: BN25703

Time

11:00

9:00

Date

05/04/16

05/05/16

Project ID: FORMER MERIDEN HOSPITAL

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Silver	59.7	3.5	mg/Kg	10	05/07/16	LK	SW6010C
Arsenic	1.7	0.7	mg/Kg	1	05/06/16	EK	SW6010C
Barium	67.2	0.35	mg/Kg	1	05/06/16	ΕK	SW6010C
Cadmium	0.52	0.35	mg/Kg	1	05/06/16	EK	SW6010C
Chromium	13.8	0.35	mg/Kg	1	05/06/16	EK	SW6010C
Mercury	0.70	0.03	mg/Kg	1	05/06/16	RS	SW7471B
Lead	4.00	0.35	mg/Kg	1	05/06/16	EK	SW6010C
Selenium	< 1.4	1.4	mg/Kg	1	05/06/16	LK	SW6010C
Percent Solid	93		%		05/05/16	W	SW846-%Solid
Mercury Digestion	Completed				05/06/16	W/W	SW7471B
Extraction for PCB	Completed				05/05/16	QQ/I	SW3540C
Total Metals Digest	Completed				05/05/16	G/AG	SW3050B
PCB (Soxhlet SW35	40C)						
PCB-1016	ND	0.35	mg/kg	10	05/06/16	AW	SW8082A
PCB-1221	ND	0.35	mg/kg	10	05/06/16	AW	SW8082A
PCB-1232	ND	0.35	mg/kg	10	05/06/16	AW	SW8082A
PCB-1242	ND	0.35	mg/kg	10	05/06/16	AW	SW8082A
PCB-1248	ND	0.35	mg/kg	10	05/06/16	AW	SW8082A
PCB-1254	ND	0.35	mg/kg	10	05/06/16	AW	SW8082A
PCB-1260	ND	0.35	mg/kg	10	05/06/16	AW	SW8082A
PCB-1262	ND	0.35	mg/kg	10	05/06/16	AW	SW8082A
PCB-1268	ND	0.35	mg/kg	10	05/06/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	85		%	10	05/06/16	AW	30 - 150 %
% TCMX	82		%	10	05/06/16	AW	30 - 150 %

Project ID: FORMER MERIDEN HOSPITAL Phoenix I.D.: BN25703 Client ID: 1176160504-45 RL/ Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director May 11, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

FOR: Attn: Ms. Stefanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

May 11, 2016

Sample Information		Custody Inform	Custody Information			
Matrix:	CONCRETE	Collected by:	DC	05/04/16	11:15	
Location Code:	F&O-PCB	Received by:	LB	05/05/16	9:00	
Rush Request:	Standard	Analyzed by:	see "By" below			
P.O.#:	2012032.C40					

Laboratory Data

SDG ID: GBN25698 Phoenix ID: BN25704

Project ID: FORMER MERIDEN HOSPITAL

Deremeter	Popult	RL/	Lloito	Dilution	Data/Tima	D./	Poforonoo
Falallelel	Result	FQL	UTIILS	Dilution	Date/Time	Бу	Reference
Percent Solid	97		%		05/05/16	W	SW846-%Solid
Extraction of CT ETPH	Completed				05/05/16	JJ/CK	SW3545A
Extraction for PCB	Completed				05/05/16	QQ/I	SW3540C
TPH by GC (Extractable	e Products	5)					
Ext. Petroleum HC	1600	100	mg/Kg	2	05/09/16	JRB	CTETPH 8015D
Identification	**		mg/Kg	2	05/09/16	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	Diluted Out		%	2	05/09/16	JRB	50 - 150 %
PCB (Soxhlet SW35400	<u>C)</u>						
PCB-1016	ND	3.3	mg/kg	100	05/06/16	AW	SW8082A
PCB-1221	ND	3.3	mg/kg	100	05/06/16	AW	SW8082A
PCB-1232	ND	3.3	mg/kg	100	05/06/16	AW	SW8082A
PCB-1242	ND	3.3	mg/kg	100	05/06/16	AW	SW8082A
PCB-1248	ND	3.3	mg/kg	100	05/06/16	AW	SW8082A
PCB-1254	12	3.3	mg/kg	100	05/06/16	AW	SW8082A
PCB-1260	ND	3.3	mg/kg	100	05/06/16	AW	SW8082A
PCB-1262	ND	3.3	mg/kg	100	05/06/16	AW	SW8082A
PCB-1268	ND	3.3	mg/kg	100	05/06/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	Diluted Out		%	100	05/06/16	AW	30 - 150 %
% TCMX	Diluted Out		%	100	05/06/16	AW	30 - 150 %

Project ID: FORMER MERIDEN HOSPITAL Phoenix I.D.: BN25704 Client ID: 1176160504-46 RL/ Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

TPH Comment:

**Petroleum hydrocarbon chromatogram contains a multicomponent hydrocarbon distribution in the range of C9 to C36. The sample was quantitated against a C9-C36 alkane hydrocarbon standard.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director May 11, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

FOR: Attn: Ms. Stefanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

May 11, 2016

Sample Information		Custody Inform	Custody Information			
Matrix:	CONCRETE	Collected by:	DC	05/04/16	11:30	
Location Code:	F&O-PCB	Received by:	LB	05/05/16	9:00	
Rush Request:	Standard	Analyzed by:	see "By" below			
P.O.#:	2012032.C40					

Laboratory Data

SDG ID: GBN25698 Phoenix ID: BN25705

Project ID: FORMER MERIDEN HOSPITAL

Deremeter	Decult	RL/	Linite	Dilution	Data/Time		Deference
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	98		%		05/05/16	W	SW846-%Solid
Extraction of CT ETPH	Completed				05/05/16	JJ/CK	SW3545A
Extraction for PCB	Completed				05/05/16	QQ/I	SW3540C
TPH by GC (Extractab	le Products	;)					
Ext. Petroleum HC	510	250	mg/Kg	5	05/09/16	JRB	CTETPH 8015D
Identification	**		mg/Kg	5	05/09/16	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	Diluted Out		%	5	05/09/16	JRB	50 - 150 %
PCB (Soxhlet SW3540	<u>()</u>						
PCB-1016	ND	0.33	mg/kg	10	05/07/16	AW	SW8082A
PCB-1221	ND	0.33	mg/kg	10	05/07/16	AW	SW8082A
PCB-1232	ND	0.33	mg/kg	10	05/07/16	AW	SW8082A
PCB-1242	ND	0.33	mg/kg	10	05/07/16	AW	SW8082A
PCB-1248	ND	0.33	mg/kg	10	05/07/16	AW	SW8082A
PCB-1254	1.1	0.33	mg/kg	10	05/07/16	AW	SW8082A
PCB-1260	ND	0.33	mg/kg	10	05/07/16	AW	SW8082A
PCB-1262	ND	0.33	mg/kg	10	05/07/16	AW	SW8082A
PCB-1268	ND	0.33	mg/kg	10	05/07/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	Interference		%	10	05/07/16	AW	30 - 150 %
% TCMX	81		%	10	05/07/16	AW	30 - 150 %

Project ID: FORMER MERIDEN HOSPITAL Phoenix I.D.: BN25705 Client ID: 1176160504-47 RL/ Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

PCB Comment:

Due to matrix interference from non target compounds in the sample, surrogate could not be reported.

TPH Comment:

**Petroleum hydrocarbon chromatogram contains a multicomponent hydrocarbon distribution in the range of C9 to C36. The sample was quantitated against a C9-C36 alkane hydrocarbon standard.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director May 11, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

FOR: Attn: Ms. Stefanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample Information		Custody Inform	nation	Date	<u>Time</u>	
Matrix:	CONCRETE	Collected by:	DC	05/04/16	11:40	
Location Code:	F&O-PCB	Received by:	LB	05/05/16	9:00	
Rush Request:	Standard	Analyzed by:	see "By" below			
P.O.#:	2012032.C40					

Laboratory Data

SDG ID: GBN25698 Phoenix ID: BN25706

Project ID: FORMER MERIDEN HOSPITAL

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
Percent Solid	98		%		05/05/16	W	SW846-%Solid
Extraction for PCB	Completed				05/05/16	QQ/I	SW3540C
PCB (Soxhlet SW354	<u>40C)</u>						
PCB-1016	ND	0.33	mg/kg	10	05/06/16	AW	SW8082A
PCB-1221	ND	0.33	mg/kg	10	05/06/16	AW	SW8082A
PCB-1232	ND	0.33	mg/kg	10	05/06/16	AW	SW8082A
PCB-1242	ND	0.33	mg/kg	10	05/06/16	AW	SW8082A
PCB-1248	ND	0.33	mg/kg	10	05/06/16	AW	SW8082A
PCB-1254	ND	0.33	mg/kg	10	05/06/16	AW	SW8082A
PCB-1260	ND	0.33	mg/kg	10	05/06/16	AW	SW8082A
PCB-1262	ND	0.33	mg/kg	10	05/06/16	AW	SW8082A
PCB-1268	ND	0.33	mg/kg	10	05/06/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	86		%	10	05/06/16	AW	30 - 150 %
% TCMX	68		%	10	05/06/16	AW	30 - 150 %
Project ID: FORMER MERIDEN HOSPITAL Phoenix I.D.: BN25706 Client ID: 1176160504-48 RL/ Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director May 11, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

FOR: Attn: Ms. Stefanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

May 11, 2016

Sample Informa	ation	Custody Inform	<u>Date</u>	<u>Time</u>	
Matrix:	CONCRETE	Collected by:	DC	05/04/16	11:50
Location Code:	F&O-PCB	Received by:	LB	05/05/16	9:00
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	2012032.C40				

Laboratory Data

SDG ID: GBN25698 Phoenix ID: BN25707

Project ID: FORMER MERIDEN HOSPITAL

Client ID: 1176160504-49

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
Percent Solid	98		%		05/05/16	W	SW846-%Solid
Extraction of CT ETPH	Completed				05/05/16	JJ/CK	SW3545A
Extraction for PCB	Completed				05/05/16	QQ/I	SW3540C
TPH by GC (Extracta	able Products	5)					
Ext. Petroleum HC	16000	1100	mg/Kg	10	05/09/16	JRB	CTETPH 8015D
Identification	**		mg/Kg	10	05/09/16	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	Diluted Out		%	10	05/09/16	JRB	50 - 150 %
PCB (Soxhlet SW354	<u>40C)</u>						
PCB-1016	ND	0.34	mg/kg	10	05/07/16	AW	SW8082A
PCB-1221	ND	0.34	mg/kg	10	05/07/16	AW	SW8082A
PCB-1232	ND	0.34	mg/kg	10	05/07/16	AW	SW8082A
PCB-1242	ND	0.34	mg/kg	10	05/07/16	AW	SW8082A
PCB-1248	ND	0.34	mg/kg	10	05/07/16	AW	SW8082A
PCB-1254	3.9	0.34	mg/kg	10	05/07/16	AW	SW8082A
PCB-1260	ND	0.34	mg/kg	10	05/07/16	AW	SW8082A
PCB-1262	ND	0.34	mg/kg	10	05/07/16	AW	SW8082A
PCB-1268	ND	0.34	mg/kg	10	05/07/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	103		%	10	05/07/16	AW	30 - 150 %
% TCMX	88		%	10	05/07/16	AW	30 - 150 %

Project ID: FORMER MERIDEN HOSPITAL Phoenix I.D.: BN25707 Client ID: 1176160504-49 RL/ Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

TPH Comment:

**Petroleum hydrocarbon chromatogram contains a multicomponent hydrocarbon distribution in the range of C9 to C36. The sample was quantitated against a C9-C36 alkane hydrocarbon standard.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director May 11, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

FOR: Attn: Ms. Stefanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

May '	11,	2016
-------	-----	------

Sample Informa	ation	Custody Inform	nation	<u>Date</u>	<u>Time</u>
Matrix:	CONCRETE	Collected by:	DC	05/04/16	12:00
Location Code:	F&O-PCB	Received by:	LB	05/05/16	9:00
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	2012032.C40				

Laboratory Data

SDG ID: GBN25698 Phoenix ID: BN25708

Project ID: FORMER MERIDEN HOSPITAL

Client ID: 1176160504-50

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
Percent Solid	98		%		05/05/16	W	SW846-%Solid
Extraction for PCB	Completed				05/05/16	QQ/I	SW3540C
PCB (Soxhlet SW354	<u>(00)</u>						
PCB-1016	ND	0.34	mg/kg	10	05/06/16	AW	SW8082A
PCB-1221	ND	0.34	mg/kg	10	05/06/16	AW	SW8082A
PCB-1232	ND	0.34	mg/kg	10	05/06/16	AW	SW8082A
PCB-1242	ND	0.34	mg/kg	10	05/06/16	AW	SW8082A
PCB-1248	ND	0.34	mg/kg	10	05/06/16	AW	SW8082A
PCB-1254	ND	0.34	mg/kg	10	05/06/16	AW	SW8082A
PCB-1260	ND	0.34	mg/kg	10	05/06/16	AW	SW8082A
PCB-1262	ND	0.34	mg/kg	10	05/06/16	AW	SW8082A
PCB-1268	ND	0.34	mg/kg	10	05/06/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	93		%	10	05/06/16	AW	30 - 150 %
% TCMX	81		%	10	05/06/16	AW	30 - 150 %

Project ID: FORMER MERIDEN HOSPITAL Phoenix I.D.: BN25708 Client ID: 1176160504-50 RL/ Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director May 11, 2016 Reviewed and Released by: Ethan Lee, Project Manager

QA/QC Report

May 11, 2016

QA/QC Data

SDG I.D.: GBN25698

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 344552 (mg/kg),	QC Sam	ple No:	BN2569	1 (BN25	703)								
ICP Metals - Soil													
Arsenic	BRL	0.67	12.7	12.7	0	103			91.1			75 - 125	30
Barium	BRL	0.33	58.6	58.1	0.90	94.5			96.4			75 - 125	30
Cadmium	BRL	0.33	2.80	3.02	7.60	104			90.3			75 - 125	30
Chromium	BRL	0.33	24.3	24.0	1.20	105			96.0			75 - 125	30
Lead	BRL	0.33	747	885	16.9	97.5			111			75 - 125	30
Selenium	BRL	1.3	<1.6	<1.5	NC	90.8			78.1			75 - 125	30
Silver	BRL	0.33	6.04	5.67	6.30	103			96.6			75 - 125	30
QA/QC Batch 344607 (mg/kg),	QC Sam	ple No:	BN26358	B (BN25	703)								
Mercury - Soil Comment:	BRL	0.02	0.20	0.16	22.2	120	115	4.3	95.7			70 - 130	30
Additional Mercury criteria: LCS a	acceptanc	e range f	or waters i	s 80-120	% and fo	or soils is	\$ 70-1309	6.					

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

May 11, 2016

QA/QC Data

SDG I.D.: GBN25698

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 344541 (ug/kg), QC	Samp	ole No: BN25662 (BN25698, BN2	25700)							
Polynuclear Aromatic HC -	Soil									
2-Methylnaphthalene	ND	230	69	66	4.4	55	63	13.6	30 - 130	30
Acenaphthene	ND	230	81	74	9.0	60	69	14.0	30 - 130	30
Acenaphthylene	ND	230	80	73	9.2	60	68	12.5	30 - 130	30
Anthracene	ND	230	81	77	5.1	61	69	12.3	30 - 130	30
Benz(a)anthracene	ND	230	77	76	1.3	59	67	12.7	30 - 130	30
Benzo(a)pyrene	ND	230	75	73	2.7	56	63	11.8	30 - 130	30
Benzo(b)fluoranthene	ND	230	77	75	2.6	57	67	16.1	30 - 130	30
Benzo(ghi)perylene	ND	230	86	83	3.6	62	70	12.1	30 - 130	30
Benzo(k)fluoranthene	ND	230	79	77	2.6	60	68	12.5	30 - 130	30
Chrysene	ND	230	84	81	3.6	65	73	11.6	30 - 130	30
Dibenz(a,h)anthracene	ND	230	83	80	3.7	60	69	14.0	30 - 130	30
Fluoranthene	ND	230	81	74	9.0	60	66	9.5	30 - 130	30
Fluorene	ND	230	76	71	6.8	58	66	12.9	30 - 130	30
Indeno(1,2,3-cd)pyrene	ND	230	85	81	4.8	58	66	12.9	30 - 130	30
Naphthalene	ND	230	70	67	4.4	56	63	11.8	30 - 130	30
Phenanthrene	ND	230	83	77	7.5	61	69	12.3	30 - 130	30
Pyrene	ND	230	84	78	7.4	63	69	9.1	30 - 130	30
% 2-Fluorobiphenyl	72	%	73	66	10.1	55	63	13.6	30 - 130	30
% Nitrobenzene-d5	67	%	68	63	7.6	57	66	14.6	30 - 130	30
% Terphenyl-d14	69	%	80	71	11.9	55	63	13.6	30 - 130	30
QA/QC Batch 344545 (mg/Kg), Q	C Sam	ple No: BN25691 (BN25698, BN	25700	, BN257	02, BN2	25704,	BN2570	05, BN	25707)	
TPH by GC (Extractable Pr	oduc	ts) - Soil								
Ext. Petroleum H.C.	ND	50	62	67	7.8	62	68	9.2	60 - 120	30
% n-Pentacosane	65	%	71	75	5.5	78	78	0.0	50 - 150	30
QA/QC Batch 344548 (mg/kg), Q BN25706, BN25707, BN25708)	C Sam	ple No: BN25698 10X (BN25698	, BN25	700, BN	125702,	BN257	703, BN	25704	, BN257	05,
Polychlorinated Biphenyls	- <u>Soll</u>									
PCB-1016	ND	0.17	84	85	1.2	82	88	7.1	40 - 140	30
PCB-1221	ND	0.17							40 - 140	30
PCB-1232	ND	0.17							40 - 140	30
PCB-1242	ND	0.17							40 - 140	30
PCB-1248	ND	0.17							40 - 140	30
PCB-1254	ND	0.17							40 - 140	30
PCB-1260	ND	0.17	94	100	6.2	89	97	8.6	40 - 140	30
PCB-1262	ND	0.17							40 - 140	30
PCB-1268	ND	0.17							40 - 140	30
% DCBP (Surrogate Rec)	107	%	101	108	6.7	93	101	8.2	30 - 150	30
% TCMX (Surrogate Rec)	89	%	77	73	5.3	68	81	17.4	30 - 150	30

QA/QC Data

									%	%	
	Bl	lk	LCS	LCSD	LCS	MS	MSD	MS	Rec	RPD	
Parameter	Blank RL	L	%	%	RPD	%	%	RPD	Limits	Limits	

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

by this

Phyllis/Shiller, Laboratory Director May 11, 2016

Wednesday, May 11, 2016

Criteria: CT: GAM, I/C

State: CT

Sample Criteria Exceedences Report

GBN25698 - FO-PCB

Olulo.							RL	Analvsis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
BN25704 BN25704	\$ETPH_SMR \$PCB_SOXR	Ext. Petroleum HC PCB-1254	CT / PESTICIDES, PCB's, TPH, a / GA/GAA PMC (mg/kg CT / PESTICIDES, PCB's, TPH, a / I/C DEC (mg/kg)	1600 12000	100 3300	500 10000	500 10000	mg/Kg ug/Kg
BN25705	\$ETPH_SMR	Ext. Petroleum HC	CT / PESTICIDES, PCB's, TPH, a / GA/GAA PMC (mg/kg	510	250	500	500	mg/Kg
BN25707	\$ETPH_SMR	Ext. Petroleum HC	CT / PESTICIDES, PCB's, TPH, a / GA/GAA PMC (mg/kg	16000	1100	500	500	mg/Kg
BN25707	\$ETPH_SMR	Ext. Petroleum HC	CT / PESTICIDES, PCB's, TPH, a / I/C DEC (mg/kg)	16000	1100	2500	2500	mg/Kg

Phoenix Laboratories does not assume responsibility for the data contained in this report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

Reasonable Confidence Protocol Laboratory Analysis QA/QC Certification Form

Labo	Laboratory Name: Phoenix Environmental Labs, Inc. Client: Fuss & O'Neill, Inc.												
Proje	ect Location: FORMER MERIDEN HOSPITAL Project Number:												
Labo	pratory Sample ID(s): BN25698, BN25700, BN25702, BN25703, BN25704, B BN25707, BN25708	N25705, BN25706,											
Sam	pling Date(s): 5/4/2016												
RCP	RCP Methods Used:												
13	311/1312 🔽 6010 🗌 7000 🗌 7196 🗹 7470/7471 🗌 8081	EPH TO15											
✔ 80	82												
1.	For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria falling outside of acceptable guidelines, as specified in the CT DEP method-specific Reasonable Confidence Protocol documents?	☑ Yes □ No											
1a.	1a. Were the method specified preservation and holding time requirements met? Image: Comparison of the method specified preservation and holding time requirements met?												
1b.	EPH and VPH methods only: Was the VPH or EPH method conducted without significant modifications (see section 11.3 of respective RCP methods)	□Yes □No ☑NA											
2.	Were all samples received by the laboratory in a condition consistent with that described on the associated Chain-of-Custody document(s)?	☑ Yes □ No											
3.	Were samples received at an appropriate temperature (< 6 Degrees C)?	✓ Yes □ No □ NA											
4.	Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved?	☑ Yes □ No											
5a.	Were reporting limits specified or referenced on the chain-of-custody?	✓ Yes □ No											
5b.	Were these reporting limits met?	✓ Yes □ No □ NA											
6.	For each analytical method referenced in this laboratory report package, were results reported for all constituents identified in the method-specific analyte lists presented in the Reasonable Confidence Protocol documents?	□Yes ☑No □NA											
7.	Are project-specific matrix spikes and laboratory duplicates included in the data set?	□Yes ☑No □NA											

Note: For all questions to which the response was "No" (with the exception of question #5a, #7), additional information must be provided in an attached narrative. If the answer to question #1, #1A or 1B is "No", the data package does not meet the requirements for "Reasonable Confidence".

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete.

Authorized Signature:

Ethan See

Date: Wednesday, May 11, 2016

Printed Name: Ethan Lee

Position: Project Manager

RCP Certification Report

May 11, 2016

SDG I.D.: GBN25698

SDG Comments

Metals Analysis:

The client requested a shorter list of elements than the 6010 RCP list. Only the RCRA 8 Metals are reported as requested on the chain of custody.

8270 Semi-volatile Organics:

The client requested a short list for 8270 RCP Semivolatile. Only the PAH constituents are reported as requested on the chain-ofcustody.

ETPH Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument:

AU-FID11 05/06/16-1

Jeff Bucko, Chemist 05/06/16

BN25698, BN25700

The initial calibration (ETPH429I) RSD for the compound list was less than 30% except for the following compounds: None. The continuing calibration %D for the compound list was less than 30% except for the following compounds:None.

AU-FID11 05/09/16-1

Jeff Bucko, Chemist 05/09/16

BN25704, BN25705, BN25707

The initial calibration (ETPH429I) RSD for the compound list was less than 30% except for the following compounds: None. The continuing calibration %D for the compound list was less than 30% except for the following compounds:None.

AU-XL2 05/09/16-1

Jeff Bucko, Chemist 05/09/16

BN25702

The initial calibration (ETPH427I) RSD for the compound list was less than 30% except for the following compounds: None. The continuing calibration %D for the compound list was less than 30% except for the following compounds:None.

QC (Batch Specific):

Batch 344545 (BN25691)

BN25698, BN25700, BN25702, BN25704, BN25705, BN25707

All LCS recoveries were within 60 - 120 with the following exceptions: None.

All LCSD recoveries were within 60 - 120 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

Mercury Narration

Were all QA/QC performance criteria specified in the analytical method achieved? Yes.

Instrument:

MERLIN 05/06/16 09:12

Rick Schweitzer, Chemist 05/06/16

BN25703

The method preparation blank contains all of the acids and reagents as the samples; the instrument blanks do not.

The initial calibration met all criteria including a standard run at or below the reporting level.

All calibration verification standards (ICV, CCV) met criteria.

All calibration blank verification standards (ICB, CCB) met criteria.

The matrix spike sample is used to identify spectral interference for each batch of samples, if within 85-115%, no interference is observed and no further action is taken.

NY # 11301

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

Certification Report

May 11, 2016

SDG I.D.: GBN25698

Mercury Narration

The following Initial Calibration Verification (ICV) compounds did not meet criteria: None. The following Continuing Calibration Verification (CCV) compounds did not meet criteria: None.

QC (Batch Specific):

Batch 344607 (BN26358)

BN25703

All LCS recoveries were within 70 - 130 with the following exceptions: None. All LCSD recoveries were within 70 - 130 with the following exceptions: None. All LCS/LCSD RPDs were less than 30% with the following exceptions: None. Additional Mercury criteria: LCS acceptance range for waters is 80-120% and for soils is 70-130%.

ICP Metals Narration

Were all QA/QC performance criteria specified in the analytical method achieved? Yes.

Instrument:

ARCOS 05/05/16 19:18

Emily Kolominskaya, Laura Kinnin, Chemist 05/05/16

BN25703

The linear range is defined daily by the calibration range. The following Initial Calibration Verification (ICV) compounds did not meet criteria: None. The following Continuing Calibration Verification (CCV) compounds did not meet criteria: None. The following ICP Interference Check (ICSAB) compounds did not meet criteria: None.

ARCOS 05/06/16 20:26

Emily Kolominskaya, Laura Kinnin, Chemist 05/06/16

BN25703

The linear range is defined daily by the calibration range.

The following Initial Calibration Verification (ICV) compounds did not meet criteria: None.

The following Continuing Calibration Verification (CCV) compounds did not meet criteria: None.

The following ICP Interference Check (ICSAB) compounds did not meet criteria: None.

QC (Batch Specific):

Batch 344552 (BN25691)

BN25703

All LCS recoveries were within 75 - 125 with the following exceptions: None.

PAH Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument:

CHEM06 05/05/16-1

Damien Drobinski, Chemist 05/05/16

BN25698, BN25700

The DDT breakdown and pentachlorophenol & benzidine peak tailing were evaluated in the DFTPP tune and were found to be in control.

Initial Calibration Verification (CHEM06/BN_0505):

RCP Certification Report

May 11, 2016

SDG I.D.: GBN25698

PAH Narration

100% of target compounds met criteria.

The following compounds had %RSDs >20%: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM06/0505_14-BN_0505):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

100% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet minimum response factors: None.

QC (Batch Specific):

Batch 344541 (BN25662)

BN25698, BN25700

All LCS recoveries were within 30 - 130 with the following exceptions: None.

All LCSD recoveries were within 30 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

PCB Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument:

AU-ECD48 05/06/16-1

Adam Werner, Chemist 05/06/16

BN25698

The initial calibration (PC0504AI) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC0504BI) RSD for the compound list was less than 20% except for the following compounds: None. The continuing calibration %D for the compound list was less than 15% except for the following compounds:None.

AU-ECD5 05/06/16-1

Adam Werner, Chemist 05/06/16

BN25702, BN25703, BN25704

The initial calibration (PC0504AI) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC0504BI) RSD for the compound list was less than 20% except for the following compounds: None. The continuing calibration %D for the compound list was less than 15% except for the following compounds:None.

AU-ECD6 05/06/16-1

Adam Werner, Chemist 05/06/16

BN25698, BN25700, BN25705, BN25707

The initial calibration (PC0308AI) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC0308BI) RSD for the compound list was less than 20% except for the following compounds: None. The continuing calibration %D for the compound list was less than 15% except for the following compounds:None.

AU-ECD8 05/06/16-1

Adam Werner, Chemist 05/06/16

BN25706, BN25708

The initial calibration (PC0422AI) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC0422BI) RSD for the compound list was less than 20% except for the following compounds: None. The continuing calibration %D for the compound list was less than 15% except for the following compounds:None.

RCP Certification Report

May 11, 2016

SDG I.D.: GBN25698

PCB Narration

QC (Batch Specific):

Batch 344548 (BN25698)

BN25698, BN25700, BN25702, BN25703, BN25704, BN25705, BN25706, BN25707, BN25708

All LCS recoveries were within 40 - 140 with the following exceptions: None.

All LCSD recoveries were within 40 - 140 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

Temperature Narration

The samples were received at 6C with cooling initiated. (Note acceptance criteria is above freezing up to 6° C)

Thursday, May 12, 2016

Attn: Ms. Stefanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Project ID: FORMER MERIDEN HOSPITAL Sample ID#s: BN25658 - BN25660, BN25662, BN25664 - BN25668, BN25672 - BN25673

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

Stille

Phyllis/Shiller Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #MA-CT-007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

Analysis Report

May 12, 2016

FOR: Attn: Ms. Stefanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample Informa	ation	Custody Inform	nation	<u>Date</u>	<u>Time</u>
Matrix:	SOIL	Collected by:	DC	05/02/16	9:00
Location Code:	F&O-PCB	Received by:	LB	05/05/16	9:00
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	20120232.C40	l ekenetem	Data		CRN256

Laboratory Data

DI /

SDG ID: GBN25658 Phoenix ID: BN25658

Project ID: FORMER MERIDEN HOSPITAL

Client ID: 1176160502-01

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
Field Extraction	Completed				05/02/16		SW5035A
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	250	ug/Kg	50	05/07/16	JLI	SW8260
1,1,1-Trichloroethane	ND	250	ug/Kg	50	05/07/16	JLI	SW8260
1,1,2,2-Tetrachloroethane	ND	250	ug/Kg	50	05/07/16	JLI	SW8260
1,1,2-Trichloroethane	ND	250	ug/Kg	50	05/07/16	JLI	SW8260
1,1-Dichloroethane	ND	250	ug/Kg	50	05/07/16	JLI	SW8260
1,1-Dichloroethene	ND	250	ug/Kg	50	05/07/16	JLI	SW8260
1,1-Dichloropropene	ND	250	ug/Kg	50	05/07/16	JLI	SW8260
1,2,3-Trichlorobenzene	ND	250	ug/Kg	50	05/07/16	JLI	SW8260
1,2,3-Trichloropropane	ND	250	ug/Kg	50	05/07/16	JLI	SW8260
1,2,4-Trichlorobenzene	ND	250	ug/Kg	50	05/07/16	JLI	SW8260
1,2,4-Trimethylbenzene	ND	250	ug/Kg	50	05/07/16	JLI	SW8260
1,2-Dibromo-3-chloropropane	ND	250	ug/Kg	50	05/07/16	JLI	SW8260
1,2-Dibromoethane	ND	250	ug/Kg	50	05/07/16	JLI	SW8260
1,2-Dichlorobenzene	ND	250	ug/Kg	50	05/07/16	JLI	SW8260
1,2-Dichloroethane	ND	250	ug/Kg	50	05/07/16	JLI	SW8260
1,2-Dichloropropane	ND	250	ug/Kg	50	05/07/16	JLI	SW8260
1,3,5-Trimethylbenzene	ND	250	ug/Kg	50	05/07/16	JLI	SW8260
1,3-Dichlorobenzene	ND	250	ug/Kg	50	05/07/16	JLI	SW8260
1,3-Dichloropropane	ND	250	ug/Kg	50	05/07/16	JLI	SW8260
1,4-Dichlorobenzene	ND	250	ug/Kg	50	05/07/16	JLI	SW8260
2,2-Dichloropropane	ND	250	ug/Kg	50	05/07/16	JLI	SW8260
2-Chlorotoluene	ND	250	ug/Kg	50	05/07/16	JLI	SW8260
2-Hexanone	ND	1300	ug/Kg	50	05/07/16	JLI	SW8260
2-Isopropyltoluene	ND	250	ug/Kg	50	05/07/16	JLI	SW8260
4-Chlorotoluene	ND	250	ug/Kg	50	05/07/16	JLI	SW8260

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
4-Methyl-2-pentanone	ND	1300	ug/Kg	50	05/07/16	JLI	SW8260
Acetone	ND	5000	ug/Kg	50	05/07/16	JLI	SW8260
Acrylonitrile	ND	500	ug/Kg	50	05/07/16	JLI	SW8260
Benzene	ND	250	ug/Kg	50	05/07/16	JLI	SW8260
Bromobenzene	ND	250	ug/Kg	50	05/07/16	JLI	SW8260
Bromochloromethane	ND	250	ug/Kg	50	05/07/16	JLI	SW8260
Bromodichloromethane	ND	250	ug/Kg	50	05/07/16	JLI	SW8260
Bromoform	ND	250	ug/Kg	50	05/07/16	JLI	SW8260
Bromomethane	ND	250	ug/Kg	50	05/07/16	JLI	SW8260
Carbon Disulfide	ND	250	ug/Kg	50	05/07/16	JLI	SW8260
Carbon tetrachloride	ND	250	ug/Kg	50	05/07/16	JLI	SW8260
Chlorobenzene	ND	250	ug/Kg	50	05/07/16	JLI	SW8260
Chloroethane	ND	250	ug/Kg	50	05/07/16	JLI	SW8260
Chloroform	ND	250	ug/Kg	50	05/07/16	JLI	SW8260
Chloromethane	ND	250	ug/Kg	50	05/07/16	JLI	SW8260
cis-1,2-Dichloroethene	ND	250	ug/Kg	50	05/07/16	JLI	SW8260
cis-1,3-Dichloropropene	ND	250	ug/Kg	50	05/07/16	JLI	SW8260
Dibromochloromethane	ND	250	ug/Kg	50	05/07/16	JLI	SW8260
Dibromomethane	ND	250	ug/Kg	50	05/07/16	JLI	SW8260
Dichlorodifluoromethane	ND	250	ug/Kg	50	05/07/16	JLI	SW8260
Ethylbenzene	ND	250	ug/Kg	50	05/07/16	JLI	SW8260
Hexachlorobutadiene	ND	250	ug/Kg	50	05/07/16	JLI	SW8260
Isopropylbenzene	ND	250	ug/Kg	50	05/07/16	JLI	SW8260
m&p-Xylene	ND	250	ug/Kg	50	05/07/16	JLI	SW8260
Methyl Ethyl Ketone	ND	3000	ug/Kg	50	05/07/16	JLI	SW8260
Methyl t-butyl ether (MTBE)	ND	250	ug/Kg	50	05/07/16	JLI	SW8260
Methylene chloride	ND	500	ug/Kg	50	05/07/16	JLI	SW8260
Naphthalene	ND	250	ug/Kg	50	05/07/16	JLI	SW8260
n-Butylbenzene	ND	250	ug/Kg	50	05/07/16	JLI	SW8260
n-Propylbenzene	ND	250	ug/Kg	50	05/07/16	JLI	SW8260
o-Xylene	ND	250	ug/Kg	50	05/07/16	JLI	SW8260
p-lsopropyltoluene	ND	250	ug/Kg	50	05/07/16	JLI	SW8260
sec-Butylbenzene	ND	250	ug/Kg	50	05/07/16	JLI	SW8260
Styrene	ND	250	ug/Kg	50	05/07/16	JLI	SW8260
tert-Butylbenzene	ND	250	ug/Kg	50	05/07/16	JLI	SW8260
Tetrachloroethene	ND	250	ug/Kg	50	05/07/16	JLI	SW8260
Tetrahydrofuran (THF)	ND	500	ug/Kg	50	05/07/16	JLI	SW8260
Toluene	ND	250	ug/Kg	50	05/07/16	JLI	SW8260
Total Xylenes	ND	250	ug/Kg	50	05/07/16	JLI	SW8260
trans-1,2-Dichloroethene	ND	250	ug/Kg	50	05/07/16	JLI	SW8260
trans-1,3-Dichloropropene	ND	250	ug/Kg	50	05/07/16	JLI	SW8260
trans-1,4-dichloro-2-butene	ND	500	ug/Kg	50	05/07/16	JLI	SW8260
Trichloroethene	ND	250	ug/Kg	50	05/07/16	JLI	SW8260
Trichlorofluoromethane	ND	250	ug/Kg	50	05/07/16	JLI	SW8260
Trichlorotrifluoroethane	ND	250	ug/Kg	50	05/07/16	JLI	SW8260
Vinyl chloride	ND	250	ug/Kg	50	05/07/16	JLI	SW8260
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	96		%	50	05/07/16	JLI	70 - 130 %
% Bromofluorobenzene	100		%	50	05/07/16	JLI	70 - 130 %

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
% Dibromofluoromethane	98		%	50	05/07/16	JLI	70 - 130 %
% Toluene-d8	97		%	50	05/07/16	JLI	70 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

TRIP BLANK INCLUDED.

Results are reported on an ``as received`` basis, and are not corrected for dry weight.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director May 12, 2016 Reviewed and Released by: Rashmi Makol, Project Manager

Analysis Report

May 12, 2016

FOR: Attn: Ms. Stefanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample Information		Custody Inform	nation	<u>Date</u>	<u>Time</u>
Matrix:	SOIL	Collected by:	DC	05/02/16	9:10
Location Code:	F&O-PCB	Received by:	LB	05/05/16	9:00
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	20120232.C40	l ek evetem	Data		CRN256

Laboratory Data

SDG ID: GBN25658 Phoenix ID: BN25659

Project ID: FORMER MERIDEN HOSPITAL

Client ID: 1176160502-02

Parameter	Result	RL/	l Inite	Dilution	Date/Time	Bv	Reference
i arameter	Result	I QL	011113	Dilution	Date/Time	Dy	Reference
Field Extraction	Completed				05/02/16		SW5035A
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	5.0	ug/Kg	1	05/07/16	JLI	SW8260
1,1,1-Trichloroethane	ND	5.0	ug/Kg	1	05/07/16	JLI	SW8260
1,1,2,2-Tetrachloroethane	ND	3.0	ug/Kg	1	05/07/16	JLI	SW8260
1,1,2-Trichloroethane	ND	5.0	ug/Kg	1	05/07/16	JLI	SW8260
1,1-Dichloroethane	ND	5.0	ug/Kg	1	05/07/16	JLI	SW8260
1,1-Dichloroethene	ND	5.0	ug/Kg	1	05/07/16	JLI	SW8260
1,1-Dichloropropene	ND	5.0	ug/Kg	1	05/07/16	JLI	SW8260
1,2,3-Trichlorobenzene	ND	5.0	ug/Kg	1	05/07/16	JLI	SW8260
1,2,3-Trichloropropane	ND	5.0	ug/Kg	1	05/07/16	JLI	SW8260
1,2,4-Trichlorobenzene	ND	5.0	ug/Kg	1	05/07/16	JLI	SW8260
1,2,4-Trimethylbenzene	ND	5.0	ug/Kg	1	05/07/16	JLI	SW8260
1,2-Dibromo-3-chloropropane	ND	5.0	ug/Kg	1	05/07/16	JLI	SW8260
1,2-Dibromoethane	ND	5.0	ug/Kg	1	05/07/16	JLI	SW8260
1,2-Dichlorobenzene	ND	5.0	ug/Kg	1	05/07/16	JLI	SW8260
1,2-Dichloroethane	ND	5.0	ug/Kg	1	05/07/16	JLI	SW8260
1,2-Dichloropropane	ND	5.0	ug/Kg	1	05/07/16	JLI	SW8260
1,3,5-Trimethylbenzene	ND	5.0	ug/Kg	1	05/07/16	JLI	SW8260
1,3-Dichlorobenzene	ND	5.0	ug/Kg	1	05/07/16	JLI	SW8260
1,3-Dichloropropane	ND	5.0	ug/Kg	1	05/07/16	JLI	SW8260
1,4-Dichlorobenzene	ND	5.0	ug/Kg	1	05/07/16	JLI	SW8260
2,2-Dichloropropane	ND	5.0	ug/Kg	1	05/07/16	JLI	SW8260
2-Chlorotoluene	ND	5.0	ug/Kg	1	05/07/16	JLI	SW8260
2-Hexanone	ND	25	ug/Kg	1	05/07/16	JLI	SW8260
2-Isopropyltoluene	ND	5.0	ug/Kg	1	05/07/16	JLI	SW8260
4-Chlorotoluene	ND	5.0	ug/Kg	1	05/07/16	JLI	SW8260

Parameter Result POL Units Dilution Date/Time By Reference 4-Methyl-2-pentanone ND 25 ug/kg 1 05/07/16 JLI SW220 Acetone ND 5.0 ug/kg 1 05/07/16 JLI SW220 Acryonitrile ND 5.0 ug/kg 1 05/07/16 JLI SW220 Bromochoromethane ND 5.0 ug/kg 1 05/07/16 JLI SW220 Bromochoromethane ND 5.0 ug/kg 1 05/07/16 JLI SW220 Bromochioromethane ND 5.0 ug/kg 1 05/07/16 JLI SW220 Chiorobetzene ND 5.0 ug/kg 1 05/07/16 JLI SW220 Chiorobetzene ND 5.0 ug/kg 1 05/07/16 JLI SW220 Chiorobetzene ND 5.0 ug/kg 1 05/07/16 JLI SW220	_		RL/				_		
4-Methy/2-pentanone ND 25 up/Kg 1 06/07/16 JL SW8280 Acryionitrile ND 5.0 up/Kg 1 05/07/16 JL SW8280 Bernzene ND 5.0 up/Kg 1 05/07/16 JL SW8280 Bromochicromethane ND 5.0 up/Kg 1 05/07/16 JL SW8280 Bromochicromethane ND 5.0 up/Kg 1 05/07/16 JL SW8280 Bromochinomethane ND 5.0 up/Kg 1 05/07/16 JL SW8280 Carbon tetrachloride ND 5.0 up/Kg 1 05/07/16 JL SW8280 Carbon tetrachloride ND 5.0 up/Kg 1 05/07/16 JL SW8280 Chiorobenzen ND 5.0 up/Kg 1 05/07/16 JL SW8280 Chiorobenzen ND 5.0 up/Kg 1 05/07/16 JL SW8280 <th>Parameter</th> <th>Result</th> <th>PQL</th> <th>Units</th> <th>Dilution</th> <th>Date/Time</th> <th>Ву</th> <th>Reference</th> <th>_</th>	Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	_
Acetone ND 250 ug/kg 1 0507/16 U.I SW2200 Benzene ND 5.0 ug/kg 1 0507/16 U.I SW2200 Bromachloromethane ND 5.0 ug/kg 1 0507/16 U.I SW2200 Bromachloromethane ND 5.0 ug/kg 1 0507/16 U.I SW2200 Bromonethane ND 5.0 ug/kg 1 0507/16 U.I SW2200 Carbon Disulfide ND 5.0 ug/kg 1 0507/16 U.I SW2200 Carbon Disulfide ND 5.0 ug/kg 1 0507/16 U.I SW2200 Chioromethane ND 5.0 ug/kg 1 0507/16 U.I SW2200 Chioromethane ND 5.0 ug/kg 1 0507/16 U.I SW2200 Dibromachloromethane ND 5.0 ug/kg 1 0507/16 U.I SW220 <	4-Methyl-2-pentanone	ND	25	ug/Kg	1	05/07/16	JLI	SW8260	
AcrylantileND5.0ug/kg10507/16U.JSW220BromobenzeneND5.0ug/kg10507/16U.JSW220BromobenzeneND5.0ug/kg10507/16U.JSW220BromobenzeneND5.0ug/kg10507/16U.JSW220BromodelnicomethaneND5.0ug/kg10507/16U.JSW220BromodelnicomethaneND5.0ug/kg10507/16U.JSW220Carbon DisulfideND5.0ug/kg10507/16U.JSW220Carbon tetrachonideND5.0ug/kg10507/16U.JSW220ChorobertaneND5.0ug/kg10507/16U.JSW220ChorobertaneND5.0ug/kg10507/16U.JSW220ChorobertaneND5.0ug/kg10507/16U.JSW220ChorobertaneND5.0ug/kg10507/16U.JSW220DichorobertaneND5.0ug/kg10507/16U.JSW220DichorobertaneND5.0ug/kg10507/16U.JSW220DichorobertaneND5.0ug/kg10507/16U.JSW220DichorobertaneND5.0ug/kg10507/16U.JSW220DichorobertaneND5.0ug/kg10507/16U.J	Acetone	ND	250	ug/Kg	1	05/07/16	JLI	SW8260	
Benzene ND 5.0 ug/kg 1 05/07/16 U.J SW2820 Bromochloromethane ND 5.0 ug/kg 1 05/07/16 J.J SW2820 Bromochloromethane ND 5.0 ug/kg 1 05/07/16 J.J SW2820 Bromochloromethane ND 5.0 ug/kg 1 05/07/16 J.J SW2820 Carbon Disulfide ND 5.0 ug/kg 1 05/07/16 J.J SW2820 Carbon Disulfide ND 5.0 ug/kg 1 05/07/16 J.J SW2820 Chlorothane ND 5.0 ug/kg 1 05/07/16 J.J SW2820 Chlorothane ND 5.0 ug/kg 1 05/07/16 J.J SW2820 Chlorothane ND 5.0 ug/kg 1 05/07/16 J.J SW2820 Dibromochloromethane ND 5.0 ug/kg 1 05/07/16 J.J SW2820 <td>Acrylonitrile</td> <td>ND</td> <td>5.0</td> <td>ug/Kg</td> <td>1</td> <td>05/07/16</td> <td>JLI</td> <td>SW8260</td> <td></td>	Acrylonitrile	ND	5.0	ug/Kg	1	05/07/16	JLI	SW8260	
Bromochloromethane ND 5.0 ug/Kg 1 0507716 JLI SVW2280 Bromochloromethane ND 5.0 ug/Kg 1 0507716 JLI SVW2280 Bromochloromethane ND 5.0 ug/Kg 1 0507716 JLI SVW2280 Carbon fortacholoide ND 5.0 ug/Kg 1 0507716 JLI SVW2280 Chiorobenzene ND 5.0 ug/Kg 1 0507716 JLI SVW2280 Chiorobenzene ND 5.0 ug/Kg 1 0507716 JLI SVW2280 Chiorobentane ND 5.0 ug/Kg 1 0507716 JLI SVW2280 Chiorobenthane ND 5.0 ug/Kg 1 0507716 JLI SVW2280 Chiorobenthane ND 5.0 ug/Kg 1 0507716 JLI SVW2280 Dichlorodifucoromethane ND 5.0 ug/Kg 1 0507716 JLI	Benzene	ND	5.0	ug/Kg	1	05/07/16	JLI	SW8260	
Bromochloromethane ND 5.0 ug/kg 1 6507/16 LLI SV%280 Bromodichloromethane ND 5.0 ug/kg 1 6507/16 LLI SV%280 Bromodichloromethane ND 5.0 ug/kg 1 0507/16 LLI SV%280 Carbon Disulfide ND 5.0 ug/kg 1 0507/16 LLI SV%280 Carbon Disulfide ND 5.0 ug/kg 1 0507/16 LLI SV%280 Chlorothane ND 5.0 ug/kg 1 0507/16 LLI SV%280 Chlorothane ND 5.0 ug/kg 1 0507/16 LLI SV%280 Chlorothane ND 5.0 ug/kg 1 0507/16 LLI SV%280 Dibromochionethane ND 5.0 ug/kg 1 0507/16 LLI SV%280 Dibromochionethane ND 5.0 ug/kg 1 0507/16 LLI SV%280<	Bromobenzene	ND	5.0	ug/Kg	1	05/07/16	JLI	SW8260	
Bromodichloromethane ND 5.0 ug/kg 1 6507/16 JLI SW2820 Bromodiorm ND 5.0 ug/kg 1 0507/16 JLI SW2820 Carbon trachcholde ND 5.0 ug/kg 1 0507/16 JLI SW8280 Chlorobenzene ND 5.0 ug/kg 1 0507/16 JLI SW8280 Chlorobenzene ND 5.0 ug/kg 1 0507/16 JLI SW8280 Chlorobenthane ND 5.0 ug/kg 1 0507/16 JLI SW8280 Chlorobenthane ND 5.0 ug/kg 1 0507/16 JLI SW8280 Dibromochloromethane ND 5.0 ug/kg 1 0507/16 JLI SW8280 Dibromochloromethane ND 5.0 ug/kg 1 0507/16 JLI SW8280 Dibromochloromethane ND 5.0 ug/kg 1 0507/16 JLI SW82	Bromochloromethane	ND	5.0	ug/Kg	1	05/07/16	JLI	SW8260	
Bromodrom ND 5.0 ug/kg 1 6507716 LLI SVW220 Bromomethane ND 5.0 ug/kg 1 6507716 LLI SVW220 Carbon Disulfide ND 5.0 ug/kg 1 6507716 LLI SVW220 Chloroberzene ND 5.0 ug/kg 1 6507716 LLI SVW220 Chlorobertane ND 5.0 ug/kg 1 6507716 LLI SVW220 Chloromethane ND 5.0 ug/kg 1 6507716 LLI SVW220 Chloromethane ND 5.0 ug/kg 1 6507716 LLI SVW220 Dibromothane ND 5.0 ug/kg 1 6507716 LLI SVW220 Dibromothane ND 5.0 ug/kg 1 6507716 LLI SVW220 Dibromothane ND 5.0 ug/kg 1 6507716 LLI SVW220 <t< td=""><td>Bromodichloromethane</td><td>ND</td><td>5.0</td><td>ug/Kg</td><td>1</td><td>05/07/16</td><td>JLI</td><td>SW8260</td><td></td></t<>	Bromodichloromethane	ND	5.0	ug/Kg	1	05/07/16	JLI	SW8260	
Bromonthane ND 5.0 ug/Kg 1 0507/16 JL SW2800 Carbon tetrachloride ND 5.0 ug/Kg 1 0507/16 JL SW2800 Chlorobenzene ND 5.0 ug/Kg 1 0507/16 JL SW2800 Chlorobenzene ND 5.0 ug/Kg 1 0507/16 JL SW2800 Chlorobenzene ND 5.0 ug/Kg 1 0507/16 JL SW2800 Chlorobentene ND 5.0 ug/Kg 1 0507/16 JL SW2800 Cisi-1,2-Dichlorobenene ND 5.0 ug/Kg 1 0507/16 JL SW2800 Dibromonthane ND 5.0 ug/Kg 1 0507/16 JL SW2800 Dibromothane ND 5.0 ug/Kg 1 0507/16 JL SW2800 Dibromothane ND 5.0 ug/Kg 1 0507/16 JL SW2800	Bromoform	ND	5.0	ug/Kg	1	05/07/16	JLI	SW8260	
Carbon Disulfide ND 5.0 ug/Kg 1 05/07/16 JL SW2800 Carbon tetrachloride ND 5.0 ug/Kg 1 05/07/16 JL SW2800 Chlorobenzane ND 5.0 ug/Kg 1 05/07/16 JL SW2800 Chloronethane ND 5.0 ug/Kg 1 05/07/16 JL SW2800 Chloronethane ND 5.0 ug/Kg 1 05/07/16 JL SW2800 Cis-1, 2-Dichlorophopene ND 5.0 ug/Kg 1 05/07/16 JL SW2800 Dibromochhane ND 5.0 ug/Kg 1 05/07/16 JL SW2800	Bromomethane	ND	5.0	ug/Kg	1	05/07/16	JLI	SW8260	
Carbon tetrachloride ND 5.0 ug/Kg 1 0507716 JL SW2800 Chlorosthane ND 5.0 ug/Kg 1 0507716 JL SW2800 Chlorosthane ND 5.0 ug/Kg 1 0507716 JL SW2800 Chlorosthane ND 5.0 ug/Kg 1 0507716 JL SW2800 Cisi-1,2-Dichlorosthane ND 5.0 ug/Kg 1 0507716 JL SW2800 Dibromechlorosthane ND 5.0 ug/Kg 1 0507716 JL SW2800 Dibromechlorosthane ND 5.0 ug/Kg 1 0507716 JL SW2800 Dishoroschlorostutalene ND 5.0 ug/Kg 1 0507716 JL SW2800 Isopropylbenzene ND 5.0 ug/Kg 1 0507716 JL SW2800 Methyl Ethyl Ketone ND 5.0 ug/Kg 1 0507716 JL S	Carbon Disulfide	ND	5.0	ug/Kg	1	05/07/16	JLI	SW8260	
Chicrobenzene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Chiorotethane ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Chioromethane ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 cis-1,2-Dichioropropene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Dibromochioromethane ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Dibromochioromethane ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Dibromomethane ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Ethylbenzene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Suporpblenzene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 m&brylenzene ND 5.0 ug/Kg 1 05/07/16 JLI S	Carbon tetrachloride	ND	5.0	ug/Kg	1	05/07/16	JLI	SW8260	
Chloroschane ND 5.0 ug/Kg 1 05/07/16 JL SW8260 Chloroschane ND 5.0 ug/Kg 1 05/07/16 JL SW8260 cis-1,2-Dichloroschane ND 5.0 ug/Kg 1 05/07/16 JL SW8260 cis-1,3-Dichloroschane ND 5.0 ug/Kg 1 05/07/16 JL SW8260 Dibromochloroschane ND 5.0 ug/Kg 1 05/07/16 JL SW8260 Dibromochloroschane ND 5.0 ug/Kg 1 05/07/16 JL SW8260 Dichloroschuzdiene ND 5.0 ug/Kg 1 05/07/16 JL SW8260 Isopropylbenzene ND 5.0 ug/Kg 1 05/07/16 JL SW8260 Nethyl Ethyl Ketone ND 10 ug/Kg 1 05/07/16 JL SW8260 Naphthalene ND 5.0 ug/Kg 1 05/07/16 JL	Chlorobenzene	ND	5.0	ug/Kg	1	05/07/16	JLI	SW8260	
Chlorodrum ND 5.0 ug/Kg 1 05/07/16 JL SW8260 Chloromethane ND 5.0 ug/Kg 1 05/07/16 JL SW8260 cis-1,2-Dichloropropene ND 5.0 ug/Kg 1 05/07/16 JL SW8260 Dibromochloromethane ND 5.0 ug/Kg 1 05/07/16 JL SW8260 Dichlorodfluoromethane ND 5.0 ug/Kg 1 05/07/16 JL SW8260 Dichlorodfluoromethane ND 5.0 ug/Kg 1 05/07/16 JL SW8260 Hexachlorobutadiene ND 5.0 ug/Kg 1 05/07/16 JL SW8260 Isopropylbenzene ND 5.0 ug/Kg 1 05/07/16 JL SW8260 Methyl thyl Kotone ND 10 ug/Kg 1 05/07/16 JL SW8260 n-Propylbenzene ND 5.0 ug/Kg 1 05/07/16 JL	Chloroethane	ND	5.0	ug/Kg	1	05/07/16	JLI	SW8260	
Chloromethane ND 5.0 ug/kg 1 05/07/16 JLI SW8260 cis-1,2-Dichloroptopene ND 5.0 ug/kg 1 05/07/16 JLI SW8260 Dibromochloromethane ND 5.0 ug/kg 1 05/07/16 JLI SW8260 Dibromochloromethane ND 5.0 ug/kg 1 05/07/16 JLI SW8260 Dibromothane ND 5.0 ug/kg 1 05/07/16 JLI SW8260 Ethylbenzene ND 5.0 ug/kg 1 05/07/16 JLI SW8260 Boproytbenzene ND 5.0 ug/kg 1 05/07/16 JLI SW8260 Methyl Ethyl Ketone ND 30 ug/kg 1 05/07/16 JLI SW8260 Naphthalene ND 5.0 ug/kg 1 05/07/16 JLI SW8260 Naphthalene ND 5.0 ug/kg 1 05/07/16 JLI S	Chloroform	ND	5.0	ug/Kg	1	05/07/16	JLI	SW8260	
cis-1,2-Dichloroperhene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Dibromochloromethane ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Dibromochloromethane ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Dichlorodfluoromethane ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Hexachlorobutadiene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Isopropylbenzene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Methyl Ethyl Ketone ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Methyl Ethyl Ketone ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Naphthalene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 o-Skylene ND 5.0 ug/Kg 1 05/07/16 <t< td=""><td>Chloromethane</td><td>ND</td><td>5.0</td><td>ug/Kg</td><td>1</td><td>05/07/16</td><td>JLI</td><td>SW8260</td><td></td></t<>	Chloromethane	ND	5.0	ug/Kg	1	05/07/16	JLI	SW8260	
cis-1,3-Dichloropropene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Dibromochloromethane ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Dichlorodifluoromethane ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Ethylbenzene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Ethylbenzene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Isopropylbenzene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Methyl Ethyl Ketone ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Methyl Ethyl Ketone ND 10 ug/Kg 1 05/07/16 JLI SW8260 Naphthalene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 n-Strylbenzene ND 5.0 ug/Kg 1 05/07/16 JLI	cis-1,2-Dichloroethene	ND	5.0	ug/Kg	1	05/07/16	JLI	SW8260	
Dibromochloromethane ND 3.0 ug/kg 1 05/07/16 JLI SW8260 Dibromomethane ND 5.0 ug/kg 1 05/07/16 JLI SW8260 Ethylbenzene ND 5.0 ug/kg 1 05/07/16 JLI SW8260 Isopropylbenzene ND 5.0 ug/kg 1 05/07/16 JLI SW8260 Isopropylbenzene ND 5.0 ug/kg 1 05/07/16 JLI SW8260 Methyl Ethyl Ketone ND 5.0 ug/kg 1 05/07/16 JLI SW8260 Methyl Ethyl Ketone ND 10 ug/kg 1 05/07/16 JLI SW8260 Methyl Ethyl ether (NTBE) ND 10 ug/kg 1 05/07/16 JLI SW8260 Naphthalene ND 5.0 ug/kg 1 05/07/16 JLI SW8260 o-Stylene ND 5.0 ug/kg 1 05/07/16 JLI	cis-1,3-Dichloropropene	ND	5.0	ug/Kg	1	05/07/16	JLI	SW8260	
Dibromomethane ND 5.0 ug/kg 1 05/07/16 JLI SW8260 Dichlorodifluoromethane ND 5.0 ug/kg 1 05/07/16 JLI SW8260 Ethylbenzene ND 5.0 ug/kg 1 05/07/16 JLI SW8260 Isopropylbenzene ND 5.0 ug/kg 1 05/07/16 JLI SW8260 Methyl Ethyl Ketone ND 5.0 ug/kg 1 05/07/16 JLI SW8260 Methyl Ethyl Ketone ND 3.0 ug/kg 1 05/07/16 JLI SW8260 Methyl Ethyl Ketone ND 1.0 ug/kg 1 05/07/16 JLI SW8260 Naphthalene ND 5.0 ug/kg 1 05/07/16 JLI SW8260 n-Propylbenzene ND 5.0 ug/kg 1 05/07/16 JLI SW8260 sec-Butylbenzene ND 5.0 ug/kg 1 05/07/16 JLI	Dibromochloromethane	ND	3.0	ug/Kg	1	05/07/16	JLI	SW8260	
Dichlorodifluoromethane ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Ethylbenzene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Hexachlorobutadiene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 m&p-Xylene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Methyl Ethyl Ketone ND 3.0 ug/Kg 1 05/07/16 JLI SW8260 Methyl Ethyl Ketone ND 1.0 ug/Kg 1 05/07/16 JLI SW8260 Naphthalene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 n-Butylbenzene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 o-Xylene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 sez-Butylbenzene ND 5.0 ug/Kg 1 05/07/16 JLI SW82	Dibromomethane	ND	5.0	ug/Kg	1	05/07/16	JLI	SW8260	
Ethylbenzene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Hexachlorobutadiene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Isopropylbenzene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Methyl Ethyl Ketone ND 30 ug/Kg 1 05/07/16 JLI SW8260 Methyl Ethyl Ketone ND 10 ug/Kg 1 05/07/16 JLI SW8260 Methylene chloride ND 10 ug/Kg 1 05/07/16 JLI SW8260 Naphthalene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 n-Propylbenzene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 p-Isopropyltoluene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Styrene ND 5.0 ug/Kg 1 05/07/16 JLI SW826	Dichlorodifluoromethane	ND	5.0	ug/Kg	1	05/07/16	JLI	SW8260	
Hexachlorobutadiene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Isopropylbenzene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 m&p-Xylene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Methyl Ethyl Ketone ND 30 ug/Kg 1 05/07/16 JLI SW8260 Methyl Ethyl Ketone ND 10 ug/Kg 1 05/07/16 JLI SW8260 Methyl Ethyl Ketone ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Naphthalene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 o-Xylene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 o-Xylene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 styrene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260	Ethylbenzene	ND	5.0	ug/Kg	1	05/07/16	JLI	SW8260	
Isopropylbenzene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Methyl Ethyl Ketone ND 3.0 ug/Kg 1 05/07/16 JLI SW8260 Methyl Ethyl Ketone ND 3.0 ug/Kg 1 05/07/16 JLI SW8260 Methyl ether (MTBE) ND 10 ug/Kg 1 05/07/16 JLI SW8260 Naphthalene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 N-Ptopylbenzene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 o-Xylene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 o-Xylene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 o-Xylene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 o-Stytene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260	Hexachlorobutadiene	ND	5.0	ug/Kg	1	05/07/16	JLI	SW8260	
m&p-Xylene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Methyl Ethyl Ketone ND 30 ug/Kg 1 05/07/16 JLI SW8260 Methyl I-butyl ether (MTBE) ND 10 ug/Kg 1 05/07/16 JLI SW8260 Methylene chloride ND 10 ug/Kg 1 05/07/16 JLI SW8260 Naphthalene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 n-Butylbenzene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 o-Xylene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 sec-Butylbenzene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Styrene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Tetrachloroethene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260	Isopropylbenzene	ND	5.0	ug/Kg	1	05/07/16	JLI	SW8260	
Methyl Ethyl Ketone ND 30 ug/Kg 1 05/07/16 JLI SW8260 Methyl t-butyl ether (MTBE) ND 10 ug/Kg 1 05/07/16 JLI SW8260 Naphthalene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Naphthalene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 n-Butylbenzene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 n-Propylbenzene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 o-Xylene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 sec-Butylbenzene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Styrene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Tetrahydrofuran (THF) ND 10 ug/Kg 1 05/07/16 JLI SW8260 <td>m&p-Xylene</td> <td>ND</td> <td>5.0</td> <td>ug/Kg</td> <td>1</td> <td>05/07/16</td> <td>JLI</td> <td>SW8260</td> <td></td>	m&p-Xylene	ND	5.0	ug/Kg	1	05/07/16	JLI	SW8260	
Methyl t-butyl ether (MTBE) ND 10 ug/Kg 1 05/07/16 JLI SW8260 Methylene chloride ND 10 ug/Kg 1 05/07/16 JLI SW8260 Naphthalene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 n-Butylbenzene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 n-Propylbenzene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 o-Xylene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 o-Sylene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 sec-Butylbenzene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 tert-Butylbenzene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Tetra-Butylbenzene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260	Methyl Ethyl Ketone	ND	30	ug/Kg	1	05/07/16	JLI	SW8260	
Methylene chloride ND 10 ug/Kg 1 05/07/16 JLI SW8260 Naphthalene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 n-Butylbenzene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 o-Xylene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 o-Xylene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 o-Sylene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 sec-Butylbenzene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Styrene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Tetrachloroethene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Total Xylenes ND 5.0 ug/Kg 1 05/07/16 JLI SW8260	Methyl t-butyl ether (MTBE)	ND	10	ug/Kg	1	05/07/16	JLI	SW8260	
Naphthalene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 n-Butylbenzene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 n-Propylbenzene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 o-Xylene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 sec-Butylbenzene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 sec-Butylbenzene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Styrene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Tetrachloroethene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Total xylenes ND 10 ug/Kg 1 05/07/16 JLI SW8260 trans-1,2-Dichloroethene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260	Methylene chloride	ND	10	ug/Kg	1	05/07/16	JLI	SW8260	
n-Butylbenzene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 n-Propylbenzene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 o-Xylene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 o-Xylene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 sec-Butylbenzene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Styrene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 tert-Butylbenzene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Tetrachloroethene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Totlare ND 10 ug/Kg 1 05/07/16 JLI SW8260 Total Xylenes ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 trans-1,2-Dichloroethene ND 5.0 ug/Kg 1 05/07/16 JLI </td <td>Naphthalene</td> <td>ND</td> <td>5.0</td> <td>ug/Kg</td> <td>1</td> <td>05/07/16</td> <td>JLI</td> <td>SW8260</td> <td></td>	Naphthalene	ND	5.0	ug/Kg	1	05/07/16	JLI	SW8260	
n-Propylbenzene ND 5.0 ug/kg 1 05/07/16 JLI SW8260 o-Xylene ND 5.0 ug/kg 1 05/07/16 JLI SW8260 p-lsopropyltoluene ND 5.0 ug/kg 1 05/07/16 JLI SW8260 sec-Butylbenzene ND 5.0 ug/kg 1 05/07/16 JLI SW8260 Styrene ND 5.0 ug/kg 1 05/07/16 JLI SW8260 tert-Butylbenzene ND 5.0 ug/kg 1 05/07/16 JLI SW8260 Tetrachloroethene ND 5.0 ug/kg 1 05/07/16 JLI SW8260 Toluene ND 5.0 ug/kg 1 05/07/16 JLI SW8260 Total Xylenes ND 5.0 ug/kg 1 05/07/16 JLI SW8260 trans-1,2-Dichloroethene ND 5.0 ug/kg 1 05/07/16 JLI SW8260 trans-1,3-Dichloropropene ND 5.0 ug/kg 1 05/07/	n-Butylbenzene	ND	5.0	ug/Kg	1	05/07/16	JLI	SW8260	
o-Xylene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 p-Isopropyltoluene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 sec-Butylbenzene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Styrene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 tert-Butylbenzene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Tetrachloroethene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Tetrachloroethene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Total Xylenes ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 trans-1,2-Dichloroethene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 trans-1,4-dichloro-2-butene ND 5.0 ug/Kg 1 05/07/16 JLI	n-Propylbenzene	ND	5.0	ug/Kg	1	05/07/16	JLI	SW8260	
p-Isopropyltoluene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 sec-Butylbenzene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Styrene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 tert-Butylbenzene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Tetrachloroethene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Tetrachloroethene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Tetrachloroethene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Total Xylenes ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 trans-1,2-Dichloroethene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 trans-1,4-dichloro-2-butene ND 5.0 ug/Kg 1 05/07/16 JLI<	o-Xylene	ND	5.0	ug/Kg	1	05/07/16	JLI	SW8260	
sec-Butylbenzene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Styrene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 tert-Butylbenzene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 tert-Butylbenzene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Tetrachloroethene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Tetrachloroethene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Toluene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 trans-1,2-Dichloroethene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 trans-1,3-Dichloropropene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Trichloroethene ND 5.0 ug/Kg 1 05/07/16 JLI	p-lsopropyltoluene	ND	5.0	ug/Kg	1	05/07/16	JLI	SW8260	
Styrene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 tert-Butylbenzene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Tetrachloroethene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Tetrachloroethene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Tetrahydrofuran (THF) ND 10 ug/Kg 1 05/07/16 JLI SW8260 Toluene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Total Xylenes ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 trans-1,2-Dichloroethene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 trans-1,4-dichloro-2-butene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Trichloroethene ND 5.0 ug/Kg 1 05/07/16 JLI	sec-Butylbenzene	ND	5.0	ug/Kg	1	05/07/16	JLI	SW8260	
tert-Butylbenzene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Tetrachloroethene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Tetrahydrofuran (THF) ND 10 ug/Kg 1 05/07/16 JLI SW8260 Toluene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Total Xylenes ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 trans-1,2-Dichloroethene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 trans-1,3-Dichloropropene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 trans-1,4-dichloro-2-butene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Trichloroethene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Trichloroethene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Trichloroethene ND 5.0 ug/Kg	Styrene	ND	5.0	ug/Kg	1	05/07/16	JLI	SW8260	
Tetrachoroethene ND 5.0 ug/kg 1 05/07/16 JLI SW8260 Tetrahydrofuran (THF) ND 10 ug/kg 1 05/07/16 JLI SW8260 Toluene ND 5.0 ug/kg 1 05/07/16 JLI SW8260 Total Xylenes ND 5.0 ug/kg 1 05/07/16 JLI SW8260 trans-1,2-Dichloroethene ND 5.0 ug/kg 1 05/07/16 JLI SW8260 trans-1,2-Dichloroethene ND 5.0 ug/kg 1 05/07/16 JLI SW8260 trans-1,3-Dichloropropene ND 5.0 ug/kg 1 05/07/16 JLI SW8260 trans-1,4-dichloro-2-butene ND 5.0 ug/kg 1 05/07/16 JLI SW8260 Trichlorofluoromethane ND 5.0 ug/kg 1 05/07/16 JLI SW8260 Vinyl chloride ND 5.0 ug/kg 1 05/07/16 <td>tert-Butylbenzene</td> <td>ND</td> <td>5.0</td> <td>ug/Kg</td> <td>1</td> <td>05/07/16</td> <td>JLI</td> <td>SW8260</td> <td></td>	tert-Butylbenzene	ND	5.0	ug/Kg	1	05/07/16	JLI	SW8260	
Tetrahydrofuran (THF) ND 10 ug/Kg 1 05/07/16 JLI SW8260 Toluene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Total Xylenes ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 trans-1,2-Dichloroethene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 trans-1,2-Dichloroethene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 trans-1,3-Dichloropropene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 trans-1,4-dichloro-2-butene ND 10 ug/Kg 1 05/07/16 JLI SW8260 Trichloroethene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Trichlorofluoromethane ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Vinyl chloride ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 QA/QC Surrogates ND 5.0 ug/Kg<	Tetrachloroethene	ND	5.0	ug/Kg	1	05/07/16	JLI	SW8260	
Toluene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Total Xylenes ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 trans-1,2-Dichloroethene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 trans-1,2-Dichloroethene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 trans-1,3-Dichloropropene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 trans-1,4-dichloro-2-butene ND 10 ug/Kg 1 05/07/16 JLI SW8260 Trichloroethene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Trichlorotrifluoromethane ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Vinyl chloride ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 QA/QC Surrogates	Tetrahydrofuran (THF)	ND	10	ug/Kg	1	05/07/16	JLI	SW8260	
Total Xylenes ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 trans-1,2-Dichloroethene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 trans-1,3-Dichloropropene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 trans-1,4-dichloro-2-butene ND 10 ug/Kg 1 05/07/16 JLI SW8260 Trichloroethene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Trichloroethene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Trichloroethene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Trichloroethane ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Vinyl chloride ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 QA/QC Surrogates ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 % 1,2-dichlorobenzene-d4 99 % <	Toluene	ND	5.0	ug/Kg	1	05/07/16	JLI	SW8260	
trans-1,2-Dichloroethene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 trans-1,3-Dichloropropene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 trans-1,4-dichloro-2-butene ND 10 ug/Kg 1 05/07/16 JLI SW8260 Trichloroethene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Trichloroethene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Trichloroethane ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Trichlorotrifluoroethane ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Vinyl chloride ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 QA/QC Surrogates ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 % 1,2-dichlorobenzene-d4 99 % 1 05/07/16 JLI 70 - 130 % % Bromofluorobenzene 99 %	Total Xylenes	ND	5.0	ug/Kg	1	05/07/16	JLI	SW8260	
trans-1,3-Dichloropropene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 trans-1,4-dichloro-2-butene ND 10 ug/Kg 1 05/07/16 JLI SW8260 Trichloroethene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Trichloroethene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Trichlorofluoromethane ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Trichlorotrifluoroethane ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Vinyl chloride ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 QA/QC Surrogates ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 % 1,2-dichlorobenzene-d4 99 % 1 05/07/16 JLI 70 - 130 % % Bromofluorobenzene 99 % 1 05/07/16 JLI 70 - 130 %	trans-1,2-Dichloroethene	ND	5.0	ug/Kg	1	05/07/16	JLI	SW8260	
trans-1,4-dichloro-2-butene ND 10 ug/Kg 1 05/07/16 JLI SW8260 Trichloroethene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Trichlorofluoromethane ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Trichlorotrifluoroethane ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Vinyl chloride ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 QA/QC Surrogates ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 % 1,2-dichlorobenzene-d4 99 % 1 05/07/16 JLI SW8260 % Bromofluorobenzene 99 % 1 05/07/16 JLI 70 - 130 %	trans-1,3-Dichloropropene	ND	5.0	ug/Kg	1	05/07/16	JLI	SW8260	
Trichloroethene ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Trichlorofluoromethane ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Trichlorotrifluoroethane ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Vinyl chloride ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 QA/QC Surrogates ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 % 1,2-dichlorobenzene-d4 99 % 1 05/07/16 JLI 70 - 130 % % Bromofluorobenzene 99 % 1 05/07/16 JLI 70 - 130 %	trans-1,4-dichloro-2-butene	ND	10	ug/Kg	1	05/07/16	JLI	SW8260	
Trichlorofluoromethane ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Trichlorotrifluoroethane ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Vinyl chloride ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 QA/QC Surrogates Vinyl chlorobenzene-d4 99 % 1 05/07/16 JLI 70 - 130 % % Bromofluorobenzene 99 % 1 05/07/16 JLI 70 - 130 %	Trichloroethene	ND	5.0	ug/Kg	1	05/07/16	JLI	SW8260	
Trichlorotrifluoroethane ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 Vinyl chloride ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 QA/QC Surrogates 99 % 1 05/07/16 JLI 70 - 130 % % Bromofluorobenzene 99 % 1 05/07/16 JLI 70 - 130 %	Trichlorofluoromethane	ND	5.0	ug/Kg	1	05/07/16	JLI	SW8260	
Vinyl chloride ND 5.0 ug/Kg 1 05/07/16 JLI SW8260 QA/QC Surrogates 99 % 1 05/07/16 JLI 70 - 130 % % Bromofluorobenzene 99 % 1 05/07/16 JLI 70 - 130 %	Trichlorotrifluoroethane	ND	5.0	ug/Kg	1	05/07/16	JLI	SW8260	
QA/QC Surrogates % 1 05/07/16 JLI 70 - 130 % % Bromofluorobenzene 99 % 1 05/07/16 JLI 70 - 130 %	Vinyl chloride	ND	5.0	ug/Kg	1	05/07/16	JLI	SW8260	
% 1,2-dichlorobenzene-d4 99 % 1 05/07/16 JLI 70 - 130 % % Bromofluorobenzene 99 % 1 05/07/16 JLI 70 - 130 %	QA/QC Surrogates			5 5					
% Bromofluorobenzene 99 % 1 05/07/16 JLI 70 - 130 %	% 1,2-dichlorobenzene-d4	99		%	1	05/07/16	JLI	70 - 130 %	
	% Bromofluorobenzene	99		%	1	05/07/16	JLI	70 - 130 %	

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
% Dibromofluoromethane	98		%	1	05/07/16	JLI	70 - 130 %
% Toluene-d8	100		%	1	05/07/16	JLI	70 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

TRIP BLANK INCLUDED.

Results are reported on an ``as received`` basis, and are not corrected for dry weight.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis, Shiller, Laboratory Director May 12, 2016 Reviewed and Released by: Rashmi Makol, Project Manager

Analysis Report

FOR: Attn: Ms. Stefanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

May 12, 2016

Sample Informa	ation	Custody Inform	nation	Date	<u>Time</u>	
Matrix:	SOIL	Collected by:	DC	05/02/16	10:40	
Location Code:	F&O-PCB	Received by:	LB	05/05/16	9:00	
Rush Request:	Standard	Analyzed by:	see "By" below			
P.O.#:	20120232.C40					

Laboratory Data

SDG ID: GBN25658 Phoenix ID: BN25660

Project ID: FORMER MERIDEN HOSPITAL

Client ID: 1176160502-03

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	92		%		05/05/16	W	SW846-%Solid
Soil Extraction SVOA PAH	Completed				05/05/16	BJ/CKV	SW3545A
Extraction of CT ETPH	Completed				05/09/16	NJ/CK	SW3545A
TPH by GC (Extractab	le Products)					
Ext. Petroleum HC	ND	53	mg/Kg	1	05/10/16	JRB	CTETPH 8015D
Identification	ND		mg/Kg	1	05/10/16	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	74		%	1	05/10/16	JRB	50 - 150 %
Polynuclear Aromatic	HC						
2-Methylnaphthalene	ND	250	ug/Kg	1	05/05/16	DD	SW8270D
Acenaphthene	ND	250	ug/Kg	1	05/05/16	DD	SW8270D
Acenaphthylene	ND	250	ug/Kg	1	05/05/16	DD	SW8270D
Anthracene	ND	250	ug/Kg	1	05/05/16	DD	SW8270D
Benz(a)anthracene	ND	250	ug/Kg	1	05/05/16	DD	SW8270D
Benzo(a)pyrene	ND	250	ug/Kg	1	05/05/16	DD	SW8270D
Benzo(b)fluoranthene	ND	250	ug/Kg	1	05/05/16	DD	SW8270D
Benzo(ghi)perylene	ND	250	ug/Kg	1	05/05/16	DD	SW8270D
Benzo(k)fluoranthene	ND	250	ug/Kg	1	05/05/16	DD	SW8270D
Chrysene	ND	250	ug/Kg	1	05/05/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	250	ug/Kg	1	05/05/16	DD	SW8270D
Fluoranthene	ND	250	ug/Kg	1	05/05/16	DD	SW8270D
Fluorene	ND	250	ug/Kg	1	05/05/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	250	ug/Kg	1	05/05/16	DD	SW8270D
Naphthalene	ND	250	ug/Kg	1	05/05/16	DD	SW8270D
Phenanthrene	ND	250	ug/Kg	1	05/05/16	DD	SW8270D
Pyrene	ND	250	ug/Kg	1	05/05/16	DD	SW8270D

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
QA/QC Surrogates							
% 2-Fluorobiphenyl	71		%	1	05/05/16	DD	30 - 130 %
% Nitrobenzene-d5	77		%	1	05/05/16	DD	30 - 130 %
% Terphenyl-d14	64		%	1	05/05/16	DD	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis, Shiller, Laboratory Director May 12, 2016 Reviewed and Released by: Rashmi Makol, Project Manager

Analysis Report

FOR: Attn: Ms. Stefanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

May 12, 2016

Sample Informa	ation	Custody Inform	nation	<u>Date</u>	<u>Time</u>
Matrix:	SOIL	Collected by:	DC	05/02/16	11:40
Location Code:	F&O-PCB	Received by:	LB	05/05/16	9:00
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	20120232.C40				

Laboratory Data

SDG ID: GBN25658 Phoenix ID: BN25662

Project ID: FORMER MERIDEN HOSPITAL

Client ID: 1176160502-05

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Bv	Reference
Percent Solid	91		%		05/05/16	W	SW846-%Solid
Soil Extraction SV/OA PAH	Completed		70		05/05/16	BICKV	SW3545A
Extraction of CT ETPH	Completed				05/05/16	BJ/CK	SW3545A
TPH by GC (Extractat	ole Products)					
Ext. Petroleum HC	ND	4 55	mg/Kg	1	05/06/16	JRB	CTETPH 8015D
Identification	ND		mg/Kg	1	05/06/16	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	81		%	1	05/06/16	JRB	50 - 150 %
Polynuclear Aromatic	: HC						
2-Methylnaphthalene	ND	260	ug/Kg	1	05/05/16	DD	SW8270D
Acenaphthene	ND	260	ug/Kg	1	05/05/16	DD	SW8270D
Acenaphthylene	ND	260	ug/Kg	1	05/05/16	DD	SW8270D
Anthracene	ND	260	ug/Kg	1	05/05/16	DD	SW8270D
Benz(a)anthracene	ND	260	ug/Kg	1	05/05/16	DD	SW8270D
Benzo(a)pyrene	ND	260	ug/Kg	1	05/05/16	DD	SW8270D
Benzo(b)fluoranthene	ND	260	ug/Kg	1	05/05/16	DD	SW8270D
Benzo(ghi)perylene	ND	260	ug/Kg	1	05/05/16	DD	SW8270D
Benzo(k)fluoranthene	ND	260	ug/Kg	1	05/05/16	DD	SW8270D
Chrysene	ND	260	ug/Kg	1	05/05/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	260	ug/Kg	1	05/05/16	DD	SW8270D
Fluoranthene	ND	260	ug/Kg	1	05/05/16	DD	SW8270D
Fluorene	ND	260	ug/Kg	1	05/05/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	260	ug/Kg	1	05/05/16	DD	SW8270D
Naphthalene	ND	260	ug/Kg	1	05/05/16	DD	SW8270D
Phenanthrene	ND	260	ug/Kg	1	05/05/16	DD	SW8270D
Pyrene	ND	260	ug/Kg	1	05/05/16	DD	SW8270D

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
QA/QC Surrogates							
% 2-Fluorobiphenyl	73		%	1	05/05/16	DD	30 - 130 %
% Nitrobenzene-d5	70		%	1	05/05/16	DD	30 - 130 %
% Terphenyl-d14	64		%	1	05/05/16	DD	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director May 12, 2016 Reviewed and Released by: Rashmi Makol, Project Manager

Analysis Report

May 12, 2016

FOR: Attn: Ms. Stefanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample Info	rmation
Matrix:	SOIL

Location Code:	F&O-PCB
Rush Request:	Standard
P.O.#:	20120232.C40

Collected by:	DC
Received by:	LB
Analyzed by:	see "By" below

Laboratory Data

Custody Information

SDG ID: GBN25658 Phoenix ID: BN25664

Date

05/02/16

05/05/16

Time

10:50

9:00

Project ID: FORMER MERIDEN HOSPITAL

Client ID: 117616

1176160502-07

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
Silver	1.05	0.31	mg/Kg	1	05/06/16	LK	SW6010C
Arsenic	4.1	0.6	mg/Kg	1	05/06/16	ΕK	SW6010C
Barium	89.8	0.31	mg/Kg	1	05/06/16	ΕK	SW6010C
Cadmium	0.72	0.31	mg/Kg	1	05/06/16	EK	SW6010C
Chromium	18.1	0.31	mg/Kg	1	05/06/16	ΕK	SW6010C
Mercury	0.55	0.03	mg/Kg	1	05/06/16	RS	SW7471B
Lead	18.8	0.31	mg/Kg	1	05/06/16	ΕK	SW6010C
Selenium	< 1.2	1.2	mg/Kg	1	05/06/16	LK	SW6010C
Percent Solid	98		%		05/05/16	W	SW846-%Solid
Mercury Digestion	Completed				05/06/16	W/W	SW7471B
Total Metals Digest	Completed				05/05/16	G/AG	SW3050B
Field Extraction	Completed				05/02/16		SW5035A
<u>Volatiles</u>							
1,1,1,2-Tetrachloroethane	ND	4.2	ug/Kg	1	05/09/16	JLI	SW8260
1,1,1-Trichloroethane	ND	4.2	ug/Kg	1	05/09/16	JLI	SW8260
1,1,2,2-Tetrachloroethane	ND	2.5	ug/Kg	1	05/09/16	JLI	SW8260
1,1,2-Trichloroethane	ND	4.2	ug/Kg	1	05/09/16	JLI	SW8260
1,1-Dichloroethane	ND	4.2	ug/Kg	1	05/09/16	JLI	SW8260
1,1-Dichloroethene	ND	4.2	ug/Kg	1	05/09/16	JLI	SW8260
1,1-Dichloropropene	ND	4.2	ug/Kg	1	05/09/16	JLI	SW8260
1,2,3-Trichlorobenzene	ND	4.2	ug/Kg	1	05/09/16	JLI	SW8260
1,2,3-Trichloropropane	ND	4.2	ug/Kg	1	05/09/16	JLI	SW8260
1,2,4-Trichlorobenzene	ND	4.2	ug/Kg	1	05/09/16	JLI	SW8260
1,2,4-Trimethylbenzene	ND	4.2	ug/Kg	1	05/09/16	JLI	SW8260
1,2-Dibromo-3-chloropropane	ND	4.2	ug/Kg	1	05/09/16	JLI	SW8260
1,2-Dibromoethane	ND	4.2	ug/Kg	1	05/09/16	JLI	SW8260
1,2-Dichlorobenzene	ND	4.2	ug/Kg	1	05/09/16	JLI	SW8260

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
1,2-Dichloroethane	ND	4.2	ug/Kg	1	05/09/16	JLI	SW8260
1,2-Dichloropropane	ND	4.2	ug/Kg	1	05/09/16	JLI	SW8260
1,3,5-Trimethylbenzene	ND	4.2	ug/Kg	1	05/09/16	JLI	SW8260
1,3-Dichlorobenzene	ND	4.2	ug/Kg	1	05/09/16	JLI	SW8260
1,3-Dichloropropane	ND	4.2	ug/Kg	1	05/09/16	JLI	SW8260
1,4-Dichlorobenzene	ND	4.2	ug/Kg	1	05/09/16	JLI	SW8260
2,2-Dichloropropane	ND	4.2	ug/Kg	1	05/09/16	JLI	SW8260
2-Chlorotoluene	ND	4.2	ug/Kg	1	05/09/16	JLI	SW8260
2-Hexanone	ND	21	ug/Kg	1	05/09/16	JLI	SW8260
2-Isopropyltoluene	ND	4.2	ug/Kg	1	05/09/16	JLI	SW8260
4-Chlorotoluene	ND	4.2	ug/Kg	1	05/09/16	JLI	SW8260
4-Methyl-2-pentanone	ND	21	ug/Kg	1	05/09/16	JLI	SW8260
Acetone	ND	210	ug/Kg	1	05/09/16	JLI	SW8260
Acrylonitrile	ND	4.2	ug/Kg	1	05/09/16	JLI	SW8260
Benzene	ND	4.2	ug/Kg	1	05/09/16	JLI	SW8260
Bromobenzene	ND	4.2	ug/Kg	1	05/09/16	JLI	SW8260
Bromochloromethane	ND	4.2	ug/Kg	1	05/09/16	JLI	SW8260
Bromodichloromethane	ND	4.2	ug/Kg	1	05/09/16	JLI	SW8260
Bromoform	ND	4.2	ug/Kg	1	05/09/16	JLI	SW8260
Bromomethane	ND	4.2	ug/Kg	1	05/09/16	JLI	SW8260
Carbon Disulfide	ND	4.2	ug/Kg	1	05/09/16	JLI	SW8260
Carbon tetrachloride	ND	4.2	ug/Kg	1	05/09/16	JLI	SW8260
Chlorobenzene	ND	4.2	ug/Kg	1	05/09/16	JLI	SW8260
Chloroethane	ND	4.2	ug/Kg	1	05/09/16	JLI	SW8260
Chloroform	ND	4.2	ug/Kg	1	05/09/16	JLI	SW8260
Chloromethane	ND	4.2	ug/Kg	1	05/09/16	JLI	SW8260
cis-1,2-Dichloroethene	ND	4.2	ug/Kg	1	05/09/16	JLI	SW8260
cis-1,3-Dichloropropene	ND	4.2	ug/Kg	1	05/09/16	JLI	SW8260
Dibromochloromethane	ND	2.5	ug/Kg	1	05/09/16	JLI	SW8260
Dibromomethane	ND	4.2	ug/Kg	1	05/09/16	JLI	SW8260
Dichlorodifluoromethane	ND	4.2	ug/Kg	1	05/09/16	JLI	SW8260
Ethylbenzene	ND	4.2	ug/Kg	1	05/09/16	JLI	SW8260
Hexachlorobutadiene	ND	4.2	ug/Kg	1	05/09/16	JLI	SW8260
Isopropylbenzene	ND	4.2	ug/Kg	1	05/09/16	JLI	SW8260
m&p-Xylene	ND	4.2	ug/Kg	1	05/09/16	JLI	SW8260
Methyl Ethyl Ketone	ND	25	ug/Kg	1	05/09/16	JLI	SW8260
Methyl t-butyl ether (MTBE)	ND	8.4	ug/Kg	1	05/09/16	JLI	SW8260
Methylene chloride	ND	8.4	ug/Kg	1	05/09/16	JLI	SW8260
Naphthalene	180	150	ug/Kg	50	05/07/16	JLI	SW8260
n-Butylbenzene	ND	4.2	ug/Kg	1	05/09/16	JLI	SW8260
n-Propylbenzene	ND	4.2	ug/Kg	1	05/09/16	JLI	SW8260
o-Xylene	ND	4.2	ug/Kg	1	05/09/16	JLI	SW8260
p-Isopropyltoluene	ND	4.2	ug/Kg	1	05/09/16	JLI	SW8260
sec-Butylbenzene	ND	4.2	ug/Kg	1	05/09/16	JLI	SW8260
Styrene	ND	4.2	ug/Kg	1	05/09/16	JLI	SW8260
tert-Butylbenzene	ND	4.2	ug/Kg	1	05/09/16	JLI	SW8260
Tetrachloroethene	ND	4.2	ug/Kg	1	05/09/16	JLI	SW8260
Tetrahydrofuran (THF)	ND	8.4	ug/Kg	1	05/09/16	JLI	SW8260
Toluene	ND	4.2	ug/Kg	1	05/09/16	JLI	SW8260

		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference	
Total Xylenes	ND	4.2	ug/Kg	1	05/09/16	JLI	SW8260	
trans-1,2-Dichloroethene	ND	4.2	ug/Kg	1	05/09/16	JLI	SW8260	
trans-1,3-Dichloropropene	ND	4.2	ug/Kg	1	05/09/16	JLI	SW8260	
trans-1,4-dichloro-2-butene	ND	8.4	ug/Kg	1	05/09/16	JLI	SW8260	
Trichloroethene	ND	4.2	ug/Kg	1	05/09/16	JLI	SW8260	
Trichlorofluoromethane	ND	4.2	ug/Kg	1	05/09/16	JLI	SW8260	
Trichlorotrifluoroethane	ND	4.2	ug/Kg	1	05/09/16	JLI	SW8260	
Vinyl chloride	ND	4.2	ug/Kg	1	05/09/16	JLI	SW8260	
QA/QC Surrogates								
% 1,2-dichlorobenzene-d4	96		%	1	05/09/16	JLI	70 - 130 %	
% Bromofluorobenzene	100		%	1	05/09/16	JLI	70 - 130 %	
% Dibromofluoromethane	26		%	1	05/09/16	JLI	70 - 130 %	3
% Toluene-d8	100		%	1	05/09/16	JLI	70 - 130 %	

3 = This parameter exceeds laboratory specified limits.

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Volatile Comment:

Poor surrogate recovery was observed for volatiles due to matrix interference. Sample was analyzed twice with similar results.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis, Shiller, Laboratory Director May 12, 2016 Reviewed and Released by: Rashmi Makol, Project Manager

Analysis Report

FOR: Attn: Ms. Stefanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

May 12, 2016

Sample Informa	ation	Custody Inform	nation	Date	<u>Time</u>	
Matrix:	SOIL	Collected by:	DC	05/02/16	11:00	
Location Code:	F&O-PCB	Received by:	LB	05/05/16	9:00	
Rush Request:	Standard	Analyzed by:	see "By" below			
P.O.#:	20120232.C40					

Laboratory Data

SDG ID: GBN25658 Phoenix ID: BN25665

Project ID: FORMER MERIDEN HOSPITAL

Client ID: 1176160502-08

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	97		%		05/05/16	W	SW846-%Solid
Extraction of CT ETPH	Completed				05/05/16	BJ/CK	SW3545A
Extraction for PCB	Completed				05/05/16	QQ/I	SW3540C
TPH by GC (Extracta	able Products	.)					
Ext. Petroleum HC	2900	500	mg/Kg	10	05/09/16	JRB	CTETPH 8015D
Identification	**		mg/Kg	10	05/09/16	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	Diluted Out		%	10	05/09/16	JRB	50 - 150 %
PCB (Soxhlet SW354	<u>40C)</u>						
PCB-1016	ND	0.34	mg/kg	10	05/06/16	AW	SW8082A
PCB-1221	ND	0.34	mg/kg	10	05/06/16	AW	SW8082A
PCB-1232	ND	0.34	mg/kg	10	05/06/16	AW	SW8082A
PCB-1242	ND	0.34	mg/kg	10	05/06/16	AW	SW8082A
PCB-1248	ND	0.34	mg/kg	10	05/06/16	AW	SW8082A
PCB-1254	ND	0.34	mg/kg	10	05/06/16	AW	SW8082A
PCB-1260	ND	0.34	mg/kg	10	05/06/16	AW	SW8082A
PCB-1262	ND	0.34	mg/kg	10	05/06/16	AW	SW8082A
PCB-1268	ND	0.34	mg/kg	10	05/06/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	106		%	10	05/06/16	AW	30 - 150 %
% TCMX	82		%	10	05/06/16	AW	30 - 150 %

Project ID: FORMER MERIDEN HOSPITAL Phoenix I.D.: BN25665 Client ID: 1176160502-08 RL/ Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

TPH Comment:

**Petroleum hydrocarbon chromatogram contains a multicomponent hydrocarbon distribution in the range of C16 to C36. The sample was quantitated against a C9-C36 alkane hydrocarbon standard.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director May 12, 2016 Reviewed and Released by: Rashmi Makol, Project Manager

Analysis Report

May 12, 2016

FOR: Attn: Ms. Stefanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

<u>Sample</u>	Information
Matrix:	SOIL

Location Code:	F&O-PCB
Rush Request:	Standard
P.O.#:	20120232.C40

Custody Information						
Collected by:	DC					
Received by:	LB					
Analyzed by:	see "By" below					

Laboratory Data

DI /

SDG ID: GBN25658 Phoenix ID: BN25666

Time

13:00

9:00

Date

05/02/16

05/05/16

FORMER MERIDEN HOSPITAL Project ID:

Client ID: 1176160502-09

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Silver	< 0.41	0.41	mg/Kg	1	05/06/16	EK	SW6010C
Arsenic	9.9	0.8	mg/Kg	1	05/06/16	ΕK	SW6010C
Barium	59.3	0.41	mg/Kg	1	05/06/16	EK	SW6010C
Cadmium	2.48	0.41	mg/Kg	1	05/06/16	EK	SW6010C
Chromium	81.7	0.41	mg/Kg	1	05/06/16	ΕK	SW6010C
Mercury	0.28	0.03	mg/Kg	1	05/06/16	RS	SW7471B
Lead	103	0.41	mg/Kg	1	05/06/16	ΕK	SW6010C
Selenium	< 1.7	1.7	mg/Kg	1	05/06/16	LK	SW6010C
TCLP Silver	< 0.010	0.010	mg/L	1	05/06/16	LK	SW6010C
TCLP Arsenic	0.07	0.01	mg/L	1	05/06/16	ΕK	SW6010C
TCLP Barium	0.04	0.01	mg/L	1	05/06/16	ΕK	SW6010C
TCLP Cadmium	0.060	0.005	mg/L	1	05/06/16	ΕK	SW6010C
TCLP Chromium	0.024	0.010	mg/L	1	05/06/16	ΕK	SW6010C
TCLP Mercury	0.0003	0.0002	mg/L	1	05/06/16	RS	SW7470A
TCLP Lead	< 0.010	0.010	mg/L	1	05/06/16	LK	SW6010C
TCLP Selenium	< 0.01	0.01	mg/L	1	05/06/16	LK	SW6010C
TCLP Metals Digestion	Completed				05/06/16	W/W	SW3005A
Percent Solid	83		%		05/05/16	W	SW846-%Solid
Soil Extraction for SVOA	Completed				05/05/16	BJ/CKV	SW3545A
Extraction of CT ETPH	Completed				05/05/16	BJ/CK	SW3545A
Mercury Digestion	Completed				05/06/16	W/W	SW7471B
Extraction for PCB	Completed				05/05/16	QQ/I	SW3540C
TCLP Digestion Mercury	Completed				05/06/16	W/W	SW7470A
TCLP Extraction for Metals	Completed				05/05/16	W	SW1311
Total Metals Digest	Completed				05/05/16	G/AG	SW3050B
Field Extraction	Completed				05/02/16		SW5035A

Project ID: FORMER MERIDEN HOSPITAL

Client ID: 1176160502-09

Daramatar	Popult	RL/	Linito	Dilution	Doto/Timo	D./	Poforonoo
Falallielei	Result	FQL	UTIIIS	Dilution	Date/Time	Бу	Reference
TPH by GC (Extractable	e Products	5)					
Ext. Petroleum HC	ND	59	mg/Kg	1	05/06/16	JRB	CTETPH 8015D
Identification	ND		mg/Kg	1	05/06/16	JRB	CTETPH 8015D
QA/QC Surrogates			5 5				
% n-Pentacosane	76		%	1	05/06/16	JRB	50 - 150 %
PCB (Soxhlet SW35400	<u>C)</u>						
PCB-1016	ND	0.4	mg/kg	10	05/06/16	AW	SW8082A
PCB-1221	ND	0.4	mg/kg	10	05/06/16	AW	SW8082A
PCB-1232	ND	0.4	mg/kg	10	05/06/16	AW	SW8082A
PCB-1242	ND	0.4	mg/kg	10	05/06/16	AW	SW8082A
PCB-1248	ND	0.4	mg/kg	10	05/06/16	AW	SW8082A
PCB-1254	ND	0.4	mg/kg	10	05/06/16	AW	SW8082A
PCB-1260	ND	0.4	mg/kg	10	05/06/16	AW	SW8082A
PCB-1262	ND	0.4	mg/kg	10	05/06/16	AW	SW8082A
PCB-1268	ND	0.4	mg/kg	10	05/06/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	81		%	10	05/06/16	AW	30 - 150 %
% TCMX	76		%	10	05/06/16	AW	30 - 150 %
Volatiles							
1.1.1.2-Tetrachloroethane	ND	8.5	ug/Kg	1	05/07/16	JLI	SW8260
1.1.1-Trichloroethane	ND	8.5	ug/Kg	1	05/07/16	JLI	SW8260
1.1.2.2-Tetrachloroethane	ND	5.1	ug/Kg	1	05/07/16	JLI	SW8260
1.1.2-Trichloroethane	ND	8.5	ug/Kg	1	05/07/16	JLI	SW8260
1.1-Dichloroethane	ND	8.5	ug/Kg	1	05/07/16	JLI	SW8260
1,1-Dichloroethene	ND	8.5	ug/Kg	1	05/07/16	JLI	SW8260
1,1-Dichloropropene	ND	8.5	ug/Kg	1	05/07/16	JLI	SW8260
1,2,3-Trichlorobenzene	ND	8.5	ug/Kg	1	05/07/16	JLI	SW8260
1,2,3-Trichloropropane	ND	8.5	ug/Kg	1	05/07/16	JLI	SW8260
1,2,4-Trichlorobenzene	ND	8.5	ug/Kg	1	05/07/16	JLI	SW8260
1,2,4-Trimethylbenzene	ND	8.5	ug/Kg	1	05/07/16	JLI	SW8260
1,2-Dibromo-3-chloropropane	ND	8.5	ug/Kg	1	05/07/16	JLI	SW8260
1,2-Dibromoethane	ND	7.0	ug/Kg	1	05/07/16	JLI	SW8260
1,2-Dichlorobenzene	ND	8.5	ug/Kg	1	05/07/16	JLI	SW8260
1,2-Dichloroethane	ND	8.5	ug/Kg	1	05/07/16	JLI	SW8260
1,2-Dichloropropane	ND	8.5	ug/Kg	1	05/07/16	JLI	SW8260
1,3,5-Trimethylbenzene	ND	8.5	ug/Kg	1	05/07/16	JLI	SW8260
1,3-Dichlorobenzene	ND	8.5	ug/Kg	1	05/07/16	JLI	SW8260
1,3-Dichloropropane	ND	8.5	ug/Kg	1	05/07/16	JLI	SW8260
1,4-Dichlorobenzene	ND	8.5	ug/Kg	1	05/07/16	JLI	SW8260
2,2-Dichloropropane	ND	8.5	ug/Kg	1	05/07/16	JLI	SW8260
2-Chlorotoluene	ND	8.5	ug/Kg	1	05/07/16	JLI	SW8260
2-Hexanone	ND	42	ug/Kg	1	05/07/16	JLI	SW8260
2-Isopropyltoluene	ND	8.5	ug/Kg	1	05/07/16	JLI	SW8260
4-Chlorotoluene	ND	8.5	ug/Kg	1	05/07/16	JLI	SW8260
4-Methyl-2-pentanone	ND	42	ug/Kg	1	05/07/16	JLI	SW8260
Acetone	ND	420	ug/Kg	1	05/07/16	JLI	SW8260
Acrylonitrile	ND	8.5	ug/Kg	1	05/07/16	JLI	SW8260

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Benzene	ND	8.5	ug/Kg	1	05/07/16	JLI	SW8260
Bromobenzene	ND	8.5	ug/Kg	1	05/07/16	JLI	SW8260
Bromochloromethane	ND	8.5	ug/Kg	1	05/07/16	JLI	SW8260
Bromodichloromethane	ND	8.5	ug/Kg	1	05/07/16	JLI	SW8260
Bromoform	ND	8.5	ug/Kg	1	05/07/16	JLI	SW8260
Bromomethane	ND	8.5	ug/Kg	1	05/07/16	JLI	SW8260
Carbon Disulfide	ND	8.5	ug/Kg	1	05/07/16	JLI	SW8260
Carbon tetrachloride	ND	8.5	ug/Kg	1	05/07/16	JLI	SW8260
Chlorobenzene	ND	8.5	ug/Kg	1	05/07/16	JLI	SW8260
Chloroethane	ND	8.5	ug/Kg	1	05/07/16	JLI	SW8260
Chloroform	ND	8.5	ug/Kg	1	05/07/16	JLI	SW8260
Chloromethane	ND	8.5	ug/Kg	1	05/07/16	JLI	SW8260
cis-1,2-Dichloroethene	ND	8.5	ug/Kg	1	05/07/16	JLI	SW8260
cis-1,3-Dichloropropene	ND	8.5	ug/Kg	1	05/07/16	JLI	SW8260
Dibromochloromethane	ND	5.1	ug/Kg	1	05/07/16	JLI	SW8260
Dibromomethane	ND	8.5	ug/Kg	1	05/07/16	JLI	SW8260
Dichlorodifluoromethane	ND	8.5	ug/Kg	1	05/07/16	JLI	SW8260
Ethylbenzene	ND	8.5	ug/Kg	1	05/07/16	JLI	SW8260
Hexachlorobutadiene	ND	8.5	ug/Kg	1	05/07/16	JLI	SW8260
Isopropylbenzene	ND	8.5	ug/Kg	1	05/07/16	JLI	SW8260
m&p-Xylene	ND	8.5	ug/Kg	1	05/07/16	JLI	SW8260
Methyl Ethyl Ketone	ND	51	ug/Kg	1	05/07/16	JLI	SW8260
Methyl t-butyl ether (MTBE)	ND	17	ug/Kg	1	05/07/16	JLI	SW8260
Methylene chloride	ND	17	ug/Kg	1	05/07/16	JLI	SW8260
Naphthalene	ND	8.5	ug/Kg	1	05/07/16	JLI	SW8260
n-Butylbenzene	ND	8.5	ug/Kg	1	05/07/16	JLI	SW8260
n-Propylbenzene	ND	8.5	ug/Kg	1	05/07/16	JLI	SW8260
o-Xylene	ND	8.5	ug/Kg	1	05/07/16	JLI	SW8260
p-lsopropyltoluene	ND	8.5	ug/Kg	1	05/07/16	JLI	SW8260
sec-Butylbenzene	ND	8.5	ug/Kg	1	05/07/16	JLI	SW8260
Styrene	ND	8.5	ug/Kg	1	05/07/16	JLI	SW8260
tert-Butvlbenzene	ND	8.5	ug/Kg	1	05/07/16	JLI	SW8260
Tetrachloroethene	ND	8.5	ug/Kg	1	05/07/16	JLI	SW8260
Tetrahvdrofuran (THF)	ND	17	ug/Kg	1	05/07/16	JLI	SW8260
Toluene	ND	8.5	ug/Kg	1	05/07/16	JLI	SW8260
Total Xvlenes	ND	8.5	ug/Kg	1	05/07/16	JLI	SW8260
trans-1.2-Dichloroethene	ND	8.5	ug/Kg	1	05/07/16	JLI	SW8260
trans-1.3-Dichloropropene	ND	8.5	ug/Kg	1	05/07/16	JLI	SW8260
trans-1.4-dichloro-2-butene	ND	17	ug/Kg	1	05/07/16	JLI	SW8260
Trichloroethene	ND	8.5	ug/Kg	1	05/07/16	JLI	SW8260
Trichlorofluoromethane	ND	8.5	ug/Kg	1	05/07/16	JLI	SW8260
Trichlorotrifluoroethane	ND	8.5	ug/Kg	1	05/07/16	JLI	SW8260
Vinyl chloride	ND	8.5	ua/Ka	1	05/07/16	JLI	SW8260
QA/QC Surrogates			0 0				
% 1.2-dichlorobenzene-d4	96		%	1	05/07/16	JLI	70 - 130 %
% Bromofluorobenzene	100		%	1	05/07/16	JLI	70 - 130 %
% Dibromofluoromethane	106		%	1	05/07/16	JLI	70 - 130 %
% Toluene-d8	99		%	1	05/07/16	JLI	70 - 130 %

Parameter	Result	RL/	Linite	Dilution	Date/Time	Bv	Reference
T arameter	Result	I QL	Onits	Dilution	Date, Time	Dy	Reference
Semivolatiles							
1 2 4 5-Tetrachlorobenzene	ND	280	ua/Ka	1	05/06/16	סס	SW8270D
1 2 4-Trichlorobenzene	ND	280	ug/Kg	1	05/06/16	סס	SW8270D
1 2-Dichlorobenzene	ND	280	ug/Kg	1	05/06/16	סס	SW8270D
1.2-Diphenylbydrazine	ND	400	ug/Kg	1	05/06/16	סס	SW8270D
1 3-Dichlorobenzene	ND	280	ug/Kg	1	05/06/16	סס	SW8270D
1 4-Dichlorobenzene	ND	280	ug/Kg	1	05/06/16	סס	SW8270D
2.4.5-Trichlorophenol	ND	280	ug/Kg	1	05/06/16	סס	SW8270D
2.4.6-Trichlorophenol	ND	280	ug/Kg	1	05/06/16	סס	SW8270D
2 4-Dichlorophenol	ND	280	ug/Kg	1	05/06/16	סס	SW8270D
2.4-Dimethylphenol	ND	280	ug/Kg	1	05/06/16	סס	SW8270D
2.4 Dinitrophonol	ND	400	ug/Kg	1	05/06/16	מס	SW/8270D
2.4 Dinitrophenol	ND	280	ug/Kg	1	05/06/16	מס	SW/8270D
2,4-Dimitoloidene		280	ug/Kg	1	05/06/16	םם	SW/8270D
2. Chloronaphthalana		280	ug/Kg	1	05/06/16	םם	SW/8270D
		280	ug/Kg	1	05/06/16	םם	SW/8270D
2 Methylpephthelene		280	ug/Kg	1	05/06/16	םם	SW(8270D
2 Methylphenel (e erecel)		200	ug/Kg	1	05/06/16	סס	SW0270D
2 Nitroopilino		200	ug/Kg	1	05/06/16	םם	SW(270D
2-Nitrophonol		200	ug/Kg	1	05/06/16		SW0270D
2-INITOPHENOI		200	ug/Kg	1	05/06/16	םם	SW0270D
2.2' Dichlerchenzidine		280	ug/Kg	1	05/06/16	םם	SW0270D
3,3 - Dichiolobenziaine		200	ug/Kg	1	05/06/16		SW0270D
4 6 Dinitro 2 methylphonol		400	ug/Kg	1	05/06/16	םם	SW0270D
4,6-Dinitro-2-methylphenol		400	ug/Kg	1	05/06/16	םם	SW0270D
4-Biomophenyi phenyi ether		400	ug/Kg	1	05/06/16		SW0270D
4-Chloro-3-methylphenol		200	ug/Kg	1	05/06/16	םם	SW0270D
4-Chlorophanul sharul other		200	ug/Kg	1	05/06/16	םם	SW0270D
4-Chlorophenyl phenyl ether		200	ug/Kg	1	05/06/16	םם	SW0270D
4-Nitroaniline		040	ug/Kg	1	05/06/16	םם	SW0270D
		200	ug/Kg	1	05/06/16	םם	SW0270D
Acenaphthelene		200	ug/Kg	1	05/06/16	םם	SW0270D
Acenaphtnylene		200	ug/Kg	1	05/06/16	םם	SW0270D
Acetophenone		200	ug/Kg	1	05/06/16	סט	SW6270D
Annine		400	ug/Kg	1	05/06/16	סט	SW6270D
Anthracene		280	ug/Kg	1	05/06/16	סט	SW8270D
Benz(a)anthracene		280	ug/Kg	1	05/06/16	סט	SW8270D
Benzidine		280	ug/Kg	1	05/06/16	סט	SW8270D
Benzo(a)pyrene	300	280	ug/Kg	1	05/06/16	סט	SW8270D
Benzo(b)fluorantnene	410	280	ug/Kg	1	05/06/16	סט	SW8270D
Benzo(gni)perylene	290	280	ug/Kg	1	05/06/16	סט	SW8270D
Benzo(k)fluoranthene	370	280	ug/Kg	1	05/06/16	סט	SW8270D
Benzoic acid		800	ug/Kg	1	05/06/16	שט	SVV8270D
Benzyl butyl phthalate	ND	280	ug/Kg	1	05/06/16	שט	SW8270D
Bis(2-chloroethoxy)methane	ND	280	ug/Kg	1	05/06/16	טט	SW8270D
Bis(2-chloroethyl)ether	ND	400	ug/Kg	1	05/06/16	טט	SVV82/UD
Bis(2-chloroisopropyl)ether	ND	280	ug/Kg	1	05/06/16	טט	SW82/0D
Bis(2-ethylhexyl)phthalate	ND	280	ug/Kg	1	05/06/16	טט	SW82/0D
Carbazole	ND	400	ug/Kg	1	05/06/16		SW8270D
Chrysene	410	280	ug/Kg	1	05/06/16	DD	SW8270D
Project ID: FORMER MERIDEN HOSPITAL Client ID: 1176160502-09

Parameter	Result	RL/	Linite	Dilution	Date/Time	Bv	Reference
	Result	I QL	Offits	Dilution	Date/Time	Dy	Reference
Dibenz(a,h)anthracene	ND	280	ug/Kg	1	05/06/16	DD	SW8270D
Dibenzofuran	ND	280	ug/Kg	1	05/06/16	DD	SW8270D
Diethyl phthalate	ND	280	ug/Kg	1	05/06/16	DD	SW8270D
Dimethylphthalate	ND	280	ug/Kg	1	05/06/16	DD	SW8270D
Di-n-butylphthalate	ND	280	ug/Kg	1	05/06/16	DD	SW8270D
Di-n-octylphthalate	ND	280	ug/Kg	1	05/06/16	DD	SW8270D
Fluoranthene	740	280	ug/Kg	1	05/06/16	DD	SW8270D
Fluorene	ND	280	ug/Kg	1	05/06/16	DD	SW8270D
Hexachlorobenzene	ND	280	ug/Kg	1	05/06/16	DD	SW8270D
Hexachlorobutadiene	ND	280	ug/Kg	1	05/06/16	DD	SW8270D
Hexachlorocyclopentadiene	ND	280	ug/Kg	1	05/06/16	DD	SW8270D
Hexachloroethane	ND	280	ug/Kg	1	05/06/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	320	280	ug/Kg	1	05/06/16	DD	SW8270D
Isophorone	ND	280	ug/Kg	1	05/06/16	DD	SW8270D
Naphthalene	ND	280	ug/Kg	1	05/06/16	DD	SW8270D
Nitrobenzene	ND	280	ug/Kg	1	05/06/16	DD	SW8270D
N-Nitrosodimethylamine	ND	400	ug/Kg	1	05/06/16	DD	SW8270D
N-Nitrosodi-n-propylamine	ND	280	ug/Kg	1	05/06/16	DD	SW8270D
N-Nitrosodiphenylamine	ND	400	ug/Kg	1	05/06/16	DD	SW8270D
Pentachloronitrobenzene	ND	400	ug/Kg	1	05/06/16	DD	SW8270D
Pentachlorophenol	ND	400	ug/Kg	1	05/06/16	DD	SW8270D
Phenanthrene	ND	280	ug/Kg	1	05/06/16	DD	SW8270D
Phenol	ND	280	ug/Kg	1	05/06/16	DD	SW8270D
Pyrene	570	280	ug/Kg	1	05/06/16	DD	SW8270D
Pyridine	ND	400	ug/Kg	1	05/06/16	DD	SW8270D
QA/QC Surrogates							
% 2,4,6-Tribromophenol	65		%	1	05/06/16	DD	30 - 130 %
% 2-Fluorobiphenyl	55		%	1	05/06/16	DD	30 - 130 %
% 2-Fluorophenol	52		%	1	05/06/16	DD	30 - 130 %
% Nitrobenzene-d5	50		%	1	05/06/16	DD	30 - 130 %
% Phenol-d5	53		%	1	05/06/16	DD	30 - 130 %
% Terphenyl-d14	58		%	1	05/06/16	DD	30 - 130 %

Project ID: FORMER MERIDEN HOSPITAL Phoenix I.D.: BN25666 Client ID: 1176160502-09 RL/ Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director May 12, 2016 Reviewed and Released by: Rashmi Makol, Project Manager

Analysis Report

May 12, 2016

FOR: Attn: Ms. Stefanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample Informa	ation	Custody Inform	nation	<u>Date</u>	<u>Time</u>
Matrix:	SOIL	Collected by:	DC	05/02/16	13:10
Location Code:	F&O-PCB	Received by:	LB	05/05/16	9:00
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	20120232.C40				

Laboratory Data

SDG ID: GBN25658 Phoenix ID: BN25667

FORMER MERIDEN HOSPITAL Project ID:

Client ID: 1176160502-10

		RL/			_		
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
Percent Solid	94		%		05/05/16	W	SW846-%Solid
Soil Extraction SVOA PAH	Completed				05/05/16	BJ/CKV	SW3545A
Extraction for PCB	Completed				05/05/16	QQ/I	SW3540C
PCB (Soxhlet SW354)	<u>0C)</u>						
PCB-1016	ND	0.35	mg/kg	10	05/06/16	AW	SW8082A
PCB-1221	ND	0.35	mg/kg	10	05/06/16	AW	SW8082A
PCB-1232	ND	0.35	mg/kg	10	05/06/16	AW	SW8082A
PCB-1242	ND	0.35	mg/kg	10	05/06/16	AW	SW8082A
PCB-1248	ND	0.35	mg/kg	10	05/06/16	AW	SW8082A
PCB-1254	ND	0.35	mg/kg	10	05/06/16	AW	SW8082A
PCB-1260	ND	0.35	mg/kg	10	05/06/16	AW	SW8082A
PCB-1262	ND	0.35	mg/kg	10	05/06/16	AW	SW8082A
PCB-1268	ND	0.35	mg/kg	10	05/06/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	79		%	10	05/06/16	AW	30 - 150 %
% TCMX	74		%	10	05/06/16	AW	30 - 150 %
Polynuclear Aromatic	: HC						
2-Methylnaphthalene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Acenaphthene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Acenaphthylene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Anthracene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Benz(a)anthracene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Benzo(a)pyrene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Benzo(b)fluoranthene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Benzo(ghi)perylene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Benzo(k)fluoranthene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D

Project ID: FORMER MERIDEN HOSPITAL Client ID: 1176160502-10

		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference	
Chrysene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D	_
Dibenz(a,h)anthracene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D	
Fluoranthene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D	
Fluorene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D	
Indeno(1,2,3-cd)pyrene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D	
Naphthalene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D	
Phenanthrene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D	
Pyrene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D	
QA/QC Surrogates								
% 2-Fluorobiphenyl	72		%	1	05/06/16	DD	30 - 130 %	
% Nitrobenzene-d5	73		%	1	05/06/16	DD	30 - 130 %	
% Terphenyl-d14	65		%	1	05/06/16	DD	30 - 130 %	

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director May 12, 2016 Reviewed and Released by: Rashmi Makol, Project Manager

Analysis Report

May 12, 2016

FOR: Attn: Ms. Stefanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample Informa	ation	Custody Inforn	nation	<u>Date</u>
Matrix:	SOIL	Collected by:	DC	05/02/16
Location Code:	F&O-PCB	Received by:	LB	05/05/16
Rush Request:	Standard	Analyzed by:	see "By" below	
P.O.#:	20120232.C40	Laboratory	<u>Data</u>	SDG

SDG ID: GBN25658

Time

13:30

9:00

Phoenix ID: BN25668

Project ID: FORMER MERIDEN HOSPITAL

Client ID: 1176160502-11

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	94		%		05/05/16	W	SW846-%Solid
Soil Extraction SVOA PAH	Completed				05/05/16	BJ/CKV	SW3545A
Extraction for PCB	Completed				05/05/16	QQ/I	SW3540C
PCB (Soxhlet SW354	<u>0C)</u>						
PCB-1016	ND	0.35	mg/kg	10	05/06/16	AW	SW8082A
PCB-1221	ND	0.35	mg/kg	10	05/06/16	AW	SW8082A
PCB-1232	ND	0.35	mg/kg	10	05/06/16	AW	SW8082A
PCB-1242	ND	0.35	mg/kg	10	05/06/16	AW	SW8082A
PCB-1248	ND	0.35	mg/kg	10	05/06/16	AW	SW8082A
PCB-1254	ND	0.35	mg/kg	10	05/06/16	AW	SW8082A
PCB-1260	ND	0.35	mg/kg	10	05/06/16	AW	SW8082A
PCB-1262	ND	0.35	mg/kg	10	05/06/16	AW	SW8082A
PCB-1268	ND	0.35	mg/kg	10	05/06/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	83		%	10	05/06/16	AW	30 - 150 %
% TCMX	81		%	10	05/06/16	AW	30 - 150 %
Polynuclear Aromatic	: HC						
2-Methylnaphthalene	ND	240	ug/Kg	1	05/06/16	DD	SW8270D
Acenaphthene	ND	240	ug/Kg	1	05/06/16	DD	SW8270D
Acenaphthylene	ND	240	ug/Kg	1	05/06/16	DD	SW8270D
Anthracene	ND	240	ug/Kg	1	05/06/16	DD	SW8270D
Benz(a)anthracene	ND	240	ug/Kg	1	05/06/16	DD	SW8270D
Benzo(a)pyrene	ND	240	ug/Kg	1	05/06/16	DD	SW8270D
Benzo(b)fluoranthene	ND	240	ug/Kg	1	05/06/16	DD	SW8270D
Benzo(ghi)perylene	ND	240	ug/Kg	1	05/06/16	DD	SW8270D
Benzo(k)fluoranthene	ND	240	ug/Kg	1	05/06/16	DD	SW8270D

Project ID: FORMER MERIDEN HOSPITAL Client ID: 1176160502-11

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
Chrysene	ND	240	ug/Kg	1	05/06/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	240	ug/Kg	1	05/06/16	DD	SW8270D
Fluoranthene	ND	240	ug/Kg	1	05/06/16	DD	SW8270D
Fluorene	ND	240	ug/Kg	1	05/06/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	240	ug/Kg	1	05/06/16	DD	SW8270D
Naphthalene	ND	240	ug/Kg	1	05/06/16	DD	SW8270D
Phenanthrene	ND	240	ug/Kg	1	05/06/16	DD	SW8270D
Pyrene	ND	240	ug/Kg	1	05/06/16	DD	SW8270D
QA/QC Surrogates							
% 2-Fluorobiphenyl	65		%	1	05/06/16	DD	30 - 130 %
% Nitrobenzene-d5	64		%	1	05/06/16	DD	30 - 130 %
% Terphenyl-d14	59		%	1	05/06/16	DD	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director May 12, 2016 Reviewed and Released by: Rashmi Makol, Project Manager

Analysis Report

FOR: Attn: Ms. Stefanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

May 12, 2016

Sample Informa	ation	Custody Inform	nation	<u>Date</u>	<u>Time</u>
Matrix:	SOIL	Collected by:	DC	05/02/16	15:15
Location Code:	F&O-PCB	Received by:	LB	05/05/16	9:00
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	20120232.C40				

Laboratory Data

SDG ID: GBN25658 Phoenix ID: BN25672

Project ID: FORMER MERIDEN HOSPITAL

Client ID: 1176160502-15

-		RL/				_	P (
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	97		%		05/05/16	W	SW846-%Solid
Extraction of CT ETPH	Completed				05/05/16	BJ/CK	SW3545A
Extraction for PCB	Completed				05/05/16	QQ/I	SW3540C
TPH by GC (Extractable	e Products	<u>;)</u>					
Ext. Petroleum HC	28000	2500	mg/Kg	50	05/09/16	JRB	CTETPH 8015D
Identification	**		mg/Kg	50	05/09/16	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	Diluted Out		%	50	05/09/16	JRB	50 - 150 %
PCB (Soxhlet SW35400	<u>C)</u>						
PCB-1016	ND	0.34	mg/kg	10	05/06/16	AW	SW8082A
PCB-1221	ND	0.34	mg/kg	10	05/06/16	AW	SW8082A
PCB-1232	ND	0.34	mg/kg	10	05/06/16	AW	SW8082A
PCB-1242	ND	0.34	mg/kg	10	05/06/16	AW	SW8082A
PCB-1248	ND	0.34	mg/kg	10	05/06/16	AW	SW8082A
PCB-1254	ND	0.34	mg/kg	10	05/06/16	AW	SW8082A
PCB-1260	ND	0.34	mg/kg	10	05/06/16	AW	SW8082A
PCB-1262	ND	0.34	mg/kg	10	05/06/16	AW	SW8082A
PCB-1268	ND	0.34	mg/kg	10	05/06/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	76		%	10	05/06/16	AW	30 - 150 %
% TCMX	91		%	10	05/06/16	AW	30 - 150 %

Project ID: FORMER MERIDEN HOSPITAL Phoenix I.D.: BN25672 Client ID: 1176160502-15 RL/ Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

TPH Comment:

**Petroleum hydrocarbon chromatogram contains a multicomponent hydrocarbon distribution in the range of C18 to C36. The sample was quantitated against a C9-C36 alkane hydrocarbon standard.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director May 12, 2016 Reviewed and Released by: Rashmi Makol, Project Manager

Analysis Report

May 12, 2016

FOR: Attn: Ms. Stefanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample	Information

Matrix:	SOIL
Location Code:	F&O-PCB
Rush Request:	Standard
P.O.#:	20120232.C40

Custody Information						
Collected by:	DC					
Received by:	LB					
Analyzed by:	see "By" below					

Laboratory Data

SDG ID: GBN25658 Phoenix ID: BN25673

Time

15:30

9:00

Date

05/02/16

05/05/16

FORMER MERIDEN HOSPITAL Project ID:

ND

ND

ND

73

72

0.34

0.34

0.34

Client ID: 1176160502-16

PCB-1260 PCB-1262

PCB-1268

% DCBP

% TCMX

QA/QC Surrogates

RL/ Parameter PQL Units Dilution Date/Time Result By Reference Silver < 0.31 0.31 mg/Kg 1 05/06/16 ΕK SW6010C Arsenic 4.4 0.6 mg/Kg 1 05/06/16 ΕK SW6010C Barium 91.0 0.31 mg/Kg 1 05/06/16 ΕK SW6010C 05/06/16 SW6010C Cadmium 0.50 0.31 mg/Kg 1 ΕK 15.4 0.31 1 05/06/16 ΕK SW6010C Chromium mg/Kg Mercury 0.04 0.03 mg/Kg 1 05/06/16 RS SW7471B 05/06/16 SW6010C Lead 31.2 0.31 mg/Kg 1 ΕK < 1.2 mg/Kg 1 05/06/16 LK SW6010C Selenium 1.2 98 SW846-%Solid Percent Solid % 05/05/16 W SW7471B Mercury Digestion Completed 05/06/16 W/W 05/05/16 SW3540C Extraction for PCB Completed QQ/I Completed 05/05/16 G/AG SW3050B Total Metals Digest PCB (Soxhlet SW3540C) PCB-1016 ND 0.34 10 05/06/16 AW SW8082A mg/kg ND 0.34 10 05/06/16 AW SW8082A PCB-1221 mg/kg ND 0.34 mg/kg 10 05/06/16 AW SW8082A PCB-1232 ND 05/06/16 SW8082A PCB-1242 0.34 mg/kg 10 AW ND 0.34 10 05/06/16 SW8082A PCB-1248 mg/kg AW ND 10 05/06/16 AW SW8082A 0.34 mg/kg PCB-1254

mg/kg

mg/kg

mg/kg

%

%

10

10

10

10

10

05/06/16

05/06/16

05/06/16

05/06/16

05/06/16

AW

AW

AW

AW

AW

SW8082A

SW8082A

SW8082A

30 - 150 %

30 - 150 %

Project ID: FORMER MERIDEN HOSPITAL Phoenix I.D.: BN25673 Client ID: 1176160502-16 RL/ Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis, Shiller, Laboratory Director May 12, 2016 Reviewed and Released by: Rashmi Makol, Project Manager

QA/QC Report

May 12, 2016

QA/QC Data

SDG I.D.: GBN25658

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 344463 (mg/L), Q	C Sam	ole No: I	3N25383	(BN256	66)									
ICP Metals - TCLP Extrac	tion													
Arsenic	BRL	0.10	<0.10	<0.10	NC	116			96.3			75 - 125	20	
Barium	BRL	0.10	0.32	0.29	NC	102			93.2			75 - 125	20	
Cadmium	BRL	0.050	<0.050	<0.050	NC	106			95.1			75 - 125	20	
Chromium	BRL	0.10	0.01	<0.10	NC	107			95.4			75 - 125	20	
Lead	BRL	0.10	<0.10	<0.10	NC	105			94.5			75 - 125	20	
Selenium	BRL	0.10	<0.10	<0.10	NC	122			99.5			75 - 125	20	
Silver	BRL	0.10	<0.10	<0.10	NC	114			98.1			75 - 125	20	
QA/QC Batch 344552 (mg/kg), 0	2C Sam	ple No:	BN2569	1 (BN25	664, BN	25666	BN256	73)						
ICP Metals - Soil		•												
Arsenic	BRL	0.67	12.7	12.7	0	103			91.1			75 - 125	30	
Barium	BRL	0.33	58.6	58.1	0.90	94.5			96.4			75 - 125	30	
Cadmium	BRL	0.33	2.80	3.02	7.60	104			90.3			75 - 125	30	
Chromium	BRL	0.33	24.3	24.0	1.20	105			96.0			75 - 125	30	
Lead	BRL	0.33	747	885	16.9	97.5			111			75 - 125	30	
Selenium	BRL	1.3	<1.6	<1.5	NC	90.8			78.1			75 - 125	30	
Silver	BRL	0.33	6.04	5.67	6.30	103			96.6			75 - 125	30	
QA/QC Batch 344606 (mg/kg), 0	C Sam	ple No:	BN2569	1 (BN25	664, BN	125666))							
Mercury - Soil Comment:	BRL	0.03	0.23	0.22	4.40	113	109	3.6	150			70 - 130	30	m
Additional Mercury criteria: LCS ac	ceptanc	e range f	or waters	is 80-120	% and fo	or soils is	570-1309	%.						
QA/QC Batch 344607 (mg/kg), 0	2C Sam	ple No:	BN2635	8 (BN25)	673)									
Mercury - Soil Comment:	BRL	0.02	0.20	0.16	22.2	120	115	4.3	95.7			70 - 130	30	
Additional Mercury criteria: LCS ac	ceptanc	e range f	or waters	is 80-120'	% and fo	or soils is	5 70-1309	%.						
QA/QC Batch 344609 (mg/L), Q	C Sam	ble No: I	3N26576	(BN256	66)									
Mercury - Water Comment:	BRL	0.0002	<0.0002	<0.0002	NC	105			101			70 - 130	20	
Additional Mercury criteria: LCS ac	ceptanc	e range f	or waters	is 80-120'	% and fo	or soils is	5 70-1309	%.						

m = This parameter is outside laboratory MS/MSD specified recovery limits.

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

May 12, 2016

QA/QC Data

SDG I.D.: GBN25658

Parameter	Blank	Blk RL			LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 344429 (mg/k	kg), QC Sam	ple No: E	3N25312 10X (E	N25665,	BN25	5666, Bl	N25667	BN25	668, BN	125672	, BN256	o73)
Polychlorinated Bipher	<u>nyls - Soil</u>											
PCB-1016	ND	0.17			75	77	2.6				40 - 140	30
PCB-1221	ND	0.17									40 - 140	30
PCB-1232	ND	0.17									40 - 140	30
PCB-1242	ND	0.17									40 - 140	30
PCB-1248	ND	0.17									40 - 140	30
PCB-1254	ND	0.17									40 - 140	30
PCB-1260	ND	0.17			81	83	2.4				40 - 140	30
PCB-1262	ND	0.17									40 - 140	30
PCB-1268	ND	0.17									40 - 140	30
% DCBP (Surrogate Rec)	87	%			90	91	1.1				30 - 150	30
% TCMX (Surrogate Rec) Comment:	72	%			72	74	2.7				30 - 150	30

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

QA/QC Batch 344839 (ug/kg), QC Sample No: BN25342 (BN25658 (50X) , BN25659, BN25664 (50X) , BN25666)

Volatiles - Soil

1,1,1,2-Tetrachloroethane	ND	5.0	108	107	0.9	96	70 - 130	30
1,1,1-Trichloroethane	ND	5.0	113	106	6.4	106	70 - 130	30
1,1,2,2-Tetrachloroethane	ND	3.0	107	107	0.0	89	70 - 130	30
1,1,2-Trichloroethane	ND	5.0	106	107	0.9	100	70 - 130	30
1,1-Dichloroethane	ND	5.0	115	110	4.4	108	70 - 130	30
1,1-Dichloroethene	ND	5.0	125	113	10.1	108	70 - 130	30
1,1-Dichloropropene	ND	5.0	119	104	13.5	104	70 - 130	30
1,2,3-Trichlorobenzene	ND	5.0	98	97	1.0	82	70 - 130	30
1,2,3-Trichloropropane	ND	5.0	107	110	2.8	91	70 - 130	30
1,2,4-Trichlorobenzene	ND	5.0	98	91	7.4	81	70 - 130	30
1,2,4-Trimethylbenzene	ND	1.0	105	96	9.0	87	70 - 130	30
1,2-Dibromo-3-chloropropane	ND	5.0	107	113	5.5	83	70 - 130	30
1,2-Dibromoethane	ND	5.0	108	108	0.0	95	70 - 130	30
1,2-Dichlorobenzene	ND	5.0	105	100	4.9	90	70 - 130	30
1,2-Dichloroethane	ND	5.0	109	109	0.0	103	70 - 130	30
1,2-Dichloropropane	ND	5.0	111	108	2.7	104	70 - 130	30
1,3,5-Trimethylbenzene	ND	1.0	107	96	10.8	88	70 - 130	30
1,3-Dichlorobenzene	ND	5.0	105	96	9.0	89	70 - 130	30
1,3-Dichloropropane	ND	5.0	105	106	0.9	93	70 - 130	30
1,4-Dichlorobenzene	ND	5.0	102	95	7.1	87	70 - 130	30
2,2-Dichloropropane	ND	5.0	113	104	8.3	97	70 - 130	30
2-Chlorotoluene	ND	5.0	109	98	10.6	89	70 - 130	30
2-Hexanone	ND	25	86	88	2.3	75	70 - 130	30
2-Isopropyltoluene	ND	5.0	109	98	10.6	90	70 - 130	30
4-Chlorotoluene	ND	5.0	103	94	9.1	87	70 - 130	30

SDG I.D.: GBN25658

Andenych-pontanoneND25970.029.09.09.09.09.09.09.09.09.0AcryonikileND5.01101154.41077.010.0 <th>Parameter</th> <th>Blank</th> <th>Blk RL</th> <th>LCS %</th> <th>LCSD %</th> <th>LCS RPD</th> <th>MS %</th> <th>MSD %</th> <th>MS RPD</th> <th>% Rec Limits</th> <th>% RPD Limits</th> <th></th>	Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
AcatonND10788362696970.131080BarzanoND501001131075.510370.1330BronobenzeneND5.01141171.47.01001001010BronobenzeneND5.01141111.71810270.1330BronobenzeneND5.01141111.47.710870.1330BronobenzeneND5.01111142.77470.1330BronobenzeneND5.01181088.810470.1330Carbon DisalidicND5.01181088.810470.1330Carbon DisalidicND5.01181022.82.170.1330ChicochanaND5.01121185.110470.1330ChicochanaND5.01121185.110970.1330ChicochanaND5.01121185.110470.1330ChicochanaND5.01211185.110470.1330ChicochanaND5.01211185.110470.1330ChicochanaND5.01211185.110470.1330ChicochanaND5.01211085.4109 <td>4-Methyl-2-pentanone</td> <td>ND</td> <td>25</td> <td>99</td> <td>102</td> <td>3.0</td> <td>92</td> <td></td> <td></td> <td>70 - 130</td> <td>30</td> <td></td>	4-Methyl-2-pentanone	ND	25	99	102	3.0	92			70 - 130	30	
Acylonitric BervanceND5.01001154.410770-10030BromochanzeneND5.01091026.69170-10330BromochinomethaneND5.01141112.710870-10330BromochinomethaneND5.01111142.79170-10330BromochinomethaneND5.01111142.79170-10330BromochinomethaneND5.01171065.410470-13330Carbon bizditidicND5.01181088.810570-13330Carbon bizditidicND5.011210612.9349470-13330ChiorosthaneND5.011210715.510870-13330ChiorosthaneND5.01121155.110970-13330ChiorosthaneND5.01121155.110970-13330ChiorosthaneND5.01121155.110970-13330DibromochiorosthaneND5.011210715.010970-13330DibromochiorosthaneND5.01111091.810970-13330DibromochiorosthaneND5.01001001.04.41071.01.0DibromochiorosthaneND5.	Acetone	ND	10	78	83	6.2	69			70 - 130	30	m
Benzonehen Bernomehane Bernomehane Bernomehane Bernomehane BernomehaneND5.0101025.510370-10330Bromochizomethane Bernomethane BromochizomethaneND5.01141112.710870-10330Bromochizomethane BernomethaneND5.01131111.810270-10330Bromochizomethane Carbon DisulfordND5.01161088.810570-10330Carbon Disulford Chizobenzene ChizobenzeneND5.01161023.89470-10330Chizobenzene Chizobenzene ChizobenzeneND5.01211083.470-1033070-10330Chizobenzene Chizobenzene Chizobenzene Chizobenzene Chizobenzene Chizobenzene Chizobenzene Chizobenzene Chizobenzene Chizobenzene ND5.01211083.470-103307Chizobenzene Chizobenzene Chizobenzene Chizobenzene Chizobenzene Chizobenzene ND5.01211111099.270-103307Dizomochizomethane Chizobenzene 	Acrylonitrile	ND	5.0	110	115	4.4	107			70 - 130	30	
BromocharceneND5.01091026.6917.0-13030BromocharcenethaneND5.01131111.81027.0-13030BromocharcenethaneND5.01131111.42.7917.0-13030BromocharcenethaneND5.01131181088.81057.0-13030Carban IsballideND5.01161023.8440.47.0-13030ChioracharcenethaneND5.01061023.8947.0-13030ChioracharcenethaneND5.01211055.11097.0-13030ChioracharcenethaneND5.01121075.51087.0-13030ChioracharcenethaneND5.01131075.51087.0-13030ChioracharcenethaneND5.01131075.51087.0-13030DibromocharcenethaneND5.012110715.1097.01010DibromocharcenethaneND5.01211081099118.0917.01010DibromocharcenethaneND5.01001099118.0917.010<	Benzene	ND	1.0	113	107	5.5	103			70 - 130	30	
BronndchronmethaneND5.01141142.70870-13030BronndchronmethaneND5.01111142.79170-13030BronndchronmethaneND5.01171106.2747470-13030Carbon DisulfacionND5.01181088.810570-1303070-13030Carbon DisulfacionND5.01061223.89470-1303070-130	Bromobenzene	ND	5.0	109	102	6.6	91			70 - 130	30	
BronnethaneND5.01131116.10170-10330BronnethaneND5.01111142.79170-13030Carbon DisulideND5.01181088.810470-13030Carbon DisulideND5.01161095.410470-13030ChioroberzeneND5.01201226.92170-13030ChioroberzeneND5.01201226.92170-13030ChioroberzeneND5.01211185.110970-13030ChioroberseneND5.0121111092170-13030ChioroberseneND5.0121111099270-13030DibromochomethaneND5.01241111091.810270-13030DibromochomethaneND5.01241111091.810270-13030DibromochomethaneND5.0124110091.810270-13030DibromochomethaneND5.01241047070301DibromochomethaneND5.01241047070301DibromochomethaneND5.012410470301DibromochomethaneND5.01241047030	Bromochloromethane	ND	5.0	114	111	2.7	108			70 - 130	30	
Bronnochan Bronnethane Carton DisulideND5.01111142.7917.07.080Bronnethane Carton DisulideND5.01181088.410570-13030Carbon DisulideND5.01161008.410470-1303030ChioroberzeneND5.01201126.92170-13030mChiorobertaneND5.01211155.110970-13030mChiorobertaneND5.01211155.110970-13030mChiorobertaneND5.01211155.110970-13030mChiorobertaneND5.01111091.810270-13030mDibronnochloromethaneND5.01111091.810270-13030mDibronnochloromethaneND5.01111091.810270-13030mDibronnochloromethaneND5.011410810.0707030mEinyberzeneND1.01.010810.09113.07030mBeyropybenzeneND1.01.01049470-13030mmBeyropybenzeneND1.01.01049470-13030mmNethylenezeneND1	Bromodichloromethane	ND	5.0	113	111	1.8	102			70 - 130	30	
BromenhaneND5.01171106.27.47.030Carbon terachiorideND5.01181088.810570.13030ChiorobenzeneND5.01101023.89470.13030ChiorobenzeneND5.01121083.69770.13030ChiorobenzeneND5.01121085.510870.13030ChiorobenzeneND5.01131075.510870.13030ChiorobenzeneND5.01131075.510870.13030ChiorobenzeneND5.01131075.510870.13030DibromochioropenemeND5.01131075.79470.13030DibromochioromethaneND5.01131077.79470.13030DibromochioromethaneND5.01161007.79470.13030ElybehenzeneND1.01001081007.79470.13030ElybehenzeneND5.01081007.79470.13030ElybehenzeneND5.01081007.79470.13030ElybehenzeneND5.01071014.09470.13030ElybehenzeneND5.01071014.094	Bromoform	ND	5.0	111	114	2.7	91			70 - 130	30	
Carbon bluifide ND 5.0 118 108 8.8 105 70-130 30 Carbon tetrachloride ND 5.0 115 109 5.4 104 70-130 30 Chlorobertane ND 5.0 120 12 6.9 21 70-130 30 Chloroberthane ND 5.0 121 15.5 1.0 97 70-130 30 Chloroberthane ND 5.0 121 15.5 1.0 97 70-130 30 Chloromethane ND 5.0 171 10.9 96 70-130 30 Dibromochhoromethane ND 5.0 112 118 0.9 70 70-130 30 Dibromochhoromethane ND 5.0 118 100 7.7 94 70-130 30 Dibromochhoromethane ND 5.0 106 97 10.0 4.0 70-130 30 Dibromochhoromethane ND	Bromomethane	ND	5.0	117	110	6.2	74			70 - 130	30	
Carbon tetrachbride ND 5.0 115 100 5.4 104 70-130 30 Chiorobanzene ND 5.0 106 102 3.8 94 70-130 30 Chioroform ND 5.0 112 118 3.6 97 70-130 30 Chioroform ND 5.0 113 107 5.5 108 70-130 30 Chioromethane ND 5.0 113 107 5.5 108 70-130 30 Dibromochioromethane ND 5.0 117 109 94 70-130 30 Dibromochioromethane ND 5.0 116 109 92 70-130 30 Ehybenzene ND 5.0 108 100 7.7 94 70-130 30 Isoprophibenzene ND 5.0 109 91 4.3 89 70-130 30 Isoprophibenzene ND 5.0 109	Carbon Disulfide	ND	5.0	118	108	8.8	105			70 - 130	30	
ChickogenzeneND5.01061023.89470-13030ChiorodenhaneND5.01201126.92170-13030mChiorodenthaneND5.01211155.110970-13030cChiorodenthaneND5.01211155.110970-13030cChiorodenthenND5.01071051.99670-13030cChiorodenthenND5.01111099270-13030c100 <td< td=""><td>Carbon tetrachloride</td><td>ND</td><td>5.0</td><td>115</td><td>109</td><td>5.4</td><td>104</td><td></td><td></td><td>70 - 130</td><td>30</td><td></td></td<>	Carbon tetrachloride	ND	5.0	115	109	5.4	104			70 - 130	30	
ChicorelinaneND5.01201126.92.170-13030mChicorotormND5.01121185.110970-13030cChi-12-DichloroetheneND5.01131075.510870-13030cCis-12-DichloroetheneND5.01131075.510870-13030cDibromochloromethaneND5.01111111099.870-13030cDibromochloromethaneND5.01111097.810270-13030cEthylbenzeneND5.01081007.79470-13030cEthylbenzeneND5.0109918.09170-13030cMethylethylketoneND5.0100996.89470-13030cMethylethylketoneND5.0971014.09470-13030cMethylethylketoneND5.097914.38970-13030cNaphthaleneND5.097914.38970-13030cNaphthaleneND1.01.01001.89170-13030cNaphthaleneND1.01.0981.69170-13030cNaphthaleneND1.01.01.01.01.0	Chlorobenzene	ND	5.0	106	102	3.8	94			70 - 130	30	
Chlordorm ND 5.0 112 108 3.6 97 70.130 30 Chlordorethane ND 5.0 121 115 5.1 109 70.130 30 Chlordorethane ND 5.0 107 105 1.9 96 70.130 30 Dibromochloromethane ND 5.0 112 111 0.9 92 70.130 30 Dibromochlaromethane ND 5.0 126 108 15.4 109 70.130 30 Dibromochlaromethane ND 5.0 126 108 15.4 109 70.130 30 Ethylbenzene ND 5.0 106 90 70.130 30 10 Keaxhlorobuladiene ND 5.0 106 90 80 70.130 30 Isopropylbenzene ND 1.0 107 100 2.8 90 70.130 30 Methyl tehry (NTBE) ND 1.0 107 100 2.8 105 70.130 30 Naphtalene	Chloroethane	ND	5.0	120	112	6.9	21			70 - 130	30	m
Chloromethane ND 5.0 121 115 5.1 109 70-130 30 cis-1.2-Dichloromethane ND 5.0 107 105 1.9 96 70-130 30 Dibromochloromethane ND 5.0 112 111 0.9 92 70-130 30 Dibromothane ND 5.0 112 111 0.9 92 70-130 30 Dibromothane ND 5.0 106 107 107 94 70-130 30 Ethylbenzene ND 1.0 108 100 7.7 94 70-130 30 Ethylbenzene ND 1.0 100 99 16.8 94 70-130 30 Methyletherechorbutadene ND 5.0 107 101 4.0 94 70-130 30 Methylethyletone ND 5.0 97 101 4.0 94 70-130 30 Methylethyletone ND 5.0 97 101 4.0 94 70-130 30 10 <td>Chloroform</td> <td>ND</td> <td>5.0</td> <td>112</td> <td>108</td> <td>3.6</td> <td>97</td> <td></td> <td></td> <td>70 - 130</td> <td>30</td> <td></td>	Chloroform	ND	5.0	112	108	3.6	97			70 - 130	30	
cks-1,2-Dichloroethene ND 5.0 113 107 5.5 108 70-130 30 cks-1,3-Dichloropropene ND 5.0 107 105 1,9 96 70-130 30 Dibromochtoneromethane ND 5.0 111 109 1.8 102 70-130 30 Dichorodifucoromethane ND 5.0 126 108 15.4 109 7.0 30 Ethylbenzene ND 5.0 108 100 7.7 94 70-130 30 Isopropylbenzene ND 5.0 106 97 7.0 30 7 Methyl ethyl ketone ND 5.0 106 97 101 4.0 94 70-130 30 Methyl ethyl ketone ND 5.0 97 101 2.8 70-130 30 Naphthalene ND 5.0 97 101 5.8 87 70-130 30 Naphthalene ND	Chloromethane	ND	5.0	121	115	5.1	109			70 - 130	30	
cls-1.3-Dichloropropene ND 5.0 107 105 1.9 96 70-130 30 Dibromochloromethane ND 5.0 111 109 1.8 102 70-130 30 Dichorodifluoromethane ND 5.0 126 108 15.4 109 70-130 30 Ethylbenzene ND 5.0 126 108 15.4 109 70-130 30 Hexachlorobuladiene ND 5.0 109 98 16.6 90 70-130 30 Isopropylbenzene ND 1.0 109 98 16.6 90 70-130 30 Mehyl-buldether (MTBE) ND 1.0 107 110 2.8 94 70-130 30 Mehyl-buldether (MTBE) ND 1.0 107 110 2.8 95 91 4.3 89 70-130 30 - Naphthalene ND 5.0 97 91 4.3 89 70-130 30 - Pisloryphylbenzene ND 1.0 10	cis-1,2-Dichloroethene	ND	5.0	113	107	5.5	108			70 - 130	30	
Dibromochloromethane ND 3.0 112 111 0.9 92 70.130 30 Dibromochhane ND 5.0 111 109 92 70.130 30 Dibromochhane ND 5.0 126 108 1.4 109 70.130 30 Ethylbenzene ND 1.0 108 100 7.7 94 70.130 30 Isopropibenzene ND 1.0 109 91 8.0 91 70.130 30 msp.xylene ND 2.0 106 99 8.8 94 70.130 30 Methyl tehyl tehre (MTBE) ND 5.0 97 101 4.0 94 70.130 30 Naphthalene ND 5.0 95 91 4.3 89 70.130 30 n-Propylbenzene ND 1.0 106 93 1.31 89 70.130 30 n-Stylbenzene ND 1.0 <	cis-1,3-Dichloropropene	ND	5.0	107	105	1.9	96			70 - 130	30	
Dibromomethane ND 5.0 111 109 1.8 102 70-130 30 Dichlorodiffuoromethane ND 5.0 126 108 17.4 109 70-130 30 Hexachlorobutadiene ND 1.0 108 7.7 94 70-130 30 Isopropylenzene ND 5.0 109 98 10.6 90 70-130 30 Methylether ND 5.0 101 4.0 94 70-130 30 Methylether (MTBE) ND 5.0 97 101 4.0 94 70-130 30 Nethylether (MTBE) ND 5.0 97 100 1.0 70-130 30 Naphthalene ND 5.0 97 100 1.0 70-130 30 ND 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	Dibromochloromethane	ND	3.0	112	111	0.9	92			70 - 130	30	
Dichlorodifluoromethane ND 5.0 126 108 15.4 109 7.7 94 70.130 30 Ethylbenzene ND 1.0 108 100 7.7 94 70.130 30 Hexachlorobutadiene ND 5.0 109 91 8.0 91 70.130 30 skoproylbenzene ND 1.0 109 98 10.6 90 70.130 30 m&p-Xylene ND 5.0 97 101 4.0 94 70.130 30 Methyl tehtyl tehr (MTBE) ND 5.0 97 101 4.3 89 70.130 30 Naphthalene ND 5.0 95 91 4.3 89 70.130 30 n-Porylbenzene ND 1.0 106 88 18.6 88 70.130 30 o-Xylene ND 1.0 101 5.8 95 70.130 30 sec-Butylbenzene ND 5.0 103 99 4.0 92 70.130 30 <td>Dibromomethane</td> <td>ND</td> <td>5.0</td> <td>111</td> <td>109</td> <td>1.8</td> <td>102</td> <td></td> <td></td> <td>70 - 130</td> <td>30</td> <td></td>	Dibromomethane	ND	5.0	111	109	1.8	102			70 - 130	30	
Ethylbenzene ND 1.0 108 100 7.7 94 70-130 30 Hexachlorobutadiene ND 5.0 109 91 18.0 91 70-130 30 Isopropylbenzene ND 2.0 106 99 6.8 94 70-130 30 Methylethyl ketone ND 5.0 97 101 4.0 94 70-130 30 Methyletholyl ther (MTBE) ND 5.0 97 101 4.0 94 70-130 30 Naphthalene ND 5.0 97 101 4.0 94 70-130 30 Naphthalene ND 5.0 99 100 1.0 81 70-130 30 NP-toyplenzene ND 1.0 106 83 18.6 88 70-130 30 o-Xylene ND 1.0 101 15.8 95 70-130 30 sec-Bulybenzene ND 1.0 1112 98 1.0 70-130 30 Styrene ND	Dichlorodifluoromethane	ND	5.0	126	108	15.4	109			70 - 130	30	
Hexachlorobutadiene ND 5.0 109 91 18.0 91 70.130 30 Isoproylbenzene ND 1.0 109 98 10.6 90 70.130 30 m&p-Xylene ND 5.0 97 101 6.8 94 70.130 30 Methyl thyl kotone ND 5.0 97 101 2.8 105 70.130 30 Methyl thyl kotone ND 5.0 95 91 4.3 89 70.130 30 Naphthalene ND 5.0 99 100 1.0 81 70.130 30 n-Proylbenzene ND 1.0 106 88 18.6 88 70.130 30 n-Proylbenzene ND 1.0 106 73 13.1 89 70.130 30 n-Stylenzene ND 1.0 101 107 101 5.8 95 70.130 30 sec-Butylbenzene ND 1.0 101 99 1.0 70.130 30 Ie	Ethylbenzene	ND	1.0	108	100	7.7	94			70 - 130	30	
Isopropylbenzene ND 1.0 109 98 10.6 90 70.130 30 m&p-Xylene ND 2.0 106 99 6.8 94 70.130 30 Methyl ethyl ketone ND 5.0 97 101 2.0 106 99 64.8 94 70.130 30 Methyle ethor (MTBE) ND 5.0 97 101 2.8 105 70.130 30 Naphthalene ND 5.0 99 100 1.0 81 70.130 30 - N-Proylbenzene ND 1.0 106 88 18.6 88 70.130 30 - o-Xylene ND 1.0 106 88 18.6 91 70.130 30 - o-Xylene ND 1.0 101 95 14.6 91 70.130 30 - sec-Sulylbenzene ND 1.0 101 99 4.0 92 70.130 30 - tert-Buylbenzene ND 5.0 100	Hexachlorobutadiene	ND	5.0	109	91	18.0	91			70 - 130	30	
mp-Xylene ND 2.0 106 99 6.8 94 70-130 30 Methyl ethyl ketone ND 5.0 97 101 4.0 94 70-130 30 Methyl ethyl ethor (MTBE) ND 1.0 107 110 2.8 105 70-130 30 Naphthalene ND 5.0 95 91 4.3 89 70-130 30 n-Butylbenzene ND 1.0 106 88 18.6 88 70-130 30 o-Sylene ND 1.0 106 70-130 30 70-130 30 o-Sylene ND 1.0 106 70-138 89 70-130 30 o-Sylene ND 1.0 110 95 14.6 91 70-130 30 Styrene ND 5.0 103 99 4.0 92 70-130 30 Tetrahydrofuran (THF) ND 5.0 104 104	Isopropylbenzene	ND	1.0	109	98	10.6	90			70 - 130	30	
Methyl ethyl ketone ND 5.0 97 101 4.0 94 70-130 30 Methyl ethyl ether (MTBE) ND 1.0 107 110 2.8 105 70-130 30 Methylene chloride ND 5.0 95 91 4.3 89 70-130 30 Naphthalene ND 5.0 95 91 4.3 89 70-130 30 Naphthalene ND 5.0 99 100 1.0 81 70-130 30 n-Butylbenzene ND 1.0 106 93 13.1 89 70-130 30 o-Xylene ND 1.0 106 93 13.3 91 70-130 30 sec:Butylbenzene ND 1.0 112 98 15.1 104 70-130 30 tert-Butylbenzene ND 5.0 103 99 4.0 92 70-130 30 tert-Butylbenzene ND	m&p-Xylene	ND	2.0	106	99	6.8	94			70 - 130	30	
Methyl I-bulyl ether (MTBE) ND 1.0 107 110 2.8 105 70-130 30 Methyl Lebulyl ether (MTBE) ND 5.0 95 91 4.3 89 70-130 30 Naphthalene ND 5.0 99 100 1.0 81 70-130 30 n-Butylbenzene ND 1.0 106 88 18.6 88 70-130 30 n-Propylbenzene ND 1.0 106 93 13.1 89 70-130 30 o-Xylene ND 1.0 110 95 14.6 91 70-130 30 scc-Butylbenzene ND 1.0 110 95 14.6 91 70-130 30 scc-Butylbenzene ND 1.0 112 98 13.3 91 70-130 30 tetr-Butylbenzene ND 5.0 103 99 4.0 92 70-130 30 Tetrachloroethene ND 5.0 104 104 70-130 30 104 173 <t< td=""><td>Methyl ethyl ketone</td><td>ND</td><td>5.0</td><td>97</td><td>101</td><td>4.0</td><td>94</td><td></td><td></td><td>70 - 130</td><td>30</td><td></td></t<>	Methyl ethyl ketone	ND	5.0	97	101	4.0	94			70 - 130	30	
Mathylene chloride ND 5.0 95 91 4.3 89 70.130 30 Naphthalene ND 5.0 99 100 1.0 81 70.130 30 n-Butylbenzene ND 1.0 106 88 18.6 88 70.130 30 n-Propylbenzene ND 1.0 106 93 13.1 89 70.130 30 o-Xylene ND 2.0 107 101 5.8 95 70.130 30 sec-Bulylbenzene ND 1.0 110 95 14.6 91 70.130 30 sec-Bulylbenzene ND 1.0 112 98 13.3 91 70.130 30 sec-Bulylbenzene ND 5.0 103 99 4.0 92 70.130 30 tert-Bulylbenzene ND 5.0 104 104 98 15.1 104 70.4 30 12 tert-Bulylb	Methyl t-butyl ether (MTBE)	ND	1.0	107	110	2.8	105			70 - 130	30	
Naphthalene ND 5.0 99 100 1.0 81 70-130 30 n-Butylbenzene ND 1.0 106 88 18.6 88 70-130 30 n-Propylbenzene ND 1.0 106 93 13.1 89 70-130 30 o-Xylene ND 2.0 107 101 5.8 95 70-130 30 p-Isopropylbuene ND 1.0 110 95 14.6 91 70-130 30 scc-Butylbenzene ND 1.0 112 98 13.3 91 70-130 30 scc-Butylbenzene ND 5.0 103 99 4.0 92 70-130 30 tert-Butylbenzene ND 5.0 103 99 10.5 90 70-130 30 Tetrahydrofuran (THF) ND 5.0 114 98 15.1 104 70-130 30 trans-1,2-Dichloroethene ND 5.0 104 104 0.0 78 70-130 30 <tr< td=""><td>Methylene chloride</td><td>ND</td><td>5.0</td><td>95</td><td>91</td><td>4.3</td><td>89</td><td></td><td></td><td>70 - 130</td><td>30</td><td></td></tr<>	Methylene chloride	ND	5.0	95	91	4.3	89			70 - 130	30	
n-Butylberzene ND 1.0 10 18.6 88 70-130 30 n-Propylbenzene ND 1.0 106 93 13.1 89 70-130 30 o-Xylene ND 2.0 107 101 5.8 95 70-130 30 p-lsopropylbenzene ND 1.0 110 95 14.6 91 70-130 30 sec-Butylbenzene ND 1.0 110 95 14.6 91 70-130 30 sec-Butylbenzene ND 1.0 112 98 13.3 91 70-130 30 tert-Butylbenzene ND 5.0 103 99 4.0 92 70-130 30 tert-Butylbenzene ND 5.0 100 106 5.8 100 70-130 30 tert-Butylbenzene ND 5.0 100 106 5.8 100 70-130 30 trans-1,2-Dichloroethene ND <t< td=""><td>Naphthalene</td><td>ND</td><td>5.0</td><td>99</td><td>100</td><td>1.0</td><td>81</td><td></td><td></td><td>70 - 130</td><td>30</td><td></td></t<>	Naphthalene	ND	5.0	99	100	1.0	81			70 - 130	30	
n.Propylbenzene ND 1.0 100 101 5.8 95 70-130 30 o-Xylene ND 2.0 107 101 5.8 95 70-130 30 p-lsopropyltoluene ND 1.0 110 95 14.6 91 70-130 30 sec-Butylbenzene ND 1.0 112 98 13.3 91 70-130 30 Styrene ND 5.0 103 99 4.0 92 70-130 30 tert-Butylbenzene ND 5.0 103 99 4.0 92 70-130 30 tert-Butylbenzene ND 5.0 103 99 4.0 92 70-130 30 Tetrachloroethene ND 5.0 104 104 70-130 30 70-130 30 Toluene ND 5.0 104 104 0.0 78 70-130 30 trans-1,2-Dichoroethene ND 5.0 104 104 0.0 78 70-130 30	n-Butylbenzene	ND	1.0	106	88	18.6	88			70 - 130	30	
N.Y.Jene ND 1.0 107 101 5.8 95 70-130 30 p-Isopropyltoluene ND 1.0 110 95 14.6 91 70-130 30 sec-Butylbenzene ND 1.0 112 98 13.3 91 70-130 30 styrene ND 5.0 103 99 4.0 92 70-130 30 tert-Butylbenzene ND 5.0 103 99 4.0 92 70-130 30 Tetrachloroethene ND 5.0 114 98 15.1 104 70-130 30 Tetrachloroethene ND 5.0 100 106 5.8 100 70-130 30 Toluene ND 1.0 109 103 5.7 100 70-130 30 trans-1,2-Dichloroethene ND 5.0 114 109 4.5 108 70-130 30 trans-1,2-Dichloroethene ND 5.0 114 104 7.4 103 70-130 30 <t< td=""><td>n-Propylbenzene</td><td>ND</td><td>1.0</td><td>106</td><td>93</td><td>13.1</td><td>89</td><td></td><td></td><td>70 - 130</td><td>30</td><td></td></t<>	n-Propylbenzene	ND	1.0	106	93	13.1	89			70 - 130	30	
Dispropylloluene ND 1.0	o-Xvlene	ND	2.0	107	101	5.8	95			70 - 130	30	
Inc I	p-Isopropyltoluene	ND	1.0	110	95	14.6	91			70 - 130	30	
Styrene ND 5.0 103 99 4.0 92 70-130 30 tert-Butylbenzene ND 5.0 114 98 15.1 104 70-130 30 Tetrachloroethene ND 5.0 114 98 15.1 104 70-130 30 Tetrachloroethene ND 5.0 100 106 5.8 100 70-130 30 Toluene ND 5.0 100 106 5.8 100 70-130 30 trans-1,2-Dichloroethene ND 5.0 114 109 4.5 108 70-130 30 trans-1,3-Dichloropropene ND 5.0 106 106 0.0 96 70-130 30 trans-1,4-dichloro-2-butene ND 5.0 104 104 0.0 78 70-130 30 Trichlorofluoromethane ND 5.0 112 104 7.4 103 70-130 30 Trichlorofluoromethane ND 5.0 117 99 16.7 107 70-130	sec-Butylbenzene	ND	1.0	112	98	13.3	91			70 - 130	30	
Inc I	Styrene	ND	5.0	103	99	4.0	92			70 - 130	30	
TetrachloroetheneND5.01149815.110470 - 13030TetrachloroetheneND5.01001065.810070 - 13030TolueneND1.01091035.710070 - 13030trans-1,2-DichloroetheneND5.01141094.510870 - 13030trans-1,3-DichloropropeneND5.01141094.510870 - 13030trans-1,4-dichloro-2-buteneND5.01061060.09670 - 13030TrichloroetheneND5.01041040.07870 - 13030TrichloroetheneND5.01121047.410370 - 13030TrichloroetheneND5.011410112.16170 - 13030TrichloroetheneND5.011410112.16170 - 13030TrichlorofluoromethaneND5.011410112.16170 - 13030TrichlorotrifluoroethaneND5.01179916.710770 - 13030Vinyl chlorideND5.01131057.310270 - 13030Vinyl chlorideND5.01131057.310270 - 13030% 1,2-dichlorobenzene-d499%991001.09970 - 13030% Bibr	tert-Butylbenzene	ND	1.0	110	99	10.5	90			70 - 130	30	
Tetrahydrofuran (THF) ND 5.0 100 106 5.8 100 70-130 30 Toluene ND 1.0 109 103 5.7 100 70-130 30 trans-1,2-Dichloroethene ND 5.0 114 109 4.5 108 70-130 30 trans-1,2-Dichloroethene ND 5.0 114 109 4.5 108 70-130 30 trans-1,3-Dichloroptopene ND 5.0 106 106 0.0 96 70-130 30 trans-1,4-dichloro-2-butene ND 5.0 104 104 0.0 78 70-130 30 Trichloroethene ND 5.0 112 104 7.4 103 70-130 30 Trichlorofluoromethane ND 5.0 114 101 12.1 61 70-130 30 Trichlorofluoromethane ND 5.0 114 101 12.1 61 70-130 30 Vinyl chloride ND 5.0 113 105 7.3 102	Tetrachloroethene	ND	5.0	114	98	15.1	104			70 - 130	30	
Toluene ND 1.0 100 <t< td=""><td>Tetrahydrofuran (THF)</td><td>ND</td><td>5.0</td><td>100</td><td>106</td><td>5.8</td><td>100</td><td></td><td></td><td>70 - 130</td><td>30</td><td></td></t<>	Tetrahydrofuran (THF)	ND	5.0	100	106	5.8	100			70 - 130	30	
Instruction Instrution Instruction Instruction	Toluene	ND	1.0	109	103	5.7	100			70 - 130	30	
trans-1,3-Dichloropropene ND 5.0 106 106 0.0 96 70-130 30 trans-1,4-dichloro-2-butene ND 5.0 104 104 0.0 78 70-130 30 Trichloroethene ND 5.0 112 104 7.4 103 70-130 30 Trichloroethene ND 5.0 112 104 7.4 103 70-130 30 Trichlorofluoromethane ND 5.0 114 101 12.1 61 70-130 30 Trichlorotrifluoroethane ND 5.0 117 99 16.7 107 70-130 30 Vinyl chloride ND 5.0 113 105 7.3 102 70-130 30 % 1,2-dichlorobenzene-d4 99 % 99 100 1.0 99 70-130 30 % Bromofluorobenzene 99 % 99 100 1.0 104 70-130 30 % Dibromofluoromethane 104 % 99 103 4.0 103 <	trans-1 2-Dichloroethene	ND	5.0	114	100	4 5	108			70 - 130	30	
trans 1,4-dichloro-2-butene ND 5.0 104 104 0.0 78 70-130 30 Trichloroethene ND 5.0 112 104 7.4 103 70-130 30 Trichloroethene ND 5.0 112 104 7.4 103 70-130 30 Trichlorofluoromethane ND 5.0 114 101 12.1 61 70-130 30 Trichlorotrifluoroethane ND 5.0 117 99 16.7 107 70-130 30 Vinyl chloride ND 5.0 113 105 7.3 102 70-130 30 % 1,2-dichlorobenzene-d4 99 % 99 100 1.0 99 70-130 30 % Bromofluorobenzene 99 % 99 100 1.0 104 70-130 30 % Dibromofluoromethane 104 % 99 103 4.0 103 70-130 30 % Toluene-d8 97 % 102 101 1.0 102 70-130	trans-1 3-Dichloropropene	ND	5.0	106	106	0.0	96			70 - 130	30	
Trichloroethene ND 5.0 112 104 7.4 103 70-130 30 Trichlorofluoromethane ND 5.0 114 101 12.1 61 70-130 30 m Trichlorofluoromethane ND 5.0 114 101 12.1 61 70-130 30 m Trichlorofluoromethane ND 5.0 117 99 16.7 107 70-130 30 Vinyl chloride ND 5.0 113 105 7.3 102 70-130 30 % 1,2-dichlorobenzene-d4 99 % 99 100 1.0 99 70-130 30 % Bromofluorobenzene 99 % 99 100 1.0 104 70-130 30 % Dibromofluoromethane 104 % 99 103 4.0 103 70-130 30 % Dibromofluoromethane 104 % 99 103 4.0 103 70-130 30 % Toluene-d8 97 % 102 101 1.0 <	trans-1 4-dichloro-2-butene	ND	5.0	100	100	0.0	78			70 - 130	30	
Trichlorofluoromethane ND 5.0 114 101 12.1 61 70-130 30 m Trichlorofluoromethane ND 5.0 114 101 12.1 61 70-130 30 m Trichlorotrifluoroethane ND 5.0 117 99 16.7 107 70-130 30 Vinyl chloride ND 5.0 113 105 7.3 102 70-130 30 % 1,2-dichlorobenzene-d4 99 % 99 100 1.0 99 70-130 30 % Bromofluorobenzene 99 % 99 100 1.0 104 70-130 30 % Dibromofluoromethane 104 % 99 103 4.0 103 70-130 30 % Toluene-d8 97 % 102 101 1.0 102 70-130 30	Trichloroethene	ND	5.0	112	104	74	103			70 - 130	30	
Trichlorotrifluoroethane ND 5.0 117 99 16.7 107 70 - 130 30 Vinyl chloride ND 5.0 113 105 7.3 102 70 - 130 30 % 1,2-dichlorobenzene-d4 99 % 99 100 1.0 99 70 - 130 30 % Bromofluorobenzene 99 % 99 100 1.0 104 70 - 130 30 % Dibromofluoromethane 104 % 99 103 4.0 103 70 - 130 30 % Toluene-d8 97 % 102 101 1.0 102 70 - 130 30	Trichlorofluoromethane	ND	5.0	114	101	12.1	61			70 - 130	30	m
Nick of the order of the order ND 5.0 113 105 7.3 107 70 130 30 Vinyl chloride ND 5.0 113 105 7.3 102 70 130 30 % 1,2-dichlorobenzene-d4 99 % 99 100 1.0 99 70 130 30 % Bromofluorobenzene 99 % 99 100 1.0 104 70 130 30 % Dibromofluoromethane 104 % 99 103 4.0 103 70 130 30 % Toluene-d8 97 % 102 101 1.0 102 70 130 30	Trichlorotrifluoroethane	ND	5.0	117	99	16.7	107			70 - 130	30	
% 1,2-dichlorobenzene-d4 99 % 99 100 1.0 99 70 - 130 30 % Bromofluorobenzene 99 % 99 100 1.0 104 70 - 130 30 % Dibromofluoromethane 104 % 99 103 4.0 103 70 - 130 30 % Toluene-d8 97 % 102 101 1.0 102 70 - 130 30	Vinyl chloride	ND	5.0	117	105	73	107			70 - 130	30	
% Bromofluorobenzene 99 % 99 100 1.0 104 70 - 130 30 % Dibromofluoromethane 104 % 99 103 4.0 103 70 - 130 30 % Toluene-d8 97 % 102 101 1.0 102 70 - 130 30	% 1 2-dichlorobenzene-d4	90	%	90	100	10	90			70 - 120	20	
% Distribution %	% Bromofluorobenzene	77 QQ	%	00	100	1.0	104			70 - 130	30	
% Toluene-d8 97 % 102 101 1.0 102 70 - 130 30		77 10 <i>1</i>	%	77 00	100	1.0	104			70 - 130	30	
Comment	% Toluene-d8	07	20 %	77 100	103	4.0 1 0	103			70 - 130	30	
	Comment:	71	<i>,</i> ,	102	101	1.0	102			70 - 130	50	

The MSD is not reported for this batch.

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%.

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
OA/OC Batch 344431 (ug/Kg).	OC Sam	ple No: BN25487 (BN25666)									
Semivolatiles - Soil											
		220	05	0.4	1.0	Γ1	Γ1	0.0	20 120	20	
1,2,4,5-Tetrachiorobenzene		230	85	84	1.2	51	51	0.0	30 - 130	30	
1,2,4-Trichlorobenzene		230	76	/8	2.6	52	47	10.1	30 - 130	30	
1,2-Dichiol oberizerie		180	70	00	5.9	40	47	2.Z	30 - 130	30	
1,2-Diphenyinyurazine		230	/0 47	04 42	7.4 4 0	40	49	0.0	30 - 130	30	
1,3-Dichlorobenzene		230	67	03 4 F	0.2	43	42	2.4	30 - 130	30	
1,4-Dichiolobenzene		230	00	00	4.5 2.5	40	44	2.2	30 - 130	30	
2,4,5-michlorophenol		230	02	00 70	2.0	16	49	4.0	30 - 130	30	
2,4,0- menor		130	01	19	2.0	40 E1	40 50	4.3	30 - 130	30	
2,4-Dichiolophenol		130	84	83	1.2	21 44	50	2.0	30 - 130	30	
2,4-Dimetryphenol		230	80 .10	80 10	0.0	40 25	49	0.3	30 - 130	30	
2,4-Dinitrophenoi		230	< 10 0E	< 10		20	24 50	4.1	30 - 130	30	l,m
2,4-Dinitrotoluene		130	80	8/ 07	2.3 2.5	50	50	0.0	30 - 130	30	
2,0-Diminolouene		130	84	87	3.5	49	49	0.0	30 - 130	30	
2-Chloronaphinalene		230	80	80	0.0	48	47	Z. I	30 - 130	30	
2-Chiorophenoi		230	79	/6	3.9	50	53	5.8	30 - 130	30	
2-Methylabaral (a areas)		230	78	83	6.Z	48	50	4.1	30 - 130	30	
2-Methylphenol (o-cresol)		230	78	82	5.0	54	58	/.I	30 - 130	30	
2-Nitroaniine		330	74	/3	1.4	38	40	5.1	30 - 130	30	
2-Nitrophenol		230	80	81	1.2	50	53	5.8	30 - 130	30	
3&4-Methylphenol (m&p-cresol)	ND	230	85	84	1.2	45	49	8.5	30 - 130	30	
3,3-Dichlorobenzidine	ND	130	75	76	1.3	<10	15	NC	30 - 130	30	m
3-Nitroaniline	ND	330	/5	11	2.6	40	44	9.5	30 - 130	30	
4,6-Dinitro-2-metnyipnenoi	ND	230	20	19	5.1	35	28	22.2	30 - 130	30	l,m
4-Bromophenyl phenyl ether	ND	230	87	87	0.0	51	49	4.0	30 - 130	30	
4-Chloro-3-methylphenol	ND	230	88	93	5.5	54	58	1.1	30 - 130	30	
4-Chloroaniline	ND	230	88	82	7.1	40	45	11.8	30 - 130	30	
4-Chlorophenyl phenyl ether	ND	230	82	81	1.2	47	48	2.1	30 - 130	30	
4-Nitroaniline	ND	230	84	86	2.4	49	50	2.0	30 - 130	30	
4-Nitrophenol	ND	230	86	81	6.0	47	57	19.2	30 - 130	30	
Acenaphthene	ND	230	82	82	0.0	46	47	2.2	30 - 130	30	
Acenaphthylene	ND	130	84	84	0.0	<10	18	NC	30 - 130	30	m
Acetophenone	ND	230	78	74	5.3	52	54	3.8 0.5	30 - 130	30	
Antime		330	/6	75	1.3	40 NG	44 NG	9.5 NC	30 - 130	30	
Aninracene		230	89	89	0.0		NC	NC	30 - 130	30	
Benzidine		230	87	89	2.3	10	10	NC	30 - 130	30	
Benzelahurana		330	40	40	0.0	< 10 NC	< 10 NC	NC	30 - 130	30	m
Benzo(a)pyrene		140	88	88	0.0		NC	NC	30 - 130	30	
Benzo(b)nuoranimene		180	90	92	2.2		NC	NC	30 - 130	30	
Benzo(gni)perylene		230	94	94	0.0		NC	NC	30 - 130	30	
Benzo(k)Iluoraninene		230	90	90	0.0				30 - 130	30	
Benzul kutul akthelete		330	< 10	< 10		27	34	23.0	30 - 130	30	l,m
Benzyi bulyi phinalale		230	89	89	0.0	47	44	0.0	30 - 130	30	
Bis(2-chloroethoxy)methane		230	87	80	1.2	51	52	1.9	30 - 130	30	
		130	69	64	1.5	40	4/	2.2	30 - 130	30	
Dis(2-chiorolsopropyi)ether	ND	230	65	63 01	3.1	43	44	2.3	30 - 130	30	
Bis(2-ethylnexyl)phthalate	ND	230	91	91	0.0	50	48	4.1	30 - 130	30	
	ND	230	87	87	0.0	31	36	14.9	30 - 130	30	
	ND	230	92	92	0.0	NC	NC	NC	30 - 130	30	
	ND	130	93	94	1.1	32	32	0.0	30 - 130	30	
Upenzoturan	ND	230	80	81	1.2	39	41	5.0	30 - 130	30	

SDG I.D.: GBN25658

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
Diethyl phthalate	ND	230	85	85	0.0	48	50	4.1	30 - 130	30	
Dimethylphthalate	ND	230	82	83	1.2	48	49	2.1	30 - 130	30	
Di-n-butylphthalate	ND	230	92	93	1.1	49	50	2.0	30 - 130	30	
Di-n-octylphthalate	ND	230	88	91	3.4	49	49	0.0	30 - 130	30	
Fluoranthene	ND	230	89	91	2.2	NC	NC	NC	30 - 130	30	
Fluorene	ND	230	83	83	0.0	46	49	6.3	30 - 130	30	
Hexachlorobenzene	ND	130	86	84	2.4	51	49	4.0	30 - 130	30	
Hexachlorobutadiene	ND	230	74	77	4.0	48	42	13.3	30 - 130	30	
Hexachlorocyclopentadiene	ND	230	78	78	0.0	<10	<10	NC	30 - 130	30	m
Hexachloroethane	ND	130	65	60	8.0	40	41	2.5	30 - 130	30	
Indeno(1,2,3-cd)pyrene	ND	230	91	91	0.0	NC	NC	NC	30 - 130	30	
Isophorone	ND	130	78	78	0.0	46	47	2.2	30 - 130	30	
Naphthalene	ND	230	79	81	2.5	41	38	7.6	30 - 130	30	
Nitrobenzene	ND	130	77	74	4.0	50	52	3.9	30 - 130	30	
N-Nitrosodimethylamine	ND	230	57	57	0.0	43	43	0.0	30 - 130	30	
N-Nitrosodi-n-propylamine	ND	130	83	78	6.2	53	56	5.5	30 - 130	30	
N-Nitrosodiphenylamine	ND	130	96	97	1.0	56	57	1.8	30 - 130	30	
Pentachloronitrobenzene	ND	230	83	84	1.2	45	46	2.2	30 - 130	30	
Pentachlorophenol	ND	230	76	76	0.0	54	50	7.7	30 - 130	30	
Phenanthrene	ND	130	89	88	1.1	NC	NC	NC	30 - 130	30	
Phenol	ND	230	82	80	2.5	54	56	3.6	30 - 130	30	
Pyrene	ND	230	91	93	2.2	NC	NC	NC	30 - 130	30	
Pyridine	ND	230	43	42	2.4	38	38	0.0	30 - 130	30	
% 2,4,6-Tribromophenol	53	%	83	75	10.1	48	49	2.1	30 - 130	30	
% 2-Fluorobiphenyl	66	%	78	67	15.2	48	47	2.1	30 - 130	30	
% 2-Fluorophenol	62	%	79	62	24.1	46	50	8.3	30 - 130	30	
% Nitrobenzene-d5	65	%	79	64	21.0	50	53	5.8	30 - 130	30	
% Phenol-d5	68	%	85	68	22.2	52	55	5.6	30 - 130	30	
% Terphenyl-d14	84	%	96	84	13.3	48	52	8.0	30 - 130	30	
Comment:											

Additional 8270 criteria: 20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

QA/QC Batch 344445 (mg/Kg), QC Sample No: BN25609 (BN25660, BN25662, BN25665, BN25666, BN25672)

TPH by GC (Extractabl	le Produc	ts) - Soil								
Ext. Petroleum H.C.	ND	50	64	63	1.6	63	68	7.6	60 - 120	30
% n-Pentacosane	77	%	74	73	1.4	79	83	4.9	50 - 150	30
QA/QC Batch 344541 (ug/kg), QC Samp	le No: BN25662	(BN25660, BN25662	, BN256	67, BN2	25668)				
Polynuclear Aromatic H	<u> IC - Soil</u>									
2-Methylnaphthalene	ND	230	69	66	4.4	55	63	13.6	30 - 130	30
Acenaphthene	ND	230	81	74	9.0	60	69	14.0	30 - 130	30
Acenaphthylene	ND	230	80	73	9.2	60	68	12.5	30 - 130	30
Anthracene	ND	230	81	77	5.1	61	69	12.3	30 - 130	30
Benz(a)anthracene	ND	230	77	76	1.3	59	67	12.7	30 - 130	30
Benzo(a)pyrene	ND	230	75	73	2.7	56	63	11.8	30 - 130	30
Benzo(b)fluoranthene	ND	230	77	75	2.6	57	67	16.1	30 - 130	30
Benzo(ghi)perylene	ND	230	86	83	3.6	62	70	12.1	30 - 130	30
Benzo(k)fluoranthene	ND	230	79	77	2.6	60	68	12.5	30 - 130	30
Chrysene	ND	230	84	81	3.6	65	73	11.6	30 - 130	30
Dibenz(a,h)anthracene	ND	230	83	80	3.7	60	69	14.0	30 - 130	30
Fluoranthene	ND	230	81	74	9.0	60	66	9.5	30 - 130	30
Fluorene	ND	230	76	71	6.8	58	66	12.9	30 - 130	30
Indeno(1,2,3-cd)pyrene	ND	230	85	81	4.8	58	66	12.9	30 - 130	30

	Diank	Blk		LCS	LCSD	LCS	MS	MSD	MS	% Rec	% RPD	
Parameter	BIANK	RL		70	70	RPD	70	70	RPD	LIMIIS	LIMIUS	
Naphthalene	ND	230		70	67	4.4	56	63	11.8	30 - 130	30	
Phenanthrene	ND	230		83	77	7.5	61	69	12.3	30 - 130	30	
Pyrene	ND	230		84	78	7.4	63	69	9.1	30 - 130	30	
% 2-Fluorobiphenyl	72	%		73	66	10.1	55	63	13.6	30 - 130	30	
% Nitrobenzene-d5	67	%		68	63	7.6	57	66	14.6	30 - 130	30	
% Terphenyl-d14	69	%		80	71	11.9	55	63	13.6	30 - 130	30	
QA/QC Batch 345010 (ug/kg), QC Samp	ole No: Bl	N26324 (BN25664)									
<u> Volatiles - Soil</u>												
1,1,1,2-Tetrachloroethane	ND	5.0		96	98	2.1	89	88	1.1	70 - 130	30	
1,1,1-Trichloroethane	ND	5.0		119	126	5.7	125	124	0.8	70 - 130	30	
1,1,2,2-Tetrachloroethane	ND	3.0		87	82	5.9	78	84	7.4	70 - 130	30	
1,1,2-Trichloroethane	ND	5.0		104	100	3.9	104	107	2.8	70 - 130	30	
1,1-Dichloroethane	ND	5.0		121	128	5.6	128	127	0.8	70 - 130	30	
1,1-Dichloroethene	ND	5.0		124	137	10.0	133	131	1.5	70 - 130	30	l,m
1,1-Dichloropropene	ND	5.0		107	118	9.8	109	108	0.9	70 - 130	30	
1,2,3-Trichlorobenzene	ND	5.0		84	91	8.0	79	81	2.5	70 - 130	30	
1,2,3-Trichloropropane	ND	5.0		79	83	4.9	80	84	4.9	70 - 130	30	
1,2,4-Trichlorobenzene	ND	5.0		85	93	9.0	82	83	1.2	70 - 130	30	
1,2,4-Trimethylbenzene	ND	1.0		82	93	12.6	79	76	3.9	70 - 130	30	
1,2-Dibromo-3-chloropropane	ND	5.0		92	82	11.5	85	89	4.6	70 - 130	30	
1,2-Dibromoethane	ND	5.0		95	90	5.4	87	91	4.5	70 - 130	30	
1,2-Dichlorobenzene	ND	5.0		87	91	4.5	82	80	2.5	70 - 130	30	
1,2-Dichloroethane	ND	5.0		107	103	3.8	105	108	2.8	70 - 130	30	
1,2-Dichloropropane	ND	5.0		107	111	3.7	106	107	0.9	70 - 130	30	
1,3,5-Trimethylbenzene	ND	1.0		83	94	12.4	79	76	3.9	70 - 130	30	
1,3-Dichlorobenzene	ND	5.0		86	94	8.9	82	80	2.5	70 - 130	30	
1,3-Dichloropropane	ND	5.0		92	89	3.3	84	87	3.5	70 - 130	30	
1,4-Dichlorobenzene	ND	5.0		84	93	10.2	81	80	1.2	70 - 130	30	
2,2-Dichloropropane	ND	5.0		118	127	7.3	125	124	0.8	70 - 130	30	
2-Chlorotoluene	ND	5.0		85	95	11.1	80	78	2.5	70 - 130	30	
2-Hexanone	ND	25		77	66	15.4	69	77	11.0	70 - 130	30	l,m
2-Isopropyltoluene	ND	5.0		83	94	12.4	80	76	5.1	70 - 130	30	
4-Chlorotoluene	ND	5.0		82	92	11.5	80	77	3.8	70 - 130	30	
4-Methyl-2-pentanone	ND	25		98	84	15.4	94	104	10.1	70 - 130	30	
Acetone	ND	10		85	77	9.9	89	99	10.6	70 - 130	30	
Acrylonitrile	ND	5.0		118	107	9.8	124	139	11.4	70 - 130	30	m
Benzene	ND	1.0		107	113	5.5	106	106	0.0	70 - 130	30	
Bromobenzene	ND	5.0		88	92	4.4	81	80	1.2	70 - 130	30	
Bromochloromethane	ND	5.0		121	121	0.0	128	131	2.3	70 - 130	30	m
Bromodichloromethane	ND	5.0		112	112	0.0	108	110	1.8	70 - 130	30	
Bromoform	ND	5.0		104	98	5.9	91	98	7.4	70 - 130	30	
Bromomethane	ND	5.0		115	126	9.1	122	120	1.7	70 - 130	30	
Carbon Disulfide	ND	5.0		117	130	10.5	126	124	1.6	70 - 130	30	
Carbon tetrachloride	ND	5.0		120	131	8.8	128	127	0.8	70 - 130	30	Т
Chlorobenzene	ND	5.0		90	97	7.5	86	85	1.2	70 - 130	30	
Chloroethane	ND	5.0		122	134	9.4	130	128	1.6	70 - 130	30	I.
Chloroform	ND	5.0		118	125	5.8	127	126	0.8	70 - 130	30	
Chloromethane	ND	5.0		120	126	4.9	123	123	0.0	70 - 130	30	
cis-1,2-Dichloroethene	ND	5.0		120	125	4.1	126	126	0.0	70 - 130	30	
cis-1,3-Dichloropropene	ND	5.0		104	107	2.8	104	106	1.9	70 - 130	30	
Dibromochloromethane	ND	3.0		99	98	1.0	90	93	3.3	70 - 130	30	
Dibromomethane	ND	5.0		107	105	1.9	105	110	4.7	70 - 130	30	

SDG I.D.: GBN25658

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
Dichlorodifluoromethane	ND	5.0	109	124	12.9	114	114	0.0	70 - 130	30	
Ethylbenzene	ND	1.0	91	98	7.4	87	86	1.2	70 - 130	30	
Hexachlorobutadiene	ND	5.0	81	101	22.0	85	79	7.3	70 - 130	30	
Isopropylbenzene	ND	1.0	84	95	12.3	78	76	2.6	70 - 130	30	
m&p-Xylene	ND	2.0	89	98	9.6	87	84	3.5	70 - 130	30	
Methyl ethyl ketone	ND	5.0	105	92	13.2	107	123	13.9	70 - 130	30	
Methyl t-butyl ether (MTBE)	ND	1.0	119	111	7.0	121	129	6.4	70 - 130	30	
Methylene chloride	ND	5.0	100	107	6.8	107	107	0.0	70 - 130	30	
n-Butylbenzene	ND	1.0	79	98	21.5	82	79	3.7	70 - 130	30	
n-Propylbenzene	ND	1.0	81	94	14.9	78	75	3.9	70 - 130	30	
o-Xylene	ND	2.0	91	97	6.4	86	84	2.4	70 - 130	30	
p-Isopropyltoluene	ND	1.0	83	98	16.6	83	79	4.9	70 - 130	30	
sec-Butylbenzene	ND	1.0	83	97	15.6	81	78	3.8	70 - 130	30	
Styrene	ND	5.0	89	93	4.4	85	84	1.2	70 - 130	30	
tert-Butylbenzene	ND	1.0	84	94	11.2	79	75	5.2	70 - 130	30	
Tetrachloroethene	ND	5.0	104	118	12.6	109	110	0.9	70 - 130	30	
Tetrahydrofuran (THF)	ND	5.0	113	97	15.2	113	129	13.2	70 - 130	30	
Toluene	ND	1.0	104	110	5.6	105	104	1.0	70 - 130	30	
trans-1,2-Dichloroethene	ND	5.0	120	130	8.0	131	128	2.3	70 - 130	30	m
trans-1,3-Dichloropropene	ND	5.0	105	104	1.0	104	108	3.8	70 - 130	30	
trans-1,4-dichloro-2-butene	ND	5.0	89	82	8.2	76	82	7.6	70 - 130	30	
Trichloroethene	ND	5.0	106	116	9.0	106	107	0.9	70 - 130	30	
Trichlorofluoromethane	ND	5.0	111	126	12.7	120	121	0.8	70 - 130	30	
Trichlorotrifluoroethane	ND	5.0	112	130	14.9	129	128	0.8	70 - 130	30	
Vinyl chloride	ND	5.0	115	123	6.7	116	117	0.9	70 - 130	30	
% 1,2-dichlorobenzene-d4	96	%	100	96	4.1	99	100	1.0	70 - 130	30	
% Bromofluorobenzene	101	%	104	102	1.9	105	107	1.9	70 - 130	30	
% Dibromofluoromethane	106	%	115	111	3.5	119	120	0.8	70 - 130	30	
% Toluene-d8	101	%	104	104	0.0	104	106	1.9	70 - 130	30	

A blank MS/MSD was analyzed with this batch.

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%.

I = This parameter is outside laboratory LCS/LCSD specified recovery limits.

m = This parameter is outside laboratory MS/MSD specified recovery limits.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

- MS Matrix Spike
- MS Dup Matrix Spike Duplicate
- NC No Criteria
- Intf Interference

Phyllis/Shiller, Laboratory Director May 12, 2016

Thursday, May 12, 2016

Criteria: CT: GAM, RC

State: CT

Sample Criteria Exceedences Report

GBN25658 - FO-PCB

State:	СТ						RL	Analysis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
BN25665	\$ETPH_SMR	Ext. Petroleum HC	CT / PESTICIDES, PCB's, TPH, a / GA/GAA PMC (mg/kg	2900	500	500	500	mg/Kg
BN25665	\$ETPH_SMR	Ext. Petroleum HC	CT / PESTICIDES, PCB's, TPH, a / RES DEC (mg/kg)	2900	500	500	500	mg/Kg
BN25666	TCLP-AS	TCLP Arsenic	CT / INORGANIC SUBSTANCES / GA/GAA PMC (mg/l)**	0.07	0.01	0.01	0.01	mg/L
BN25666	TCLP-CD	TCLP Cadmium	CT / INORGANIC SUBSTANCES / GA/GAA PMC (mg/l)**	0.060	0.005	0.005	0.005	mg/L
BN25672	\$ETPH_SMR	Ext. Petroleum HC	CT / PESTICIDES, PCB's, TPH, a / GA/GAA PMC (mg/kg	28000	2500	500	500	mg/Kg
BN25672	\$ETPH_SMR	Ext. Petroleum HC	CT / PESTICIDES, PCB's, TPH, a / RES DEC (mg/kg)	28000	2500	500	500	mg/Kg

Phoenix Laboratories does not assume responsibility for the data contained in this report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

Reasonable Confidence Protocol Laboratory Analysis QA/QC Certification Form

Labo	oratory Name:	Phoenix Envi	onmental Labs,	, Inc. Client:	Fuss	& O'Neill,	Inc.	
Proje	ect Location:	FORMER ME	RIDEN HOSPIT	TAL Project	Number:			
Labo	oratory Sample	ID(s): BN250 BN250	658, BN25659, I 667, BN25668, I	BN25660, BN2 BN25672, BN2	5662, BN25664, 5673	BN25665,	BN25666	ö,
Sam	pling Date(s):	5/2/2016						
RCP	Methods Used	d:						
V 13	311/1312 🖌 60 ⁻	10	7196	✔ 7470/7471	8081	EPH		TO15
✔ 80	082 81	51 🖌 8260	✓ 8270	ETPH	9010/9012	U VPH		
1.	For each analytic specified QA/QC any criteria fallin method-specific	cal method refer C performance c g outside of acc Reasonable Co	renced in this labo riteria followed, in eptable guideline nfidence Protocol	pratory report pac cluding the requi s, as specified in I documents?	ckage, were all irement to explain the CT DEP	✓ Yes	🗆 No	
1a.	Were the metho	d specified pres	ervation and hold	ing time requirer	nents met?	✓ Yes	🗌 No	
1b.	EPH and VPH m significant modif	nethods only: W ications (see se	as the VPH or EF ction 11.3 of resp	PH method conduettion of the sective RCP methesis of the section o	ucted without nods)	□ Yes	🗆 No	✓ NA
2.	Were all sample described on the	s received by th associated Cha	e laboratory in a o ain-of-Custody do	condition consist cument(s)?	ent with that	✓ Yes	□ No	
3.	Were samples re	eceived at an ap	propriate tempera	ature (< 6 Degre	es C)?	✓ Yes	🗆 No	\Box NA
4.	Were all QA/QC Protocol docume Narration.	performance cr ents acheived? \$	iteria specified in See Sections: ICF	the Reasonable Narration, SVO	Confidence A Narration, VOA	□ Yes	✓ No	
5a.	Were reporting I	imits specified c	r referenced on tl	he chain-of-custo	ody?	✓ Yes	🗌 No	
5b.	Were these repo	orting limits met?)			✓ Yes	🗌 No	□ NA
6.	For each analytic results reported presented in the	cal method refer for all constituer Reasonable Co	enced in this laborate in this laborate in the second seco	oratory report page e method-specifi I documents?	ckage, were c analyte lists	□ Yes	✓ No	□ NA
7.	Are project-spec	ific matrix spike	s and laboratory o	duplicates include	ed in the data set?	✓ Yes	🗌 No	

Note: For all questions to which the response was "No" (with the exception of question #5a, #7), additional information must be provided in an attached narrative. If the answer to question #1, #1A or 1B is "No", the data package does not meet the requirements for "Reasonable Confidence".

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete.

Authorized Signature:

Inakal

Date: Thursday, May 12, 2016 Printed Name: Rashmi Makol

Position: Project Manager

Nov 2007

RCP Certification Report

May 12, 2016

SDG I.D.: GBN25658

SDG Comments

BN25664, BN25666, BN25673 - The following analytes from the 6010 RCP Metals list were not reported: Antimony, Beryllium, Copper, Nickel, Thallium, Vanadium, Zinc.

BN25660, BN25662, BN25667, BN25668 - The client requested a short list for 8270 RCP Semivolatile.

ETPH Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument:

AU-FID11 05/09/16-1

Jeff Bucko, Chemist 05/09/16

BN25665, BN25672

The initial calibration (ETPH429I) RSD for the compound list was less than 30% except for the following compounds: None. The continuing calibration %D for the compound list was less than 30% except for the following compounds:None.

AU-FID11 05/10/16-1

Jeff Bucko, Chemist 05/10/16

BN25660

The initial calibration (ETPH429I) RSD for the compound list was less than 30% except for the following compounds: None. The continuing calibration %D for the compound list was less than 30% except for the following compounds:None.

AU-XL2 05/06/16-1 Jeff Bucko, Chemist 05/06/16

BN25662, BN25666

The initial calibration (ETPH427I) RSD for the compound list was less than 30% except for the following compounds: None. The continuing calibration %D for the compound list was less than 30% except for the following compounds:None.

QC (Batch Specific):

Batch 344445 (BN25609)

BN25660, BN25662, BN25665, BN25666, BN25672

All LCS recoveries were within 60 - 120 with the following exceptions: None.

All LCSD recoveries were within 60 - 120 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

Mercury Narration

Were all QA/QC performance criteria specified in the analytical method achieved? Yes.

Instrument:

MERLIN 05/06/16 09:12

Rick Schweitzer, Chemist 05/06/16

BN25664, BN25666, BN25673

The method preparation blank contains all of the acids and reagents as the samples; the instrument blanks do not.

The initial calibration met all criteria including a standard run at or below the reporting level.

All calibration verification standards (ICV, CCV) met criteria.

All calibration blank verification standards (ICB, CCB) met criteria.

The matrix spike sample is used to identify spectral interference for each batch of samples, if within 85-115%, no interference is observed and no further action is taken.

The following Initial Calibration Verification (ICV) compounds did not meet criteria: None.

The following Continuing Calibration Verification (CCV) compounds did not meet criteria: None.

Certification Report

May 12, 2016

SDG I.D.: GBN25658

Mercury Narration

QC (Batch Specific):

Batch 344606 (BN25691)

BN25664, BN25666

All LCS recoveries were within 70 - 130 with the following exceptions: None. All LCSD recoveries were within 70 - 130 with the following exceptions: None. All LCS/LCSD RPDs were less than 30% with the following exceptions: None. Additional Mercury criteria: LCS acceptance range for waters is 80-120% and for soils is 70-130%.

Batch 344607 (BN26358)

BN25673

All LCS recoveries were within 70 - 130 with the following exceptions: None. All LCSD recoveries were within 70 - 130 with the following exceptions: None. All LCS/LCSD RPDs were less than 30% with the following exceptions: None. Additional Mercury criteria: LCS acceptance range for waters is 80-120% and for soils is 70-130%.

Batch 344609 (BN26576)

BN25666

All LCS recoveries were within 70 - 130 with the following exceptions: None. Additional Mercury criteria: LCS acceptance range for waters is 80-120% and for soils is 70-130%.

ICP Metals Narration

Were all QA/QC performance criteria specified in the analytical method achieved? No.

CCV (05/06/16 19:13) recovery 111% for Silver was outside the criteria (90-110). A slight high bias is possible for sample BN25664.

Instrument:

ARCOS 05/05/16 19:18

Emily Kolominskaya, Laura Kinnin, Chemist 05/05/16

BN25664, BN25666, BN25673

The linear range is defined daily by the calibration range.

The following Initial Calibration Verification (ICV) compounds did not meet criteria: None.

The following Continuing Calibration Verification (CCV) compounds did not meet criteria: CCV 05/06/16 19:13: Silver 111% (90-110), Selenium 111% (90-110)

The following ICP Interference Check (ICSAB) compounds did not meet criteria: None.

QC (Batch Specific):

Batch 344463 (BN25383)

BN25666

All LCS recoveries were within 75 - 125 with the following exceptions: None.

Batch 344552 (BN25691)

BN25664, BN25666, BN25673

All LCS recoveries were within 75 - 125 with the following exceptions: None.

PAH Narration

RCP Certification Report

May 12, 2016

SDG I.D.: GBN25658

PAH Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument:

CHEM06 05/05/16-1 Damien Drobinski, Chemist 05/05/16

BN25660, BN25662, BN25667, BN25668

The DDT breakdown and pentachlorophenol & benzidine peak tailing were evaluated in the DFTPP tune and were found to be in control.

Initial Calibration Verification (CHEM06/BN_0505):

100% of target compounds met criteria.

The following compounds had %RSDs >20%: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM06/0505_14-BN_0505):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

100% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet minimum response factors: None.

QC (Batch Specific):

Batch 344541 (BN25662)

BN25660, BN25662, BN25667, BN25668

All LCS recoveries were within 30 - 130 with the following exceptions: None.

All LCSD recoveries were within 30 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

PCB Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument:

AU-ECD24 05/06/16-1

Adam Werner, Chemist 05/06/16

BN25665, BN25666, BN25667, BN25668, BN25673

The initial calibration (PC0504AI) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC0504BI) RSD for the compound list was less than 20% except for the following compounds: None. The continuing calibration %D for the compound list was less than 15% except for the following compounds:None.

AU-ECD5 05/06/16-1

Adam Werner, Chemist 05/06/16

BN25672

The initial calibration (PC0504AI) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC0504BI) RSD for the compound list was less than 20% except for the following compounds: None. The continuing calibration %D for the compound list was less than 15% except for the following compounds:None.

QC (Batch Specific):

RCP Certification Report

May 12, 2016

SDG I.D.: GBN25658

PCB Narration

Batch 344429 (BN25312)

BN25665, BN25666, BN25667, BN25668, BN25672, BN25673

All LCS recoveries were within 40 - 140 with the following exceptions: None.

All LCSD recoveries were within 40 - 140 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

SVOA Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? No.

QC Batch 344431 (Samples: BN25666): -----

The LCS/LCSD recoveries were below the method criteria, a low bias is suspected for these compounds (4,6-Dinitro-2methylphenol, Benzoic Acid)

The QC recoveries for one or more analytes is below the method criteria. A slight low bias is likely. (2,4-Dinitrophenol) Instrument:

CHEM25 05/05/16-1

Damien Drobinski, Chemist 05/05/16

BN25666

Initial Calibration Verification (CHEM25/SV_0505):

98% of target compounds met criteria.

The following compounds had %RSDs >20%: 2,4-Dinitrophenol 44% (20%), 4,6-Dinitro-2-methylphenol 28% (20%)

The following compounds did not meet recommended response factors: 2-Nitrophenol 0.082 (0.1), Hexachlorobenzene 0.094 (0.1)

The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM25/0505_14A-SV_0505):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

100% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: 2-Nitrophenol 0.086 (0.1), Hexachlorobenzene 0.097 (0.1)

The following compounds did not meet minimum response factors: None.

QC (Batch Specific):

Batch 344431 (BN25487)

BN25666

All LCS recoveries were within 30 - 130 with the following exceptions: 2,4-Dinitrophenol(<10%), 4,6-Dinitro-2-methylphenol(20%), Benzoic Acid(<10%)

All LCSD recoveries were within 30 - 130 with the following exceptions: 2,4-Dinitrophenol(<10%), 4,6-Dinitro-2-

methylphenol(19%), Benzoic Acid(<10%)

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

VOA Narration

RCP Certification Report

May 12, 2016

SDG I.D.: GBN25658

VOA Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? No. **QC Batch 345010 (Samples: BN25664):** -----

The LCS and/or the LCSD recovery is above the upper range for one or more analytes that were not reported in the sample(s), therefore no significant bias is suspected. (Carbon tetrachloride, Chloroethane)

The QC recovery for one or more analytes is above the upper range but were not reported in the sample(s), therefore no significant bias is suspected. (1,1-Dichloroethene)

Instrument:

CHEM14 05/07/16-1

Jane Li, Chemist 05/07/16

BN25658, BN25659, BN25664, BN25666

Initial Calibration Verification (CHEM14/VT-0506):

98% of target compounds met criteria.

The following compounds had %RSDs >20%: Acetone 28% (20%), Methylene chloride 31% (20%)

The following compounds did not meet recommended response factors: None.

The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM14/0507_01-VT-0506):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None. 100% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet minimum response factors: None.

CHEM14 05/09/16-1

Jane Li, Chemist 05/09/16

BN25664

Initial Calibration Verification (CHEM14/VT-0506):

98% of target compounds met criteria.

The following compounds had %RSDs >20%: Acetone 28% (20%), Methylene chloride 31% (20%)

The following compounds did not meet recommended response factors: None.

The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM14/0509_02-VT-0506):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None. 99% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet minimum response factors: None.

QC (Batch Specific):

Batch 344839 (BN25342)

BN25658, BN25659, BN25664, BN25666

All LCS recoveries were within 70 - 130 with the following exceptions: None.

All LCSD recoveries were within 70 - 130 with the following exceptions: None.

RCP Certification Report

May 12, 2016

SDG I.D.: GBN25658

VOA Narration

All LCS/LCSD RPDs were less than 30% with the following exceptions: None. The MSD is not reported for this batch.

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%.

Batch 345010 (BN26324)

BN25664

All LCS recoveries were within 70 - 130 with the following exceptions: None.

All LCSD recoveries were within 70 - 130 with the following exceptions: 1,1-Dichloroethene(137%), 2-Hexanone(66%), Carbon tetrachloride(131%), Chloroethane(134%)

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

A blank MS/MSD was analyzed with this batch.

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%.

Temperature Narration

The samples in this delivery group were received at 6°C. (Note acceptance criteria is above freezing up to 6°C)

FUSS & O'NEILL (860) 646-2469 • www.FandO.com	X46 Hartford Road, Manchester, CT 06040 56 Quarry Road, Trumbull, CT 06611 1419 Richland Street, Columbia, SC 29201	 78 Interstate Drive, West Springfield, MA 01089 317 Iron Horse Way, Suite 204, Providence, RI 0290 80 Washington Street, Suite 301, Poughkeepsie, NY 	08 □ Other	(ent
CHAIN-OF-	CUSTODY RECORI	D 34347	Turbaround 24-Hour* 72-Hour* 0 Other 48-Hour* Xstandard (L days) *Surcharge App	(days)
PROJECT NAME Former Meriden Hos A	PROJECT LOCATION	PROJECT NUMBER	Z. C10 PUZEN	
REPORT TO: Sken; e Wie INVOICE TO:	estechque e	Analysis Request	Containers	s
P.O. No.:				701 D m.
Sampler's Signature:	Date: 5/2/14		200 10 10 10 10 10 10 10 10 10 10 10 10 1	Sto D P.
Source Codes: MW=Monitoring Well PW=Potable Water T SW=Surface Water ST=Stormwater V	T=Treatment Facility S=Soil B=Sedimer W=Waste A=Air C=Concrete	The second secon	2000 100 100 100 100 100 100 100 100 100	243311.1
X=Other X=Y Y C Item Transfer Check Sample Nu No. 1 2 4	amber Code Sampled Sam	me A CONCERCE	List Construction of the c	
1176160507	2-01 × 5/2/1/4 09			(1 58
	-02 X 09	7		bgy
	- 03 IS 10	40 1 1 2		المراك
	-04 5 10	50 1 2		امماتن
		> < <		alited-
	J. T.	21		مروبل
				505
->	-10 S L 131			ممر لاما
Transfer Relinquished By Number P , Cov	Accepted By Flo Lodes/Lee EC SI	Date Time Charge Exceptions: CT Tax Exer Date Time Charge Exceptions: Duplicate: Diff. (LOO Reporting and Detection Limit Requ	mpt □QA/QC □Other	
2 Ato 6 Nol Geose		Elle 68:44 Res les 08	ze + GAPMe	
4	2	Pluase flow AN addt 1	I supply volume for all on muchys	<u><u></u></u>

Thursday, May 19, 2016

Attn: Ms. Stefanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Project ID: FORMER MERIDEN HOSPITAL Sample ID#s: BN25675, BN25677, BN25679, BN25682, BN25684, BN25686 - BN25687, BN25689, BN25691 - BN25692, BN25694, BN25696

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

Enclosed are revised Analysis Report pages. Please replace and discard the original pages. If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

XI: De

Phyllis/Shiller Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #MA-CT-007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

Analysis Report

FOR: Attn: Ms. Stefanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

May 19, 2016

Sample Information		Custody Inform	<u>Date</u>	<u>Time</u>	
Matrix:	SOIL	Collected by:	DC	05/03/16	9:00
Location Code:	F&O-PCB	Received by:	LB	05/05/16	9:00
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	20120232.C40				

Laboratory Data

SDG ID: GBN25675 Phoenix ID: BN25675

Project ID: FORMER MERIDEN HOSPITAL

Client ID: 1176160503-17

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	90		%		05/05/16	W	SW846-%Solid
Soil Extraction SVOA PAH	Completed				05/05/16	BJ/CKV	SW3545A
Extraction of CT ETPH	Completed				05/05/16	BJ/CK	SW3545A
TPH by GC (Extractab	le Products)					
Ext. Petroleum HC	ND	54	mg/Kg	1	05/06/16	JRB	CTETPH 8015D
Identification	ND		mg/Kg	1	05/06/16	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	68		%	1	05/06/16	JRB	50 - 150 %
Polynuclear Aromatic	<u>HC</u>						
2-Methylnaphthalene	ND	260	ug/Kg	1	05/06/16	DD	SW8270D
Acenaphthene	ND	260	ug/Kg	1	05/06/16	DD	SW8270D
Acenaphthylene	ND	260	ug/Kg	1	05/06/16	DD	SW8270D
Anthracene	ND	260	ug/Kg	1	05/06/16	DD	SW8270D
Benz(a)anthracene	ND	260	ug/Kg	1	05/06/16	DD	SW8270D
Benzo(a)pyrene	ND	260	ug/Kg	1	05/06/16	DD	SW8270D
Benzo(b)fluoranthene	ND	260	ug/Kg	1	05/06/16	DD	SW8270D
Benzo(ghi)perylene	ND	260	ug/Kg	1	05/06/16	DD	SW8270D
Benzo(k)fluoranthene	ND	260	ug/Kg	1	05/06/16	DD	SW8270D
Chrysene	ND	260	ug/Kg	1	05/06/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	260	ug/Kg	1	05/06/16	DD	SW8270D
Fluoranthene	260	260	ug/Kg	1	05/06/16	DD	SW8270D
Fluorene	ND	260	ug/Kg	1	05/06/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	260	ug/Kg	1	05/06/16	DD	SW8270D
Naphthalene	ND	260	ug/Kg	1	05/06/16	DD	SW8270D
Phenanthrene	ND	260	ug/Kg	1	05/06/16	DD	SW8270D
Pyrene	ND	260	ug/Kg	1	05/06/16	DD	SW8270D

Project ID: FORMER MERIDEN HOSPITAL Client ID: 1176160503-17

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
QA/QC Surrogates							
% 2-Fluorobiphenyl	64		%	1	05/06/16	DD	30 - 130 %
% Nitrobenzene-d5	61		%	1	05/06/16	DD	30 - 130 %
% Terphenyl-d14	53		%	1	05/06/16	DD	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director May 19, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

FOR: Attn: Ms. Stefanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

May 19, 2016

Sample Information		Custody Inform	Custody Information		
Matrix:	SOIL	Collected by:	DC	05/03/16	9:30
Location Code:	F&O-PCB	Received by:	LB	05/05/16	9:00
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	20120232.C40				

Laboratory Data

SDG ID: GBN25675 Phoenix ID: BN25677

Project ID: FORMER MERIDEN HOSPITAL

Client ID: 1176160503-19

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	90		%		05/05/16	W	SW846-%Solid
Soil Extraction SVOA PAH	Completed				05/05/16	BJ/CKV	SW3545A
Extraction of CT ETPH	Completed				05/05/16	BJ/CK	SW3545A
TPH by GC (Extractab	le Products)					
Ext. Petroleum HC	ND	55	mg/Kg	1	05/06/16	JRB	CTETPH 8015D
Identification	ND		mg/Kg	1	05/06/16	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	75		%	1	05/06/16	JRB	50 - 150 %
Polynuclear Aromatic	<u>HC</u>						
2-Methylnaphthalene	ND	260	ug/Kg	1	05/06/16	DD	SW8270D
Acenaphthene	ND	260	ug/Kg	1	05/06/16	DD	SW8270D
Acenaphthylene	ND	260	ug/Kg	1	05/06/16	DD	SW8270D
Anthracene	ND	260	ug/Kg	1	05/06/16	DD	SW8270D
Benz(a)anthracene	ND	260	ug/Kg	1	05/06/16	DD	SW8270D
Benzo(a)pyrene	ND	260	ug/Kg	1	05/06/16	DD	SW8270D
Benzo(b)fluoranthene	ND	260	ug/Kg	1	05/06/16	DD	SW8270D
Benzo(ghi)perylene	ND	260	ug/Kg	1	05/06/16	DD	SW8270D
Benzo(k)fluoranthene	ND	260	ug/Kg	1	05/06/16	DD	SW8270D
Chrysene	ND	260	ug/Kg	1	05/06/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	260	ug/Kg	1	05/06/16	DD	SW8270D
Fluoranthene	ND	260	ug/Kg	1	05/06/16	DD	SW8270D
Fluorene	ND	260	ug/Kg	1	05/06/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	260	ug/Kg	1	05/06/16	DD	SW8270D
Naphthalene	ND	260	ug/Kg	1	05/06/16	DD	SW8270D
Phenanthrene	ND	260	ug/Kg	1	05/06/16	DD	SW8270D
Pyrene	ND	260	ug/Kg	1	05/06/16	DD	SW8270D

Project ID: FORMER MERIDEN HOSPITAL Client ID: 1176160503-19

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
QA/QC Surrogates							
% 2-Fluorobiphenyl	47		%	1	05/06/16	DD	30 - 130 %
% Nitrobenzene-d5	49		%	1	05/06/16	DD	30 - 130 %
% Terphenyl-d14	39		%	1	05/06/16	DD	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director May 19, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

FOR: Attn: Ms. Stefanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

May 19, 2016

Sample Information		Custody Inform	nation	Date	<u>Time</u>
Matrix:	SOIL	Collected by:	DC	05/03/16	9:50
Location Code:	F&O-PCB	Received by:	LB	05/05/16	9:00
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	20120232.C40				

Laboratory Data

SDG ID: GBN25675 Phoenix ID: BN25679

Project ID: FORMER MERIDEN HOSPITAL

Client ID: 1176160503-21

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	91		%		05/05/16	W	SW846-%Solid
Soil Extraction SVOA PAH	Completed				05/05/16	BJ/CKV	SW3545A
Extraction of CT ETPH	Completed				05/05/16	BJ/CK	SW3545A
Extraction for PCB	Completed				05/05/16	QQ/I	SW3540C
TPH by GC (Extractable	Products)					
Ext. Petroleum HC	ND	53	mg/Kg	1	05/06/16	JRB	CTETPH 8015D
Identification	ND		mg/Kg	1	05/06/16	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	76		%	1	05/06/16	JRB	50 - 150 %
PCB (Soxhlet SW3540C)	<u> </u>						
PCB-1016	ND	0.36	mg/kg	10	05/06/16	AW	SW8082A
PCB-1221	ND	0.36	mg/kg	10	05/06/16	AW	SW8082A
PCB-1232	ND	0.36	mg/kg	10	05/06/16	AW	SW8082A
PCB-1242	ND	0.36	mg/kg	10	05/06/16	AW	SW8082A
PCB-1248	ND	0.36	mg/kg	10	05/06/16	AW	SW8082A
PCB-1254	ND	0.36	mg/kg	10	05/06/16	AW	SW8082A
PCB-1260	ND	0.36	mg/kg	10	05/06/16	AW	SW8082A
PCB-1262	ND	0.36	mg/kg	10	05/06/16	AW	SW8082A
PCB-1268	ND	0.36	mg/kg	10	05/06/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	68		%	10	05/06/16	AW	30 - 150 %
% TCMX	78		%	10	05/06/16	AW	30 - 150 %
Polynuclear Aromatic He	<u>c</u>						
2-Methylnaphthalene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Acenaphthene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D

Project ID: FORMER MERIDEN HOSPITAL Client ID: 1176160503-21

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Acenaphthylene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Anthracene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Benz(a)anthracene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Benzo(a)pyrene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Benzo(b)fluoranthene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Benzo(ghi)perylene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Benzo(k)fluoranthene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Chrysene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Fluoranthene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Fluorene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Naphthalene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Phenanthrene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Pyrene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
QA/QC Surrogates							
% 2-Fluorobiphenyl	73		%	1	05/06/16	DD	30 - 130 %
% Nitrobenzene-d5	72		%	1	05/06/16	DD	30 - 130 %
% Terphenyl-d14	61		%	1	05/06/16	DD	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis, Shiller, Laboratory Director May 19, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

FOR: Attn: Ms. Stefanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

May 19, 2016

Sample Information		Custody Inforr	nation	Date	<u>Time</u>	
Matrix:	SOIL	Collected by:	DC	05/03/16	10:15	
Location Code:	F&O-PCB	Received by:	LB	05/05/16	9:00	
Rush Request:	Standard	Analyzed by:	see "By" below			
P.O.#:	20120232.C40					

Laboratory Data

SDG ID: GBN25675 Phoenix ID: BN25682

Project ID: FORMER MERIDEN HOSPITAL

Client ID: 1176160503-24

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	92		%		05/05/16	W	SW846-%Solid
Soil Extraction SVOA PAH	Completed				05/05/16	BJ/CKV	SW3545A
Extraction for PCB	Completed				05/05/16	QQ/I	SW3540C
PCB (Soxhlet SW354)	<u>0C)</u>						
PCB-1016	ND	0.35	mg/kg	10	05/06/16	AW	SW8082A
PCB-1221	ND	0.35	mg/kg	10	05/06/16	AW	SW8082A
PCB-1232	ND	0.35	mg/kg	10	05/06/16	AW	SW8082A
PCB-1242	ND	0.35	mg/kg	10	05/06/16	AW	SW8082A
PCB-1248	ND	0.35	mg/kg	10	05/06/16	AW	SW8082A
PCB-1254	ND	0.35	mg/kg	10	05/06/16	AW	SW8082A
PCB-1260	ND	0.35	mg/kg	10	05/06/16	AW	SW8082A
PCB-1262	ND	0.35	mg/kg	10	05/06/16	AW	SW8082A
PCB-1268	ND	0.35	mg/kg	10	05/06/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	86		%	10	05/06/16	AW	30 - 150 %
% TCMX	76		%	10	05/06/16	AW	30 - 150 %
Polynuclear Aromatic	: HC						
2-Methylnaphthalene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Acenaphthene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Acenaphthylene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Anthracene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Benz(a)anthracene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Benzo(a)pyrene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Benzo(b)fluoranthene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Benzo(ghi)perylene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Benzo(k)fluoranthene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D

Project ID: FORMER MERIDEN HOSPITAL Client ID: 1176160503-24

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Chrysene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Fluoranthene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Fluorene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Naphthalene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Phenanthrene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Pyrene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
QA/QC Surrogates							
% 2-Fluorobiphenyl	70		%	1	05/06/16	DD	30 - 130 %
% Nitrobenzene-d5	70		%	1	05/06/16	DD	30 - 130 %
% Terphenyl-d14	62		%	1	05/06/16	DD	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director May 19, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

FOR: Attn: Ms. Stefanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

May 19, 2016

Sample Informa	ation	Custody Inform	nation	<u>Date</u>	<u>Time</u>
Matrix:	SOIL	Collected by:	DC	05/03/16	10:40
Location Code:	F&O-PCB	Received by:	LB	05/05/16	9:00
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	20120232.C40				

Laboratory Data

SDG ID: GBN25675 Phoenix ID: BN25684

Project ID: FORMER MERIDEN HOSPITAL

Client ID: 1176160503-26

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	93		%		05/05/16	W	SW846-%Solid
Soil Extraction SVOA PAH	Completed				05/05/16	BJ/CKV	SW3545A
Extraction for PCB	Completed				05/05/16	QQ/I	SW3540C
PCB (Soxhlet SW354	<u>0C)</u>						
PCB-1016	ND	0.35	mg/kg	10	05/06/16	AW	SW8082A
PCB-1221	ND	0.35	mg/kg	10	05/06/16	AW	SW8082A
PCB-1232	ND	0.35	mg/kg	10	05/06/16	AW	SW8082A
PCB-1242	ND	0.35	mg/kg	10	05/06/16	AW	SW8082A
PCB-1248	ND	0.35	mg/kg	10	05/06/16	AW	SW8082A
PCB-1254	ND	0.35	mg/kg	10	05/06/16	AW	SW8082A
PCB-1260	ND	0.35	mg/kg	10	05/06/16	AW	SW8082A
PCB-1262	ND	0.35	mg/kg	10	05/06/16	AW	SW8082A
PCB-1268	ND	0.35	mg/kg	10	05/06/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	88		%	10	05/06/16	AW	30 - 150 %
% TCMX	84		%	10	05/06/16	AW	30 - 150 %
Polynuclear Aromatic	<u>: HC</u>						
2-Methylnaphthalene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Acenaphthene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Acenaphthylene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Anthracene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Benz(a)anthracene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Benzo(a)pyrene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Benzo(b)fluoranthene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Benzo(ghi)perylene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Benzo(k)fluoranthene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D

Project ID: FORMER MERIDEN HOSPITAL Client ID: 1176160503-26

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
Chrysene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Dibenz(a,h)anthracene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Fluoranthene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Fluorene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Indeno(1,2,3-cd)pyrene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Naphthalene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Phenanthrene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Pyrene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
QA/QC Surrogates							
% 2-Fluorobiphenyl	72		%	1	05/06/16	DD	30 - 130 %
% Nitrobenzene-d5	71		%	1	05/06/16	DD	30 - 130 %
% Terphenyl-d14	66		%	1	05/06/16	DD	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director May 19, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

FOR: Attn: Ms. Stefanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

May 19, 2016

Sample Informa	ation	Custody Inforr	nation	Date	Time
Matrix:	SOIL	Collected by:	DC	05/03/16	11:00
Location Code:	F&O-PCB	Received by:	LB	05/05/16	9:00
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	20120232.C40				

Laboratory Data

SDG ID: GBN25675 Phoenix ID: BN25686

Project ID: FORMER MERIDEN HOSPITAL

Client ID: 1176160503-28

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
Percent Solid	90		%		05/05/16	W	SW846-%Solid
Soil Extraction SVOA PAH	Completed				05/05/16	BJ/CKV	SW3545A
Extraction for PCB	Completed				05/05/16	QQ/I	SW3540C
PCB (Soxhlet SW354)	<u>0C)</u>						
PCB-1016	ND	0.36	mg/kg	10	05/06/16	AW	SW8082A
PCB-1221	ND	0.36	mg/kg	10	05/06/16	AW	SW8082A
PCB-1232	ND	0.36	mg/kg	10	05/06/16	AW	SW8082A
PCB-1242	ND	0.36	mg/kg	10	05/06/16	AW	SW8082A
PCB-1248	ND	0.36	mg/kg	10	05/06/16	AW	SW8082A
PCB-1254	ND	0.36	mg/kg	10	05/06/16	AW	SW8082A
PCB-1260	ND	0.36	mg/kg	10	05/06/16	AW	SW8082A
PCB-1262	ND	0.36	mg/kg	10	05/06/16	AW	SW8082A
PCB-1268	ND	0.36	mg/kg	10	05/06/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	64		%	10	05/06/16	AW	30 - 150 %
% TCMX	57		%	10	05/06/16	AW	30 - 150 %
Polynuclear Aromatic	<u>: HC</u>						
2-Methylnaphthalene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Acenaphthene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Acenaphthylene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Anthracene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Benz(a)anthracene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Benzo(a)pyrene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Benzo(b)fluoranthene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Benzo(ghi)perylene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D
Benzo(k)fluoranthene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D

Project ID: FORMER MERIDEN HOSPITAL Client ID: 1176160503-28

		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference	
Chrysene	290	250	ug/Kg	1	05/06/16	DD	SW8270D	_
Dibenz(a,h)anthracene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D	
Fluoranthene	370	250	ug/Kg	1	05/06/16	DD	SW8270D	
Fluorene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D	
Indeno(1,2,3-cd)pyrene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D	
Naphthalene	ND	250	ug/Kg	1	05/06/16	DD	SW8270D	
Phenanthrene	270	250	ug/Kg	1	05/06/16	DD	SW8270D	
Pyrene	320	250	ug/Kg	1	05/06/16	DD	SW8270D	
QA/QC Surrogates								
% 2-Fluorobiphenyl	73		%	1	05/06/16	DD	30 - 130 %	
% Nitrobenzene-d5	75		%	1	05/06/16	DD	30 - 130 %	
% Terphenyl-d14	59		%	1	05/06/16	DD	30 - 130 %	

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director May 19, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

May 19, 2016

FOR: Attn: Ms. Stefanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample Informa	<u>ntion</u>	Custody Informa	ation
Matrix:	SOIL	Collected by:	DC
Location Code:	F&O-PCB	Received by:	LB
Rush Request:	Standard	Analyzed by:	see
P.O.#:	20120232.C40		

cted by: DC ived by: LB zed by: see "By" below 05/03/16 11:05 05/05/16 9:00

Date

Time

|--|

SDG ID: GBN25675 Phoenix ID: BN25687

FORMER MERIDEN HOSPITAL Project ID:

Client ID: 1176160503-29

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Percent Solid	91		%		05/05/16	W	SW846-%Solid
Soil Extraction SVOA PAH	Completed				05/05/16	BJ/CKV	SW3545A
Extraction for PCB	Completed				05/05/16	QQ/I	SW3540C
PCB (Soxhlet SW3540	0C)						
PCB-1016	ND	0.36	mg/kg	10	05/06/16	AW	SW8082A
PCB-1221	ND	0.36	mg/kg	10	05/06/16	AW	SW8082A
PCB-1232	ND	0.36	mg/kg	10	05/06/16	AW	SW8082A
PCB-1242	ND	0.36	mg/kg	10	05/06/16	AW	SW8082A
PCB-1248	ND	0.36	mg/kg	10	05/06/16	AW	SW8082A
PCB-1254	ND	0.36	mg/kg	10	05/06/16	AW	SW8082A
PCB-1260	ND	0.36	mg/kg	10	05/06/16	AW	SW8082A
PCB-1262	ND	0.36	mg/kg	10	05/06/16	AW	SW8082A
PCB-1268	ND	0.36	mg/kg	10	05/06/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	61		%	10	05/06/16	AW	30 - 150 %
% TCMX	57		%	10	05/06/16	AW	30 - 150 %
Polynuclear Aromatic	: HC						
2-Methylnaphthalene	ND	260	ug/Kg	1	05/06/16	DD	SW8270D
Acenaphthene	ND	260	ug/Kg	1	05/06/16	DD	SW8270D
Acenaphthylene	ND	260	ug/Kg	1	05/06/16	DD	SW8270D
Anthracene	ND	260	ug/Kg	1	05/06/16	DD	SW8270D
Benz(a)anthracene	420	260	ug/Kg	1	05/06/16	DD	SW8270D
Benzo(a)pyrene	430	260	ug/Kg	1	05/06/16	DD	SW8270D
Benzo(b)fluoranthene	420	260	ug/Kg	1	05/06/16	DD	SW8270D
Benzo(ghi)perylene	290	260	ug/Kg	1	05/06/16	DD	SW8270D
Benzo(k)fluoranthene	380	260	ug/Kg	1	05/06/16	DD	SW8270D

Project ID: FORMER MERIDEN HOSPITAL Client ID: 1176160503-29

		RL/						
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference	
Chrysene	520	260	ug/Kg	1	05/06/16	DD	SW8270D	
Dibenz(a,h)anthracene	ND	260	ug/Kg	1	05/06/16	DD	SW8270D	
Fluoranthene	790	260	ug/Kg	1	05/06/16	DD	SW8270D	
Fluorene	ND	260	ug/Kg	1	05/06/16	DD	SW8270D	
Indeno(1,2,3-cd)pyrene	320	260	ug/Kg	1	05/06/16	DD	SW8270D	
Naphthalene	ND	260	ug/Kg	1	05/06/16	DD	SW8270D	
Phenanthrene	570	260	ug/Kg	1	05/06/16	DD	SW8270D	
Pyrene	690	260	ug/Kg	1	05/06/16	DD	SW8270D	
QA/QC Surrogates								
% 2-Fluorobiphenyl	68		%	1	05/06/16	DD	30 - 130 %	
% Nitrobenzene-d5	69		%	1	05/06/16	DD	30 - 130 %	
% Terphenyl-d14	57		%	1	05/06/16	DD	30 - 130 %	

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

DUPLICATE

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director May 19, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

May 19, 2016

FOR: Attn: Ms. Stefanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sam	ole	Information	

Matrix:	SOIL
Location Code:	F&O-PCB
Rush Request:	Standard
P.O.#:	20120232.C40

Custody InformationCollected by:DCReceived by:LBAnalyzed by:see "By" below

05/05/16 9:00

Time

12:30

Date

05/03/16

Laboratory Data

SDG ID: GBN25675 Phoenix ID: BN25689

Project ID: FORMER MERIDEN HOSPITAL

Client ID: 1176160503-31

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Silver	< 0.38	0.38	mg/Kg	1	05/06/16	EK	SW6010C
Arsenic	3.0	0.8	mg/Kg	1	05/06/16	EK	SW6010C
Barium	57.2	0.38	mg/Kg	1	05/06/16	ΕK	SW6010C
Cadmium	< 0.38	0.38	mg/Kg	1	05/06/16	ΕK	SW6010C
Chromium	13.8	0.38	mg/Kg	1	05/06/16	ΕK	SW6010C
Copper	65.0	0.38	mg/kg	1	05/06/16	EK	SW6010C
Mercury	0.18	0.03	mg/Kg	1	05/06/16	RS	SW7471B
Nickel	13.3	0.38	mg/Kg	1	05/06/16	EK	SW6010C
Lead	74.2	0.38	mg/Kg	1	05/06/16	EK	SW6010C
Selenium	< 1.5	1.5	mg/Kg	1	05/06/16	LK	SW6010C
SPLP Lead	0.011	0.010	mg/L	1	05/18/16	LK	SW6010C
SPLP Metals Digestion	Completed				05/17/16	W/W	SW3005A
Zinc	100	0.38	mg/Kg	1	05/06/16	EK	SW6010C
Percent Solid	90		%		05/05/16	W	SW846-%Solid
Extraction of CT ETPH	Completed				05/05/16	BJ/CK	SW3545A
Mercury Digestion	Completed				05/06/16	W/W	SW7471B
SPLP Extraction for Metals	Completed				05/16/16	W	SW1312
Total Metals Digest	Completed				05/05/16	G/AG	SW3050B
TPH by GC (Extractabl	le Products	5)					
Ext. Petroleum HC	ND	55	mg/Kg	1	05/06/16	JRB	CTETPH 8015D
Identification	ND		mg/Kg	1	05/06/16	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	76		%	1	05/06/16	JRB	50 - 150 %

Project ID: FORMER MERIDEN HOSPITAL Phoenix I.D.: BN25689 Client ID: 1176160503-31 RL/ Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director May 19, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

May 19, 2016

FOR: Attn: Ms. Stefanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample Information									
Matrix:	SOIL								
Location Code:	F&O-PCB								
Rush Request:	Standard								

Custody Information									
Collected by:	DC								
Received by:	LB								
Analyzed by:	see "By								

Units

" below _aboratory Data

Dilution

SDG ID: GBN25675 Phoenix ID: BN25691

By

Reference

SW6010C

SW6010C

SW6010C

SW6010C

SW6010C

SW6010C

SW7471B

SW6010C

SW6010C

SW6010C

SW6010C

SW6010C

SW6010C

SW3005A

SW6010C

SW7471B

SW1312

G/AG SW3050B

W

SW846-%Solid

Time

13:20

9:00

Date

05/03/16

05/05/16

Date/Time

05/16/16

05/05/16

FORMER MERIDEN HOSPITAL Project ID:

20120232.C40

Client ID: 1176160503-33

P.O.#:

Parameter

Silver 6.04 0.40 mg/Kg 1 05/06/16 ΕK Arsenic 12.7 0.8 mg/Kg 1 05/06/16 LK 05/06/16 Barium 58.6 0.40 mg/Kg 1 LK 2.80 Cadmium 0.40 mg/Kg 1 05/06/16 LK 24.3 0.40 1 05/06/16 LK Chromium mg/Kg Copper 561 4.0 mg/kg 10 05/07/16 LΚ 05/06/16 Mercury 0.23 0.03 mg/Kg 1 RS Nickel 101 0.40 mg/Kg 1 05/06/16 LK 747 05/07/16 Lead 4.0 mg/Kg 10 LΚ Selenium < 1.6 1.6 mg/Kg 1 05/06/16 LK < 0.004 05/18/16 SPLP Arsenic 0.004 mg/L 1 LK SPLP Cadmium < 0.005 0.005 mg/L 1 05/18/16 LK 0.016 0.010 05/18/16 SPLP Lead mg/L 1 LK SPLP Metals Digestion Completed 05/17/16 W/W 1220 LK Zinc 4.0 mg/Kg 10 05/07/16 82 % 05/05/16 W Percent Solid Completed 05/05/16 BJ/CK SW3545A Extraction of CT ETPH Completed 05/06/16 W/W Mercury Digestion

RL/

PQL

Result

Completed

Completed

TPH by GC (Extractable Products)

SPLP Extraction for Metals

Total Metals Digest

Ext. Petroleum HC	ND	61	mg/Kg	1	05/06/16	JRB	CTETPH 8015D
Identification	ND		mg/Kg	1	05/06/16	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	69		%	1	05/06/16	JRB	50 - 150 %
Client MS/MSD	Completed				05/17/16		

Project ID: FORMER MERIDEN HOSPITAL Phoenix I.D.: BN25691 Client ID: 1176160503-33 RL/ Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director May 19, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

May 19, 2016

FOR: Attn: Ms. Stefanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample Informa	ition	Custody Information					
Matrix:	SOIL	Collected by: DC					
Location Code:	F&O-PCB	Received by: LB					
Rush Request:	Standard	Analyzed by: see					
P.O.#:	20120232.C40						

Laboratory Data

DI /

DC

see "By" below

SDG ID: GBN25675 Phoenix ID: BN25692

Time

13:30

9:00

Date

05/03/16

05/05/16

FORMER MERIDEN HOSPITAL Project ID:

Client ID: 1176160503-34

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference	
Silver	17.8	0.41	mg/Kg	1	05/06/16	LK	SW6010C	
Arsenic	10.5	0.8	mg/Kg	1	05/06/16	ΕK	SW6010C	
Barium	52.6	0.41	mg/Kg	1	05/06/16	ΕK	SW6010C	
Cadmium	2.60	0.41	mg/Kg	1	05/06/16	ΕK	SW6010C	
Chromium	21.1	0.41	mg/Kg	1	05/06/16	ΕK	SW6010C	
Copper	6940	41	mg/kg	100	05/07/16	LK	SW6010C	
Mercury	0.29	0.03	mg/Kg	1	05/06/16	RS	SW7471B	
Nickel	87.8	0.41	mg/Kg	1	05/06/16	EK	SW6010C	
Lead	1010	41	mg/Kg	100	05/07/16	LK	SW6010C	
Selenium	< 1.6	1.6	mg/Kg	1	05/06/16	LK	SW6010C	
SPLP Copper	0.045	0.010	mg/L	1	05/18/16	LK	SW6010C	
SPLP Lead	0.028	0.010	mg/L	1	05/18/16	LK	SW6010C	
SPLP Metals Digestion	Completed				05/17/16	W/W	SW3005A	
Zinc	1170	41	mg/Kg	100	05/07/16	LK	SW6010C	
Percent Solid	82		%		05/05/16	W	SW846-%Solid	
Extraction of CT ETPH	Completed				05/05/16	BJ/CK	SW3545A	
Mercury Digestion	Completed				05/06/16	W/W	SW7471B	
SPLP Extraction for Metals	Completed				05/16/16	W	SW1312	
Total Metals Digest	Completed				05/05/16	G/AG	SW3050B	
TPH by GC (Extractab	le Products	5)						
Ext. Petroleum HC	ND	60	mg/Kg	1	05/06/16	JRB	CTETPH 8015D	
Identification	ND		mg/Kg	1	05/06/16	JRB	CTETPH 8015D	
QA/QC Surrogates								
% n-Pentacosane	67		%	1	05/06/16	JRB	50 - 150 %	

Project ID: FORMER MERIDEN HOSPITAL Phoenix I.D.: BN25692 Client ID: 1176160503-34 RL/ Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

DUPLICATE INCLUDED

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director May 19, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

. .

P.O.#:

May 19, 2016

FOR: Attn: Ms. Stefanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample Information									
SOIL									
F&O-PCB									
Standard									

Custody InformationCollected by:DCReceived by:LBAnalyzed by:see "By" below

_aboratory Data

05/05/16 9:00 SDG ID: GBN25675

Time

14:00

Date

05/03/16

Phoenix ID: BN25694

Project ID: FORMER MERIDEN HOSPITAL

20120232.C40

Client ID: 1176160503-36

RL/ Parameter Result PQL Units Dilution Date/Time Reference By Silver < 0.35 0.35 mg/Kg 1 05/06/16 ΕK SW6010C Arsenic 4.0 0.7 mg/Kg 1 05/06/16 ΕK SW6010C 05/06/16 Barium 117 0.35 mg/Kg 1 ΕK SW6010C SW6010C Cadmium 1.19 0.35 mg/Kg 1 05/06/16 ΕK 23.2 SW6010C 0.35 1 05/06/16 ΕK Chromium mg/Kg Copper 28.2 0.35 mg/kg 1 05/06/16 ΕK SW6010C 0.07 05/06/16 SW7471B Mercury 0.03 mg/Kg 1 RS Nickel 18.1 0.35 mg/Kg 1 05/06/16 ΕK SW6010C 05/06/16 SW6010C Lead 29.5 0.35 mg/Kg 1 ΕK SW6010C Selenium < 1.4 1.4 mg/Kg 1 05/06/16 LK < 0.010 05/18/16 SW6010C SPLP Lead 0.010 mg/L 1 LK SPLP Metals Digestion Completed 05/17/16 W/W SW3005A 533 10 05/07/16 ΙK SW6010C Zinc 3.5 mg/Kg Percent Solid 87 % 05/05/16 W SW846-%Solid Completed 05/05/16 BJ/CK SW3545A Extraction of CT ETPH Completed 05/06/16 W/W SW7471B Mercury Digestion Completed 05/16/16 W SW1312 SPLP Extraction for Metals Completed 05/05/16 G/AG SW3050B **Total Metals Digest** TPH by GC (Extractable Products) Ext. Petroleum HC ND 56 mg/Kg 1 05/06/16 JRB CTETPH 8015D Identification ND mg/Kg 1 05/06/16 JRB CTETPH 8015D **QA/QC** Surrogates 60 % 1 05/06/16 JRB 50 - 150 % % n-Pentacosane

Project ID: FORMER MERIDEN HOSPITAL Phoenix I.D.: BN25694 Client ID: 1176160503-36 RL/ Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director May 19, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

. .

May 19, 2016

FOR: Attn: Ms. Stefanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample Information									
Matrix:	SOIL								
Location Code:	F&O-PCB								
Rush Request:	Standard								
P.O.#:	20120232.C40								

...

Collected by: DC Received by: LB Analyzed by: see "By" below

_aboratory Data

Custody Information

SDG ID: GBN25675 Phoenix ID: BN25696

Time

14:40

9:00

Date

05/03/16

05/05/16

FORMER MERIDEN HOSPITAL Project ID:

Client ID: 1176160503-38

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Silver	< 0.36	0.36	mg/Kg	1	05/06/16	EK	SW6010C
Arsenic	19.8	0.7	mg/Kg	1	05/06/16	ΕK	SW6010C
Barium	94.8	0.36	mg/Kg	1	05/06/16	EK	SW6010C
Cadmium	< 0.36	0.36	mg/Kg	1	05/06/16	ΕK	SW6010C
Chromium	12.5	0.36	mg/Kg	1	05/06/16	EK	SW6010C
Copper	35.0	0.36	mg/kg	1	05/06/16	EK	SW6010C
Mercury	< 0.03	0.03	mg/Kg	1	05/06/16	RS	SW7471B
Nickel	13.1	0.36	mg/Kg	1	05/06/16	ΕK	SW6010C
Lead	12.5	0.36	mg/Kg	1	05/06/16	EK	SW6010C
Selenium	< 1.4	1.4	mg/Kg	1	05/06/16	LK	SW6010C
SPLP Arsenic	< 0.004	0.004	mg/L	1	05/18/16	LK	SW6010C
SPLP Lead	< 0.010	0.010	mg/L	1	05/18/16	LK	SW6010C
SPLP Metals Digestion	Completed				05/17/16	W/W	SW3005A
Zinc	46.2	0.36	mg/Kg	1	05/06/16	EK	SW6010C
Percent Solid	90		%		05/05/16	W	SW846-%Solid
Extraction of CT ETPH	Completed				05/05/16	BJ/CK	SW3545A
Mercury Digestion	Completed				05/06/16	W/W	SW7471B
SPLP Extraction for Metals	Completed				05/16/16	W	SW1312
Total Metals Digest	Completed				05/05/16	G/AG	SW3050B
TPH by GC (Extractab	le Products	<u>5)</u>					
Ext. Petroleum HC	ND	55	mg/Kg	1	05/06/16	JRB	CTETPH 8015D
Identification	ND		mg/Kg	1	05/06/16	JRB	CTETPH 8015D
QA/QC Surrogates							
% n-Pentacosane	66		%	1	05/06/16	JRB	50 - 150 %

Project ID: FORMER MERIDEN HOSPITAL Phoenix I.D.: BN25696 Client ID: 1176160503-38 RL/ Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

Phyllis Shiller, Laboratory Director May 19, 2016 Reviewed and Released by: Ethan Lee, Project Manager

QA/QC Report

May 19, 2016

QA/QC Data

SDG I.D.: GBN25675

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 344552 (mg/kg),	2C Sam	ple No:	BN2569	1 (BN25	689, BN	25691	, BN256	92, BN	25694,	BN256	96)			
ICP Metals - Soil														
Arsenic	BRL	0.67	12.7	12.7	0	103			91.1			75 - 125	30	
Barium	BRL	0.33	58.6	58.1	0.90	94.5			96.4			75 - 125	30	
Cadmium	BRL	0.33	2.80	3.02	7.60	104			90.3			75 - 125	30	
Chromium	BRL	0.33	24.3	24.0	1.20	105			96.0			75 - 125	30	
Copper	BRL	0.33	561	545	2.90	106			68.6			75 - 125	30	m
Lead	BRL	0.33	747	885	16.9	97.5			111			75 - 125	30	
Nickel	BRL	0.33	101	120	17.2	104			82.5			75 - 125	30	
Selenium	BRL	1.3	<1.6	<1.5	NC	90.8			78.1			75 - 125	30	
Silver	BRL	0.33	6.04	5.67	6.30	103			96.6			75 - 125	30	
Zinc	BRL	0.33	1220	1200	1.70	101			NC			75 - 125	30	
QA/QC Batch 345805 (mg/L), C	C Samp	ole No: I	BN25691	(BN256	89, BN2	25691,	BN2569	2, BN2	5694, E	3N2569	6)			
ICP Metals - SPLP Extrac	tion													
Arsenic	BRL	0.004	<0.004	<0.004	NC	100			100			75 - 125	20	
Cadmium	BRL	0.005	<0.005	<0.005	NC	102			102			75 - 125	20	
Copper	BRL	0.010	0.018	0.018	NC	102			102			75 - 125	20	
Lead	BRL	0.010	0.016	0.015	NC	102			101			75 - 125	20	
QA/QC Batch 344606 (mg/kg),	C Sam	ple No:	BN2569	1 (BN25	689, BN	125691	, BN256	92, BN	25694,	BN256	96)			
Mercury - Soil Comment:	BRL	0.03	0.23	0.22	4.40 % and fo	113 ar sails is	109	3.6	150			70 - 130	30	m

m = This parameter is outside laboratory MS/MSD specified recovery limits.

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

May 19, 2016

QA/QC Data

SDG I.D.: GBN25675

Parameter	Blank	Blk RL		LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 344429 (mg/kg	g), QC Sam	ple No: BN25	5312 10X (BN256	79, BN25	5682)							
Polychlorinated Bipher	nyls - Soil											
PCB-1016	ND	0.17		75	77	2.6				40 - 140	30	
PCB-1221	ND	0.17								40 - 140	30	
PCB-1232	ND	0.17								40 - 140	30	
PCB-1242	ND	0.17								40 - 140	30	
PCB-1248	ND	0.17								40 - 140	30	
PCB-1254	ND	0.17								40 - 140	30	
PCB-1260	ND	0.17		81	83	2.4				40 - 140	30	
PCB-1262	ND	0.17								40 - 140	30	
PCB-1268	ND	0.17								40 - 140	30	
% DCBP (Surrogate Rec)	87	%		90	91	1.1				30 - 150	30	
% TCMX (Surrogate Rec) Comment:	72	%		72	74	2.7				30 - 150	30	

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

QA/QC Batch 344541 (ug/kg), QC Sample No: BN25662 (BN25675, BN25677, BN25679, BN25682, BN25684, BN25686, BN25687)

Polynuclear Aromatic HC - Soil

-											
2-Methylnaphthalene	ND	230		69	66	4.4	55	63	13.6	30 - 130	30
Acenaphthene	ND	230		81	74	9.0	60	69	14.0	30 - 130	30
Acenaphthylene	ND	230		80	73	9.2	60	68	12.5	30 - 130	30
Anthracene	ND	230		81	77	5.1	61	69	12.3	30 - 130	30
Benz(a)anthracene	ND	230		77	76	1.3	59	67	12.7	30 - 130	30
Benzo(a)pyrene	ND	230		75	73	2.7	56	63	11.8	30 - 130	30
Benzo(b)fluoranthene	ND	230		77	75	2.6	57	67	16.1	30 - 130	30
Benzo(ghi)perylene	ND	230		86	83	3.6	62	70	12.1	30 - 130	30
Benzo(k)fluoranthene	ND	230		79	77	2.6	60	68	12.5	30 - 130	30
Chrysene	ND	230		84	81	3.6	65	73	11.6	30 - 130	30
Dibenz(a,h)anthracene	ND	230		83	80	3.7	60	69	14.0	30 - 130	30
Fluoranthene	ND	230		81	74	9.0	60	66	9.5	30 - 130	30
Fluorene	ND	230		76	71	6.8	58	66	12.9	30 - 130	30
Indeno(1,2,3-cd)pyrene	ND	230		85	81	4.8	58	66	12.9	30 - 130	30
Naphthalene	ND	230		70	67	4.4	56	63	11.8	30 - 130	30
Phenanthrene	ND	230		83	77	7.5	61	69	12.3	30 - 130	30
Pyrene	ND	230		84	78	7.4	63	69	9.1	30 - 130	30
% 2-Fluorobiphenyl	72	%		73	66	10.1	55	63	13.6	30 - 130	30
% Nitrobenzene-d5	67	%		68	63	7.6	57	66	14.6	30 - 130	30
% Terphenyl-d14	69	%		80	71	11.9	55	63	13.6	30 - 130	30
QA/QC Batch 344547 (mg/	kg), QC Sam	ple No: B	N25684 10X (BN2	25684, BN25	686, B	N25687)				
Polychlorinated Biphe	enyls - Soil										
PCB-1016	ND	0.17		92	91	1.1	94	92	2.2	40 - 140	30
PCB-1221	ND	0.17								40 - 140	30
PCB-1232	ND	0.17								40 - 140	30

QA/QC Data

Parameter	Blank	Blk RL		LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
PCB-1242	ND	0.17								40 - 140	30
PCB-1248	ND	0.17								40 - 140	30
PCB-1254	ND	0.17								40 - 140	30
PCB-1260	ND	0.17		89	85	4.6	87	90	3.4	40 - 140	30
PCB-1262	ND	0.17								40 - 140	30
PCB-1268	ND	0.17								40 - 140	30
% DCBP (Surrogate Rec)	82	%		80	79	1.3	82	80	2.5	30 - 150	30
% TCMX (Surrogate Rec)	76	%		75	71	5.5	74	70	5.6	30 - 150	30
QA/QC Batch 344545 (mg/Kg), QC Sample No: BN25691 (BN25675, BN25677, BN25679, BN25689, BN25691, BN25692, BN25694, BN25696)											
TPH by GC (Extractable Products) - Soil											
Ext. Petroleum H.C.	ND	50		62	67	7.8	62	68	9.2	60 - 120	30
% n-Pentacosane	65	%		71	75	5.5	78	78	0.0	50 - 150	30

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

hyllis

Phyllis/Shiller, Laboratory Director May 19, 2016

Thursday, May 19, 2016

Criteria: CT: GAM, RC

State: CT

Sample Criteria Exceedences Report

GBN25675 - FO-PCB

0 Uluio.						- · · ·	RL	Analysis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
BN25691	AS-SM	Arsenic	CT / INORGANIC SUBSTANCES / RES DEC (mg/kg)	12.7	0.8	10	10	mg/Kg
BN25691	PB-SM	Lead	CT / INORGANIC SUBSTANCES / RES DEC (mg/kg)	747	4.0	400	400	mg/Kg
BN25691	SPLP-PB	SPLP Lead	CT / INORGANIC SUBSTANCES / GA/GAA PMC (mg/l)**	0.016	0.010	0.015	0.015	mg/L
BN25692	AS-SM	Arsenic	CT / INORGANIC SUBSTANCES / RES DEC (mg/kg)	10.5	0.8	10	10	mg/Kg
BN25692	CU-SM	Copper	CT / INORGANIC SUBSTANCES / RES DEC (mg/kg)	6940	41	2500	2500	mg/kg
BN25692	PB-SM	Lead	CT / INORGANIC SUBSTANCES / RES DEC (mg/kg)	1010	41	400	400	mg/Kg
BN25692	SPLP-PB	SPLP Lead	CT / INORGANIC SUBSTANCES / GA/GAA PMC (mg/l)**	0.028	0.010	0.015	0.015	mg/L
BN25696	AS-SM	Arsenic	CT / INORGANIC SUBSTANCES / RES DEC (mg/kg)	19.8	0.7	10	10	mg/Kg

Phoenix Laboratories does not assume responsibility for the data contained in this report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

Reasonable Confidence Protocol Laboratory Analysis QA/QC Certification Form

Labo	Laboratory Name: Phoenix Environmental Labs, Inc. Client: Fuss & O'Neill, Inc.									
Proje	ect Location: FORMER MERIDEN HOSPITAL Project Number:									
Labo	oratory Sample ID(s): BN25675, BN25677, BN25679, BN25682, BN2 BN25689, BN25691, BN25692, BN25694, BN2	5684, BN25686, BN25687 5696	,							
Sam	npling Date(s): 5/3/2016									
RCP	RCP Methods Used:									
V 13	311/1312 🔽 6010 🗌 7000 🗌 7196 🔽 7470/7471 🗌 8081	🗌 EPH 🔤 1	O15							
✔ 80	082	012 🗌 VPH								
1.	For each analytical method referenced in this laboratory report package, were specified QA/QC performance criteria followed, including the requirement to e any criteria falling outside of acceptable guidelines, as specified in the CT DE method-specific Reasonable Confidence Protocol documents?	e all xplain								
1a.	1a. Were the method specified preservation and holding time requirements met? Image: Version of the method specified preservation and holding time requirements met?									
1b.	1b. EPH and VPH methods only: Was the VPH or EPH method conducted without significant modifications (see section 11.3 of respective RCP methods) □ Yes □ No ☑ NA									
2.	Were all samples received by the laboratory in a condition consistent with tha described on the associated Chain-of-Custody document(s)?	t								
3.	Were samples received at an appropriate temperature (< 6 Degrees C)?	🗹 Yes 🗌 No	□ NA							
4.	Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents acheived? See Sections: ICP Narration, Mercury Narration	on. 🗌 Yes 🗹 No								
5a.	Were reporting limits specified or referenced on the chain-of-custody?	✓ Yes □ No								
5b.	Were these reporting limits met?	✓ Yes □ No	□ NA							
6.	For each analytical method referenced in this laboratory report package, were results reported for all constituents identified in the method-specific analyte lis presented in the Reasonable Confidence Protocol documents?	sts □ Yes ☑ No								
7.	Are project-specific matrix spikes and laboratory duplicates included in the da	ta set? ✓ Yes □ No								

Note: For all questions to which the response was "No" (with the exception of question #5a, #7), additional information must be provided in an attached narrative. If the answer to question #1, #1A or 1B is "No", the data package does not meet the requirements for "Reasonable Confidence".

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete.

Authorized Signature:

Ethan See

Date: Thursday, May 19, 2016

Printed Name: Ethan Lee

Position: Project Manager

RCP Certification Report

May 19, 2016

SDG I.D.: GBN25675

SDG Comments

8270 Semi-volatile Organics:

The client requested a short list for 8270 RCP Semivolatile. Only the PAH constituents are reported as requested on the chain-ofcustody.

Metals Analysis:

The client requested a shorter list of elements than the 6010 RCP list. Only the RCRA 8 Metals plus Copper, Nickel, and Zinc are reported as requested on the chain of custody.

ETPH Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument:

AU-FID1 05/06/16-2

Jeff Bucko, Chemist 05/06/16

BN25677, BN25679, BN25689

The initial calibration (ETPH502I) RSD for the compound list was less than 30% except for the following compounds: None. As per section 7.2.3, a discrimination check standard was run and contained the following outliers: C36 22.8%L (20%) The continuing calibration %D for the compound list was less than 30% except for the following compounds:None.

AU-FID11 05/06/16-1

Jeff Bucko, Chemist 05/06/16

BN25691, BN25696

The initial calibration (ETPH429I) RSD for the compound list was less than 30% except for the following compounds: None. The continuing calibration %D for the compound list was less than 30% except for the following compounds:None.

AU-XL2 05/06/16-1

Jeff Bucko, Chemist 05/06/16

BN25675, BN25691, BN25692, BN25694

The initial calibration (ETPH427I) RSD for the compound list was less than 30% except for the following compounds: None. The continuing calibration %D for the compound list was less than 30% except for the following compounds:None.

QC (Site Specific):

Batch 344545 (BN25691)

BN25675, BN25677, BN25679, BN25689, BN25691, BN25692, BN25694, BN25696

All LCS recoveries were within 60 - 120 with the following exceptions: None. All LCSD recoveries were within 60 - 120 with the following exceptions: None. All LCS/LCSD RPDs were less than 30% with the following exceptions: None. All MS recoveries were within 50 - 150 with the following exceptions: None.

All MSD recoveries were within 50 - 150 with the following exceptions: None.

All MS/MSD RPDs were less than 30% with the following exceptions: None.

Mercury Narration

Were all QA/QC performance criteria specified in the analytical method achieved? No.

QC Batch 344606 (Samples: BN25689, BN25691, BN25692, BN25694, BN25696): -----

The MS and/or the MSD recovery is above the upper range, therefore a slight high bias is possible. (Mercury)

Instrument:

Certification Report

May 19, 2016

SDG I.D.: GBN25675

Mercury Narration

MERLIN 05/06/16 09:12 Rick Schweitzer, Chemist 05/06/16

BN25689, BN25691, BN25692, BN25694, BN25696

The method preparation blank contains all of the acids and reagents as the samples; the instrument blanks do not.

The initial calibration met all criteria including a standard run at or below the reporting level.

All calibration verification standards (ICV, CCV) met criteria.

All calibration blank verification standards (ICB, CCB) met criteria.

The matrix spike sample is used to identify spectral interference for each batch of samples, if within 85-115%, no interference is observed and no further action is taken.

The following Initial Calibration Verification (ICV) compounds did not meet criteria: None.

The following Continuing Calibration Verification (CCV) compounds did not meet criteria: None.

QC (Site Specific):

Batch 344606 (BN25691)

BN25689, BN25691, BN25692, BN25694, BN25696

All LCS recoveries were within 70 - 130 with the following exceptions: None.

All LCSD recoveries were within 70 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

All MS recoveries were within 75 - 125 with the following exceptions: Mercury(150%)

A matrix effect is suspected when a MS/MSD recovery is outside of criteria. No further action is required if LCS/LCSD compounds are within criteria.

Additional Mercury criteria: LCS acceptance range for waters is 80-120% and for soils is 70-130%.

ICP Metals Narration

Were all QA/QC performance criteria specified in the analytical method achieved? No.

QC Batch 344552 (Samples: BN25689, BN25691, BN25692, BN25694, BN25696): -----

The LCS/LCSD recovery is acceptable. One or more analytes in the site specific matrix spike recovery is below the method criteria, therefore a low bias is likely. (Copper)

Instrument:

ARCOS 05/05/16 19:18

Emily Kolominskaya, Laura Kinnin, Chemist 05/05/16

BN25689, BN25691, BN25692, BN25694, BN25696

The linear range is defined daily by the calibration range.

The following Initial Calibration Verification (ICV) compounds did not meet criteria: None. The following Continuing Calibration Verification (CCV) compounds did not meet criteria: None. The following ICP Interference Check (ICSAB) compounds did not meet criteria: None.

ARCOS 05/06/16 20:26

Emily Kolominskaya, Laura Kinnin, Chemist 05/06/16

BN25691, BN25692, BN25694

The linear range is defined daily by the calibration range. The following Initial Calibration Verification (ICV) compounds did not meet criteria: None.

The following Continuing Calibration Verification (CCV) compounds did not meet criteria: None. The following ICP Interference Check (ICSAB) compounds did not meet criteria: None.

ARCOS 05/17/16 19:23

Emily Kolominskaya, Laura Kinnin, Chemist 05/17/16

Certification Report

May 19, 2016

SDG I.D.: GBN25675

ICP Metals Narration

BN25689, BN25691, BN25692, BN25694, BN25696

The linear range is defined daily by the calibration range.

The following Initial Calibration Verification (ICV) compounds did not meet criteria: None.

The following Continuing Calibration Verification (CCV) compounds did not meet criteria: None.

The following ICP Interference Check (ICSAB) compounds did not meet criteria: None.

QC (Site Specific):

Batch 344552 (BN25691)

BN25689, BN25691, BN25692, BN25694, BN25696

All LCS recoveries were within 75 - 125 with the following exceptions: None. All MS recoveries were within 75 - 125 with the following exceptions: Copper(68.6%)

A matrix effect is suspected when a MS/MSD recovery is outside of criteria. No further action is required if LCS/LCSD compounds are within criteria.

Batch 345805 (BN25691)

BN25689, BN25691, BN25692, BN25694, BN25696

All LCS recoveries were within 75 - 125 with the following exceptions: None.

All MS recoveries were within 75 - 125 with the following exceptions: None.

PAH Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument:

CHEM06 05/05/16-1

Damien Drobinski, Chemist 05/05/16

BN25675, BN25677, BN25679, BN25682, BN25684, BN25686, BN25687

The DDT breakdown and pentachlorophenol & benzidine peak tailing were evaluated in the DFTPP tune and were found to be in control.

Initial Calibration Verification (CHEM06/BN_0505):

100% of target compounds met criteria.

The following compounds had %RSDs >20%: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM06/0505_14-BN_0505):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

100% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet minimum response factors: None.

QC (Batch Specific):

Batch 344541 (BN25662)

BN25675, BN25677, BN25679, BN25682, BN25684, BN25686, BN25687

RCP Certification Report

May 19, 2016

SDG I.D.: GBN25675

PAH Narration

All LCS recoveries were within 30 - 130 with the following exceptions: None.

All LCSD recoveries were within 30 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

PCB Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument:

AU-ECD24 05/06/16-1

Adam Werner, Chemist 05/06/16

BN25684

The initial calibration (PC0504AI) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC0504BI) RSD for the compound list was less than 20% except for the following compounds: None. The continuing calibration %D for the compound list was less than 15% except for the following compounds:None.

AU-ECD5 05/06/16-1

Adam Werner, Chemist 05/06/16

BN25679

The initial calibration (PC0504AI) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC0504BI) RSD for the compound list was less than 20% except for the following compounds: None. The continuing calibration %D for the compound list was less than 15% except for the following compounds:None.

AU-ECD8 05/06/16-1

Adam Werner, Chemist 05/06/16

BN25682, BN25686, BN25687

The initial calibration (PC0422AI) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC0422BI) RSD for the compound list was less than 20% except for the following compounds: None. The continuing calibration %D for the compound list was less than 15% except for the following compounds:None.

QC (Batch Specific):

Batch 344429 (BN25312)

BN25679, BN25682

All LCS recoveries were within 40 - 140 with the following exceptions: None. All LCSD recoveries were within 40 - 140 with the following exceptions: None. All LCS/LCSD RPDs were less than 30% with the following exceptions: None. A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

Batch 344547 (BN25684)

BN25684, BN25686, BN25687

All LCS recoveries were within 40 - 140 with the following exceptions: None. All LCSD recoveries were within 40 - 140 with the following exceptions: None. All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

Temperature Narration

The samples were received at 6C with cooling initiated. (Note acceptance criteria is above freezing up to 6° C)

eld, MA 01089 tovidence, RI 02908 oughkeepsie, NY 🗆 Other	1 1 <th>ICOUNDER LABORATORY</th> <th>Containers</th> <th></th> <th>20 W 2 20 0 W 2 20 0 W 2 20 0 W 2 20 0 0 0</th> <th>Solt VOX Visit Contact Solt VISIT Contact Solt</th> <th>1 25475</th> <th>1 25076 Had</th> <th>a 5676</th> <th></th> <th>25680 H24</th> <th></th> <th>1 2 5 6 5 2 Had</th> <th>ns: □ CT Tax Exempt □ QA/QC □ Other</th> <th>etection Limit Requirements: XRCP Deliverables DMCP CAM Cert.</th> <th>Hold All Addith cample Volume her addon analyces</th>	ICOUNDER LABORATORY	Containers		20 W 2 20 0 W 2 20 0 W 2 20 0 W 2 20 0 0 0	Solt VOX Visit Contact Solt	1 25475	1 25076 Had	a 5676		25680 H24		1 2 5 6 5 2 Had	ns: □ CT Tax Exempt □ QA/QC □ Other	etection Limit Requirements: XRCP Deliverables DMCP CAM Cert.	Hold All Addith cample Volume her addon analyces
 6040 □ 78 Interstate Drive, West Sprin, 6040 □ 317 Iron Horse Way, Suite 204, 201 □ 80 Washington Street, Suite 301 	JRD 34344		Analysis Request	3/16	Sediment	Time OU CETS	· ofoo X1	04/0	6930 × 1 0940	095e X X /	(600	leis X V	1 X 0401	Date Time Charge Except	5/5/14 1630 Reporting and	Storb Count Contract
 Manchester, CT 0 Manchester, CT 0 Se Quarry Road, Trumbull, CT 06611 1419 Richland Street, Columbia, SC 25 		PROJECT LOCATIC	versechedur	Date: 5	T=Treatment Facility S=Soil B= W=Waste A=Air C=Concrete	Number Source Date Code Sampled	13-17 S 5/3/1	-18 81-	b) - 10	12-	-12-	h2-	1 42-	Accepted By	Ar hide	
FUSS & O'NEILL (860) 646-2469 • www.FandO.com	CHAIN-OF	PROJECT NAME	REPORT TO: SHERANIL L INVOICE TO:	P.O. No.: Sampler's Signature:	Source Codes: MW=Monitoring Well PW=Potable Water SW=Surface Water ST=Stornwater X=Other	Item Transfer Check Sample No. 1 2 3 4	EF1 117616050		§			00	10	Transfer Relinquished By Number	1 N. Cor	3 6 6 6 7 6

Bobbi - Phoenixlabs

From:	Stefanie <u>Wierszchalek <swierszchalek@fando.com></swierszchalek@fando.com></u>
Sent:	Monday, May 16, 2016 2:29 PM
То:	Bobbi - Phoenixlabs
Subject:	GBN25675 - Add On Analyses

Good afternoon Bobbi,

With regards to the Former Meriden Hospital Project, I wanted to request some add-on SPLP analyses to samples included in GBN25675. Specifically, please run the following samples for the additional parameters listed:

	Phoenix ID	F&O Sample ID	Add-On Analysis
•	BN25689	1176160503-31	SPLP Lead
•	BN25691	1176160503-33	SPLP Arsenic SPLP Cadmium SPLP Lead
•	BN25692	1176160503-34	SPLP Copper SPLP Lead
•	BN25694	1176160503-36	SPLP Lead
•	BN25696	1176160503-38	SPLP Arsenic SPLP Lead

Please let me know if you have any questions or need additional information.

Thank you,

 Fuss & O'Neill, Inc
 146 Hartford Road
 Manchester, CT 06040

860.646.2469 x5503 swierszchalek@fando.com www.fando.com

This e-mail message and any files transmitted with it are the exclusive intellectual property of Fuss & O'Neill. This message and any attached files may be privileged and confidential. If you have received this message in error, please delete this e-mail and attached files and immediately notify Fuss & O'Neill by sending a reply e-mail to the sender of this message. Thank you.

Wednesday, May 18, 2016

Attn: Stephanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Project ID: FORMER MERIDEN HOSPITAL Sample ID#s: BN30957 - BN30959

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

X.lle

Phyllis/Shiller Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #MA-CT-007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

Analysis Report

May 18, 2016

FOR: Attn: Stephanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample Informa	ation	Custody Inform	nation	Date	<u>Time</u>	
Matrix:	WATER	Collected by:	DC	05/12/16	8:00	
Location Code:	F&O	Received by:	SW	05/12/16	12:16	
Rush Request:	Standard	Analyzed by:	see "By" below			
P.O.#:	20120232C40		_		0.5110.00	

Laboratory Data

SDG ID: GBN30957 Phoenix ID: BN30957

Project ID: FORMER MERIDEN HOSPITAL

Client ID: 1176160

1176160512-01

Deremeter	Deput	RL/	Linita	Dilution	Doto/Time	D./	Deference
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Volatiles							
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	1	05/12/16	MH	SW8260
1,1,1-Trichloroethane	ND	1.0	ug/L	1	05/12/16	MH	SW8260
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	1	05/12/16	MH	SW8260
1,1,2-Trichloroethane	ND	1.0	ug/L	1	05/12/16	MH	SW8260
1,1-Dichloroethane	ND	1.0	ug/L	1	05/12/16	MH	SW8260
1,1-Dichloroethene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
1,1-Dichloropropene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
1,2,3-Trichlorobenzene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
1,2,3-Trichloropropane	ND	1.0	ug/L	1	05/12/16	MH	SW8260
1,2,4-Trichlorobenzene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
1,2,4-Trimethylbenzene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
1,2-Dibromo-3-chloropropane	ND	1.0	ug/L	1	05/12/16	MH	SW8260
1,2-Dibromoethane	ND	1.0	ug/L	1	05/12/16	MH	SW8260
1,2-Dichlorobenzene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
1,2-Dichloroethane	ND	0.60	ug/L	1	05/12/16	MH	SW8260
1,2-Dichloropropane	ND	1.0	ug/L	1	05/12/16	MH	SW8260
1,3,5-Trimethylbenzene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
1,3-Dichlorobenzene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
1,3-Dichloropropane	ND	1.0	ug/L	1	05/12/16	MH	SW8260
1,4-Dichlorobenzene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
2,2-Dichloropropane	ND	1.0	ug/L	1	05/12/16	MH	SW8260
2-Chlorotoluene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
2-Hexanone	ND	5.0	ug/L	1	05/12/16	MH	SW8260
2-Isopropyltoluene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
4-Chlorotoluene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
4-Methyl-2-pentanone	ND	5.0	ug/L	1	05/12/16	MH	SW8260

Project ID: FORMER MERIDEN HOSPITAL Client ID: 1176160512-01

ratamizer Result PGL Onto Duttor inter Dist fine By Refer into 2 Acryonitrie ND 50 ugL 1 05/12/16 MH SW2200 Benzene ND 0.70 ugL 1 05/12/16 MH SW2200 Benzene ND 0.0 ugL 1 05/12/16 MH SW2200 Bromocharomethane ND 1.0 ugL 1 05/12/16 MH SW2200 Bromocharomethane ND 1.0 ugL 1 05/12/16 MH SW2200 Carbon Disulfide ND 1.0 ugL 1 05/12/16 MH SW2200 Carbon Disulfide ND 1.0 ugL 1 05/12/16 MH SW2200 Carbon Disulfide ND 1.0 ugL 1 05/12/16 MH SW2200 Chioromethane ND 1.0 ugL 1 05/12/16 MH SW2200 Dichioro	Deremeter	Decult	RL/	Linita	Dilution	Data/Tima	D.	Deference
Acetone ND 25 ug/L 1 05/12/16 MH SW8280 Benzene ND 0.70 ug/L 1 05/12/16 MH SW8280 Benzene ND 0.0 ug/L 1 05/12/16 MH SW8280 Bromochloromethane ND 0.50 ug/L 1 05/12/16 MH SW8280 Bromochloromethane ND 1.0 ug/L 1 05/12/16 MH SW8280 Cathon Disulfide ND 1.0 ug/L 1 05/12/16 MH SW8280 Chloroberzene ND 1.0 ug/L 1 05/12/16 MH SW8280 Chlorobertene ND 1.0 ug/L 1 05/12/16 MH SW8280 Chlorobertene ND 1.0 ug/L 1 05/12/16 MH SW8280 Chlorobertene ND 1.0 ug/L 1 05/12/16 MH SW8280 Dibromo	Falamelei	Result	FQL	Units	Dilution	Date/Time	Бу	Reference
Acryonizitie ND 5.0 ug/L 1 05/12/16 MH SW8280 Bernzene ND 1.0 ug/L 1 05/12/16 MH SW8280 Bromochicormethane ND 1.0 ug/L 1 05/12/16 MH SW8280 Bromochicormethane ND 1.0 ug/L 1 05/12/16 MH SW8280 Bromochicormethane ND 1.0 ug/L 1 05/12/16 MH SW8280 Carbon tetrachoride ND 1.0 ug/L 1 05/12/16 MH SW8280 Chiorobenzene ND 1.0 ug/L 1 05/12/16 MH SW8280 Chiorobentane ND 1.0 ug/L 1 05/12/16 MH SW8280 Chiorobentane ND 1.0 ug/L 1 05/12/16 MH SW8280 Chiorobentane ND 0.0 ug/L 1 05/12/16 MH SW8280 D	Acetone	ND	25	ug/L	1	05/12/16	MH	SW8260
Banzane ND 0.70 ug/L 1 05/12/16 MH SW8280 Bromoberzene ND 1.0 ug/L 1 05/12/16 MH SW8280 Bromodichioromethane ND 0.50 ug/L 1 05/12/16 MH SW8280 Bromodichioromethane ND 1.0 ug/L 1 05/12/16 MH SW8280 Carbon Disulfide ND 1.0 ug/L 1 05/12/16 MH SW8280 Carbon Disulfide ND 1.0 ug/L 1 05/12/16 MH SW8280 Chorobenzene ND 1.0 ug/L 1 05/12/16 MH SW8280 Chiorobenzene ND 1.0 ug/L 1 05/12/16 MH SW8280 Chiorobenzene ND 1.0 ug/L 1 05/12/16 MH SW8280 Dibromodichioromethane ND 0.0 ug/L 1 05/12/16 MH SW8280	Acrylonitrile	ND	5.0	ug/L	1	05/12/16	MH	SW8260
Bromochloromethane ND 1.0 ug/L 1 05/12/16 MH SW2200 Bromochloromethane ND 0.50 ug/L 1 05/12/16 MH SW2200 Bromochloromethane ND 1.0 ug/L 1 05/12/16 MH SW2200 Bromochloromethane ND 1.0 ug/L 1 05/12/16 MH SW2200 Carbon tetrachoride ND 1.0 ug/L 1 05/12/16 MH SW2200 Chiorobenzene ND 1.0 ug/L 1 05/12/16 MH SW2200 Chiorobenzene ND 1.0 ug/L 1 05/12/16 MH SW2200 Chiorobenzene ND 1.0 ug/L 1 05/12/16 MH SW2200 Dibromochloromethane ND 0.40 ug/L 1 05/12/16 MH SW2200 Dibromochloromethane ND 0.0 ug/L 1 05/12/16 MH SW22	Benzene	ND	0.70	ug/L	1	05/12/16	MH	SW8260
Bromochloromethane ND 1.0 ug/L 1 05/12/16 MH SW8260 Bromodich normethane ND 1.0 ug/L 1 05/12/16 MH SW8260 Bromodich normethane ND 1.0 ug/L 1 05/12/16 MH SW8260 Carbon Disultide ND 1.0 ug/L 1 05/12/16 MH SW8260 Chorobertane ND 1.0 ug/L 1 05/12/16 MH SW8260 Chiorobertane ND 1.0 ug/L 1 05/12/16 MH SW8260 Chioromethane ND 1.0 ug/L 1 05/12/16 MH SW8260 Chioromethane ND 1.0 ug/L 1 05/12/16 MH SW8260 Dibromochloromethane ND 0.0 ug/L 1 05/12/16 MH SW8260 Dibromochloromethane ND 1.0 ug/L 1 05/12/16 MH SW8260	Bromobenzene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
Bromodichloromethane ND 0.50 ug/L 1 05/12/16 MH SW8260 Bromomethane ND 1.0 ug/L 1 05/12/16 MH SW8260 Carbon Disulfide ND 5.0 ug/L 1 05/12/16 MH SW8260 Carbon ttranchionide ND 1.0 ug/L 1 05/12/16 MH SW8260 Chiorobenzene ND 1.0 ug/L 1 05/12/16 MH SW8260 Chiorobenzene ND 1.0 ug/L 1 05/12/16 MH SW8260 Chiorobena ND 1.0 ug/L 1 05/12/16 MH SW8260 Chiorobene ND 1.0 ug/L 1 05/12/16 MH SW8260 Dichloropthene ND 1.0 ug/L 1 05/12/16 MH SW8260 Dichlorobthane ND 1.0 ug/L 1 05/12/16 MH SW8260	Bromochloromethane	ND	1.0	ug/L	1	05/12/16	MH	SW8260
Bromodium ND 1.0 ug/L 1 05/12/16 MH SW8280 Carbon Disulfide ND 5.0 ug/L 1 05/12/16 MH SW8280 Carbon Disulfide ND 1.0 ug/L 1 05/12/16 MH SW8280 Carbon tetrachloride ND 1.0 ug/L 1 05/12/16 MH SW8280 Chlorobertane ND 1.0 ug/L 1 05/12/16 MH SW8280 Chlorobertane ND 1.0 ug/L 1 05/12/16 MH SW8280 Chlorobertane ND 1.0 ug/L 1 05/12/16 MH SW8280 Dibromoethane ND 0.40 ug/L 1 05/12/16 MH SW8280 Dibromoethane ND 1.0 ug/L 1 05/12/16 MH SW8280 Dibromoethane ND 1.0 ug/L 1 05/12/16 MH SW8280	Bromodichloromethane	ND	0.50	ug/L	1	05/12/16	MH	SW8260
Bromomethane ND 1.0 ug/L 1 05/12/16 MH SW8260 Carbon Disulfide ND 1.0 ug/L 1 05/12/16 MH SW8260 Chiorobenzene ND 1.0 ug/L 1 05/12/16 MH SW8260 Chiorobenzene ND 1.0 ug/L 1 05/12/16 MH SW8260 Chiorobenzene ND 1.0 ug/L 1 05/12/16 MH SW8260 Chiorobentane ND 1.0 ug/L 1 05/12/16 MH SW8260 Cisi-1,2-Dichiorobenene ND 0.40 ug/L 1 05/12/16 MH SW8260 Dibromochioromethane ND 1.0 ug/L 1 05/12/16 MH SW8260 Disorophionzenioromethane ND 1.0 ug/L 1 05/12/16 MH SW8260 Isoprophionzenio ND 1.0 ug/L 1 05/12/16 MH SW8260	Bromoform	ND	1.0	ug/L	1	05/12/16	MH	SW8260
Carbon Disulfide ND 5.0 ug/L 1 05/12/16 MH SW8260 Chlorobenzene ND 1.0 ug/L 1 05/12/16 MH SW8260 Chlorobenzene ND 1.0 ug/L 1 05/12/16 MH SW8260 Chloroberthane ND 1.0 ug/L 1 05/12/16 MH SW8260 Chloroberthane ND 1.0 ug/L 1 05/12/16 MH SW8260 cis-1,2-Dichloroperpone ND 0.40 ug/L 1 05/12/16 MH SW8260 Dibromothane ND 0.40 ug/L 1 05/12/16 MH SW8260 Dibromothane ND 1.0 ug/L 1 05/12/16 MH SW8260 Dibromothane ND 1.0 ug/L 1 05/12/16 MH SW8260 Dibromothane ND 1.0 ug/L 1 05/12/16 MH SW8260	Bromomethane	ND	1.0	ug/L	1	05/12/16	MH	SW8260
Carbon tetrachloride ND 1.0 ug/L 1 05/12/16 MH SW8260 Chlorobenzene ND 1.0 ug/L 1 05/12/16 MH SW8260 Chlorobethane ND 1.0 ug/L 1 05/12/16 MH SW8260 Chlorobethane ND 1.0 ug/L 1 05/12/16 MH SW8260 cis-1,2-Dichlorobethane ND 0.40 ug/L 1 05/12/16 MH SW8260 Dibromochloropropene ND 0.40 ug/L 1 05/12/16 MH SW8260 Dibromochloromethane ND 1.0 ug/L 1 05/12/16 MH SW8260 Dichlorobutadiene ND 1.0 ug/L 1 05/12/16 MH SW8260 Isopropylbenzene ND 1.0 ug/L 1 05/12/16 MH SW8260 Methyl ethyl ketone ND 1.0 ug/L 1 05/12/16 MH	Carbon Disulfide	ND	5.0	ug/L	1	05/12/16	MH	SW8260
Chlorobenzene ND 1.0 ug/L 1 05/12/16 MH SW8260 Chlorothane ND 1.0 ug/L 1 05/12/16 MH SW8260 Chlorothane ND 1.0 ug/L 1 05/12/16 MH SW8260 Chlorothane ND 1.0 ug/L 1 05/12/16 MH SW8260 cis-1,2-Dichlorothane ND 0.40 ug/L 1 05/12/16 MH SW8260 Dibromonchloromethane ND 0.40 ug/L 1 05/12/16 MH SW8260 Dibromonthane ND 1.0 ug/L 1 05/12/16 MH SW8260 Ethylbenzene ND 1.0 ug/L 1 05/12/16 MH SW8260 Isopropylbenzene ND 1.0 ug/L 1 05/12/16 MH SW8260 Methyl ethyletone ND 1.0 ug/L 1 05/12/16 MH SW8260 Naphrbalene ND 1.0 ug/L 1 05/12/16 MH	Carbon tetrachloride	ND	1.0	ug/L	1	05/12/16	MH	SW8260
Chlorosthane ND 1.0 ug/L 1 05/12/6 MH SW3260 Chlorosthane ND 1.0 ug/L 1 05/12/6 MH SW3260 Chloromethane ND 1.0 ug/L 1 05/12/6 MH SW3260 cis-1,3-Dichloropropene ND 1.0 ug/L 1 05/12/6 MH SW3260 Dibromochloromethane ND 0.50 ug/L 1 05/12/6 MH SW3260 Dibromochloromethane ND 1.0 ug/L 1 05/12/6 MH SW3260 Dibromochloromethane ND 1.0 ug/L 1 05/12/6 MH SW3260 Dibromochloromethane ND 1.0 ug/L 1 05/12/6 MH SW3260 Ethylbenzene ND 1.0 ug/L 1 05/12/6 MH SW3260 Ethylbenzene ND 1.0 ug/L 1 05/12/6 MH SW3260 Ethylbenzene ND 1.0 ug/L 1 05/12/6 MH SW3260 Methyl ethyl ther (MTBE) ND 1.0 ug/L 1 05/12/6 MH SW3260 Methyl ethyl ther (MTBE) ND 1.0 ug/L 1 05/12/16 MH SW3260 ND 1.0 ug/L 1 05/12/16 MH SW3260 Methyl ethyl ther (MTBE) ND 1.0 ug/L 1 05/12/16 MH SW3260 Nethyl ther (MTBE) ND 1.0 ug/L 1 05/12/16 MH SW3260 Naphthalene ND 1.0 ug/L 1 05/12/16 MH SW3260 Signene ND 1.0 ug/L 1 05/12/16 MH SW3260 Signene ND 1.0 ug/L 1 05/12/16 MH SW3260 Tetrachlorosthene ND 1.0 ug/L 1 05/12/16 MH SW3260 Trichlorosthinoresthene ND 1.0	Chlorobenzene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
Chlorodrim ND 1.0 ug/L 1 05/12/16 MH SW8260 Chloromethane ND 1.0 ug/L 1 05/12/16 MH SW8260 cis-1,2-Dichloropropene ND 0.40 ug/L 1 05/12/16 MH SW8260 Dibromochloromethane ND 0.40 ug/L 1 05/12/16 MH SW8260 Dibromochloromethane ND 0.10 ug/L 1 05/12/16 MH SW8260 Ethylbenzene ND 1.0 ug/L 1 05/12/16 MH SW8260 Isopropylbenzene ND 1.0 ug/L 1 05/12/16 MH SW8260 Methylethylketone ND 1.0 ug/L 1 05/12/16 MH SW8260 Methylethylketone ND 1.0 ug/L 1 05/12/16 MH SW8260 ND 1.0 ug/L 1 05/12/16 MH SW8260	Chloroethane	ND	1.0	ug/L	1	05/12/16	MH	SW8260
Chloromethane ND 1.0 ug/L 1 05/12/16 MH SW8260 cis-1,2-Dichloropropene ND 0.40 ug/L 1 05/12/16 MH SW8260 Dibromochloromethane ND 0.50 ug/L 1 05/12/16 MH SW8260 Dibromothane ND 1.0 ug/L 1 05/12/16 MH SW8260 Dibromothane ND 1.0 ug/L 1 05/12/16 MH SW8260 Ethylbenzene ND 1.0 ug/L 1 05/12/16 MH SW8260 Stoproylbenzene ND 1.0 ug/L 1 05/12/16 MH SW8260 Methyl tehyl ketone ND 1.0 ug/L 1 05/12/16 MH SW8260 Naphthalene ND 1.0 ug/L 1 05/12/16 MH SW8260 n-Proylbenzene ND 1.0 ug/L 1 05/12/16 MH SW8260	Chloroform	ND	1.0	ug/L	1	05/12/16	MH	SW8260
cis-1,2-Dichloroethene ND 1.0 ug/L 1 05/12/16 MH SW8260 cis-1,3-Dichloropropene ND 0.50 ug/L 1 05/12/16 MH SW8260 Dibromochloromethane ND 1.0 ug/L 1 05/12/16 MH SW8260 Dichlorodifluoromethane ND 1.0 ug/L 1 05/12/16 MH SW8260 Ethylbenzene ND 1.0 ug/L 1 05/12/16 MH SW8260 Isopropylbenzene ND 0.40 ug/L 1 05/12/16 MH SW8260 Msb-Xylene ND 1.0 ug/L 1 05/12/16 MH SW8260 Msb-Xylene ND 1.0 ug/L 1 05/12/16 MH SW8260 Naphthalene ND 1.0 ug/L 1 05/12/16 MH SW8260 N-Propylbenzene ND 1.0 ug/L 1 05/12/16 MH SW8260	Chloromethane	ND	1.0	ug/L	1	05/12/16	MH	SW8260
cis-1.3-Dichloropropene ND 0.40 ug/L 1 05/12/16 MH SW8260 Dibromochloromethane ND 0.50 ug/L 1 05/12/16 MH SW8260 Dibromochloromethane ND 1.0 ug/L 1 05/12/16 MH SW8260 Ethylbenzene ND 1.0 ug/L 1 05/12/16 MH SW8260 Ethylbenzene ND 0.40 ug/L 1 05/12/16 MH SW8260 Sopropylbenzene ND 1.0 ug/L 1 05/12/16 MH SW8260 Methyl tehyl ketone ND 1.0 ug/L 1 05/12/16 MH SW8260 Methyl tehyl ketone ND 1.0 ug/L 1 05/12/16 MH SW8260 Naphthalene ND 1.0 ug/L 1 05/12/16 MH SW8260 n-Propylbenzene ND 1.0 ug/L 1 05/12/16 MH SW8260<	cis-1,2-Dichloroethene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
Dibromochloromethane ND 0.50 ug/L 1 05/12/16 MH SW8260 Dibromomethane ND 1.0 ug/L 1 05/12/16 MH SW8260 Ethylbenzene ND 1.0 ug/L 1 05/12/16 MH SW8260 Ethylbenzene ND 1.0 ug/L 1 05/12/16 MH SW8260 isopropylbenzene ND 1.0 ug/L 1 05/12/16 MH SW8260 m&p-Xylene ND 1.0 ug/L 1 05/12/16 MH SW8260 Methyl ethyl ethor (MTBE) ND 1.0 ug/L 1 05/12/16 MH SW8260 Naphthalene ND 1.0 ug/L 1 05/12/16 MH SW8260 n-Ptorylbenzene ND 1.0 ug/L 1 05/12/16 MH SW8260 sec-Butylbenzene ND 1.0 ug/L 1 05/12/16 MH SW8260	cis-1,3-Dichloropropene	ND	0.40	ug/L	1	05/12/16	MH	SW8260
Dibroomethane ND 1.0 ug/L 1 05/12/16 MH SW8260 Dichlorodiffuoromethane ND 1.0 ug/L 1 05/12/16 MH SW8260 Hexachlorobutadiene ND 0.40 ug/L 1 05/12/16 MH SW8260 Isopropylbenzene ND 1.0 ug/L 1 05/12/16 MH SW8260 Methyl thyl ketone ND 5.0 ug/L 1 05/12/16 MH SW8260 Methyl ethyl ketone ND 1.0 ug/L 1 05/12/16 MH SW8260 Naphthalene ND 1.0 ug/L 1 05/12/16 MH SW8260 Naphthalene ND 1.0 ug/L 1 05/12/16 MH SW8260 ND 1.0 ug/L 1 05/12/16 MH SW8260 P-Stoppyltoluene ND 1.0 ug/L 1 05/12/16 MH SW8260 Sty	Dibromochloromethane	ND	0.50	ug/L	1	05/12/16	MH	SW8260
Dicklorodifluoromethane ND 1.0 ug/L 1 05/12/16 MH SW8260 Ethylbenzene ND 1.0 ug/L 1 05/12/16 MH SW8260 Isopropylbenzene ND 1.0 ug/L 1 05/12/16 MH SW8260 m&p-Xylene ND 1.0 ug/L 1 05/12/16 MH SW8260 Methyl ethyl ketone ND 5.0 ug/L 1 05/12/16 MH SW8260 Methyl ethr (MTBE) ND 1.0 ug/L 1 05/12/16 MH SW8260 Naphthalene ND 1.0 ug/L 1 05/12/16 MH SW8260 n-Propylbenzene ND 1.0 ug/L 1 05/12/16 MH SW8260 o-Xylene ND 1.0 ug/L 1 05/12/16 MH SW8260 o-Xylene ND 1.0 ug/L 1 05/12/16 MH SW8260	Dibromomethane	ND	1.0	ug/L	1	05/12/16	MH	SW8260
Ethylbenzene ND 1.0 ug/L 1 05/12/16 MH SW8260 Hexachlorobutadiene ND 0.40 ug/L 1 05/12/16 MH SW8260 Isopropylbenzene ND 1.0 ug/L 1 05/12/16 MH SW8260 Methyl ethyl ethyl ethor ND 5.0 ug/L 1 05/12/16 MH SW8260 Methyl ethyl ethor (MTBE) ND 1.0 ug/L 1 05/12/16 MH SW8260 Naphthalene ND 1.0 ug/L 1 05/12/16 MH SW8260 Naphthalene ND 1.0 ug/L 1 05/12/16 MH SW8260 N-Propylbenzene ND 1.0 ug/L 1 05/12/16 MH SW8260 Styrene ND 1.0 ug/L 1 05/12/16 MH SW8260 Styrene ND 1.0 ug/L 1 05/12/16 MH SW8260 <t< td=""><td>Dichlorodifluoromethane</td><td>ND</td><td>1.0</td><td>ug/L</td><td>1</td><td>05/12/16</td><td>MH</td><td>SW8260</td></t<>	Dichlorodifluoromethane	ND	1.0	ug/L	1	05/12/16	MH	SW8260
Hexachlorobutadiene ND 0.40 ug/L 1 05/12/16 MH SW8260 Isopropylbenzene ND 1.0 ug/L 1 05/12/16 MH SW8260 m&p-Xylene ND 5.0 ug/L 1 05/12/16 MH SW8260 Methyl ethyl ketone ND 5.0 ug/L 1 05/12/16 MH SW8260 Methylene chloride ND 1.0 ug/L 1 05/12/16 MH SW8260 Naphtalene ND 1.0 ug/L 1 05/12/16 MH SW8260 n-Butylbenzene ND 1.0 ug/L 1 05/12/16 MH SW8260 n-Propylbenzene ND 1.0 ug/L 1 05/12/16 MH SW8260 n-Propylbenzene ND 1.0 ug/L 1 05/12/16 MH SW8260 sec-Butylbenzene ND 1.0 ug/L 1 05/12/16 MH SW8260 Styrene ND 1.0 ug/L 1 05/12/16 MH	Ethylbenzene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
Isopropylbenzene ND 1.0 ug/L 1 05/12/16 MH SW8260 m&p-Xylene ND 1.0 ug/L 1 05/12/16 MH SW8260 Methyl tehyl ketone ND 5.0 ug/L 1 05/12/16 MH SW8260 Methyl tehyl ketone ND 1.0 ug/L 1 05/12/16 MH SW8260 Naphthalene ND 1.0 ug/L 1 05/12/16 MH SW8260 n-Butylbenzene ND 1.0 ug/L 1 05/12/16 MH SW8260 o-Xylene ND 1.0 ug/L 1 05/12/16 MH SW8260 o-Xylene ND 1.0 ug/L 1 05/12/16 MH SW8260 sec-Butylbenzene ND 1.0 ug/L 1 05/12/16 MH SW8260 Styrene ND 1.0 ug/L 1 05/12/16 MH SW8260 Tetra	Hexachlorobutadiene	ND	0.40	ug/L	1	05/12/16	MH	SW8260
m&p-Xylene ND 1.0 ug/L 1 05/12/16 MH SW8260 Methyl ethyl ketone ND 5.0 ug/L 1 05/12/16 MH SW8260 Methyl ethor (MTBE) ND 1.0 ug/L 1 05/12/16 MH SW8260 Naphthalene ND 1.0 ug/L 1 05/12/16 MH SW8260 n-Butylbenzene ND 1.0 ug/L 1 05/12/16 MH SW8260 o-Xylene ND 1.0 ug/L 1 05/12/16 MH SW8260 o-Sylene ND 1.0 ug/L 1 05/12/16 MH SW8260 sec-Butylbenzene ND 1.0 ug/L 1 05/12/16 MH SW8260 Styrene ND 1.0 ug/L 1 05/12/16 MH SW8260 Tetra/bydrofuran (THF) ND 2.5 ug/L 1 05/12/16 MH SW8260 <td< td=""><td>Isopropylbenzene</td><td>ND</td><td>1.0</td><td>ug/L</td><td>1</td><td>05/12/16</td><td>MH</td><td>SW8260</td></td<>	Isopropylbenzene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
Methyl ethyl ketone ND 5.0 ug/L 1 05/12/16 MH SW8260 Methyl r-butyl ether (MTBE) ND 1.0 ug/L 1 05/12/16 MH SW8260 Naphthalene ND 1.0 ug/L 1 05/12/16 MH SW8260 Naphthalene ND 1.0 ug/L 1 05/12/16 MH SW8260 n-Butylbenzene ND 1.0 ug/L 1 05/12/16 MH SW8260 n-Propylbenzene ND 1.0 ug/L 1 05/12/16 MH SW8260 ex-Butylbenzene ND 1.0 ug/L 1 05/12/16 MH SW8260 sec-Butylbenzene ND 1.0 ug/L 1 05/12/16 MH SW8260 tert-Butylbenzene ND 1.0 ug/L 1 05/12/16 MH SW8260 Tetrahydrofuran (THF) ND 2.5 ug/L 1 05/12/16 MH SW8260 <td>m&p-Xylene</td> <td>ND</td> <td>1.0</td> <td>ug/L</td> <td>1</td> <td>05/12/16</td> <td>MH</td> <td>SW8260</td>	m&p-Xylene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
Methyl t-butyl ether (MTBE) ND 1.0 ug/L 1 05/12/16 MH SW8260 Methylene chloride ND 1.0 ug/L 1 05/12/16 MH SW8260 Naphthalene ND 1.0 ug/L 1 05/12/16 MH SW8260 n-Butylbenzene ND 1.0 ug/L 1 05/12/16 MH SW8260 o-Xylene ND 1.0 ug/L 1 05/12/16 MH SW8260 o-Xylene ND 1.0 ug/L 1 05/12/16 MH SW8260 sec-Butylbenzene ND 1.0 ug/L 1 05/12/16 MH SW8260 styrene ND 1.0 ug/L 1 05/12/16 MH SW8260 tert-Butylbenzene ND 1.0 ug/L 1 05/12/16 MH SW8260 tert-Butylbenzene ND 1.0 ug/L 1 05/12/16 MH SW8260 tert-Butylbenzene ND 1.0 ug/L 1 05/12/16 MH	Methyl ethyl ketone	ND	5.0	ug/L	1	05/12/16	MH	SW8260
Methylene chloride ND 1.0 ug/L 1 05/12/16 MH SW8260 Naphthalene ND 1.0 ug/L 1 05/12/16 MH SW8260 n-Butylbenzene ND 1.0 ug/L 1 05/12/16 MH SW8260 n-Propylbenzene ND 1.0 ug/L 1 05/12/16 MH SW8260 o-Xylene ND 1.0 ug/L 1 05/12/16 MH SW8260 p-Isopropyltoluene ND 1.0 ug/L 1 05/12/16 MH SW8260 sec-Butylbenzene ND 1.0 ug/L 1 05/12/16 MH SW8260 Styrene ND 1.0 ug/L 1 05/12/16 MH SW8260 Tetrachloroethene ND 1.0 ug/L 1 05/12/16 MH SW8260 Total Xylenes ND 1.0 ug/L 1 05/12/16 MH SW8260	Methyl t-butyl ether (MTBE)	ND	1.0	ug/L	1	05/12/16	MH	SW8260
Naphthalene ND 1.0 ug/L 1 05/12/16 MH SW8260 n-Butylbenzene ND 1.0 ug/L 1 05/12/16 MH SW8260 o-Xylene ND 1.0 ug/L 1 05/12/16 MH SW8260 o-Xylene ND 1.0 ug/L 1 05/12/16 MH SW8260 o-Sylene ND 1.0 ug/L 1 05/12/16 MH SW8260 sec-Butylbenzene ND 1.0 ug/L 1 05/12/16 MH SW8260 Styrene ND 1.0 ug/L 1 05/12/16 MH SW8260 Tetrachloroethene ND 1.0 ug/L 1 05/12/16 MH SW8260 Total Xylenes ND 1.0 ug/L 1 05/12/16 MH SW8260 trans-1,2-Dichloroethene ND 1.0 ug/L 1 05/12/16 MH SW8260 trans-1	Methylene chloride	ND	1.0	ug/L	1	05/12/16	MH	SW8260
n-Butylbenzene ND 1.0 ug/L 1 05/12/16 MH SW8260 n-Propylbenzene ND 1.0 ug/L 1 05/12/16 MH SW8260 o-Xylene ND 1.0 ug/L 1 05/12/16 MH SW8260 p-lsopropyltoluene ND 1.0 ug/L 1 05/12/16 MH SW8260 sec-Butylbenzene ND 1.0 ug/L 1 05/12/16 MH SW8260 Styrene ND 1.0 ug/L 1 05/12/16 MH SW8260 Tetrachloroethene ND 1.0 ug/L 1 05/12/16 MH SW8260 Tetrachloroethene ND 1.0 ug/L 1 05/12/16 MH SW8260 Total Xylenes ND 1.0 ug/L 1 05/12/16 MH SW8260 trans-1,2-Dichloroethene ND 1.0 ug/L 1 05/12/16 MH SW8260 trans-1,2-Dichloroethene ND 0.0 ug/L 1 05/12/16 <t< td=""><td>Naphthalene</td><td>ND</td><td>1.0</td><td>ug/L</td><td>1</td><td>05/12/16</td><td>MH</td><td>SW8260</td></t<>	Naphthalene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
n-Propylbenzene ND 1.0 ug/L 1 05/12/16 MH SW8260 o-Xylene ND 1.0 ug/L 1 05/12/16 MH SW8260 p-lsopropyltoluene ND 1.0 ug/L 1 05/12/16 MH SW8260 sec-Butylbenzene ND 1.0 ug/L 1 05/12/16 MH SW8260 Styrene ND 1.0 ug/L 1 05/12/16 MH SW8260 tert-Butylbenzene ND 1.0 ug/L 1 05/12/16 MH SW8260 Tetrachloroethene ND 1.0 ug/L 1 05/12/16 MH SW8260 Toluene ND 1.0 ug/L 1 05/12/16 MH SW8260 trans-1,2-Dichloroethene ND 1.0 ug/L 1 05/12/16 MH SW8260 trans-1,2-Dichloroethene ND 1.0 ug/L 1 05/12/16 MH SW8260 trans-1,3-Dichloropropene ND 0.40 ug/L 1 05/12/16	n-Butylbenzene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
o-Xylene ND 1.0 ug/L 1 05/12/16 MH SW8260 p-Isopropyltoluene ND 1.0 ug/L 1 05/12/16 MH SW8260 sec-Butylbenzene ND 1.0 ug/L 1 05/12/16 MH SW8260 Styrene ND 1.0 ug/L 1 05/12/16 MH SW8260 tert-Butylbenzene ND 1.0 ug/L 1 05/12/16 MH SW8260 Tetrachloroethene ND 1.0 ug/L 1 05/12/16 MH SW8260 Tetrachloroethene ND 1.0 ug/L 1 05/12/16 MH SW8260 Toluene ND 1.0 ug/L 1 05/12/16 MH SW8260 trans-1,3-Dichloropthene ND 1.0 ug/L 1 05/12/16 MH SW8260 trans-1,3-Dichloropropene ND 1.0 ug/L 1 05/12/16 MH SW8260 <td>n-Propylbenzene</td> <td>ND</td> <td>1.0</td> <td>ug/L</td> <td>1</td> <td>05/12/16</td> <td>MH</td> <td>SW8260</td>	n-Propylbenzene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
p-Isopropyltoluene ND 1.0 ug/L 1 05/12/16 MH SW8260 sec-Butylbenzene ND 1.0 ug/L 1 05/12/16 MH SW8260 Styrene ND 1.0 ug/L 1 05/12/16 MH SW8260 tert-Butylbenzene ND 1.0 ug/L 1 05/12/16 MH SW8260 Tetrachloroethene ND 1.0 ug/L 1 05/12/16 MH SW8260 Tetrachloroethene ND 1.0 ug/L 1 05/12/16 MH SW8260 Toluene ND 2.5 ug/L 1 05/12/16 MH SW8260 Total Xylenes ND 1.0 ug/L 1 05/12/16 MH SW8260 trans-1,2-Dichloroethene ND 1.0 ug/L 1 05/12/16 MH SW8260 trans-1,4-dichloro-2-butene ND 5.0 ug/L 1 05/12/16 MH SW8260	o-Xylene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
sec-Butylbenzene ND 1.0 ug/L 1 05/12/16 MH SW8260 Styrene ND 1.0 ug/L 1 05/12/16 MH SW8260 tert-Butylbenzene ND 1.0 ug/L 1 05/12/16 MH SW8260 Tetrachloroethene ND 1.0 ug/L 1 05/12/16 MH SW8260 Tetrachloroethene ND 1.0 ug/L 1 05/12/16 MH SW8260 Tetrachloroethene ND 1.0 ug/L 1 05/12/16 MH SW8260 Toluene ND 1.0 ug/L 1 05/12/16 MH SW8260 Total Xylenes ND 1.0 ug/L 1 05/12/16 MH SW8260 trans-1,2-Dichloroethene ND 0.40 ug/L 1 05/12/16 MH SW8260 trans-1,3-Dichloroe2-butene ND 5.0 ug/L 1 05/12/16 MH SW8260	p-Isopropyltoluene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
Styrene ND 1.0 ug/L 1 05/12/16 MH SW8260 tert-Butylbenzene ND 1.0 ug/L 1 05/12/16 MH SW8260 Tetrachloroethene ND 1.0 ug/L 1 05/12/16 MH SW8260 Tetrachloroethene ND 2.5 ug/L 1 05/12/16 MH SW8260 Toluene ND 1.0 ug/L 1 05/12/16 MH SW8260 Total Xylenes ND 1.0 ug/L 1 05/12/16 MH SW8260 trans-1,2-Dichloroethene ND 1.0 ug/L 1 05/12/16 MH SW8260 trans-1,3-Dichloropropene ND 0.40 ug/L 1 05/12/16 MH SW8260 trans-1,4-dichloro-2-butene ND 5.0 ug/L 1 05/12/16 MH SW8260 Trichlorofluoromethane ND 1.0 ug/L 1 05/12/16 MH <td< td=""><td>sec-Butylbenzene</td><td>ND</td><td>1.0</td><td>ug/L</td><td>1</td><td>05/12/16</td><td>MH</td><td>SW8260</td></td<>	sec-Butylbenzene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
tert-Butylbenzene ND 1.0 ug/L 1 05/12/16 MH SW8260 Tetrachloroethene ND 1.0 ug/L 1 05/12/16 MH SW8260 Tetrahydrofuran (THF) ND 2.5 ug/L 1 05/12/16 MH SW8260 Toluene ND 1.0 ug/L 1 05/12/16 MH SW8260 Total Xylenes ND 1.0 ug/L 1 05/12/16 MH SW8260 trans-1,2-Dichloroethene ND 1.0 ug/L 1 05/12/16 MH SW8260 trans-1,3-Dichloropropene ND 0.40 ug/L 1 05/12/16 MH SW8260 trans-1,4-dichloro-2-butene ND 5.0 ug/L 1 05/12/16 MH SW8260 Trichlorofluoromethane ND 1.0 ug/L 1 05/12/16 MH SW8260 Trichlorofluoromethane ND 1.0 ug/L 1 05/12/16 MH SW8260 Vinyl chloride ND 1.0 ug/L 1<	Styrene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
Tetrachloroothene ND 1.0 ug/L 1 05/12/16 MH SW8260 Tetrahydrofuran (THF) ND 2.5 ug/L 1 05/12/16 MH SW8260 Toluene ND 1.0 ug/L 1 05/12/16 MH SW8260 Total Xylenes ND 1.0 ug/L 1 05/12/16 MH SW8260 trans-1,2-Dichloroothene ND 1.0 ug/L 1 05/12/16 MH SW8260 trans-1,2-Dichloroothene ND 0.40 ug/L 1 05/12/16 MH SW8260 trans-1,4-dichloro-2-butene ND 5.0 ug/L 1 05/12/16 MH SW8260 Trichloroothene ND 1.0 ug/L 1 05/12/16 MH SW8260 Trichloroothene ND 1.0 ug/L 1 05/12/16 MH SW8260 Trichloroothane ND 1.0 ug/L 1 05/12/16 MH <	tert-Butylbenzene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
Tetrahydrofuran (THF) ND 2.5 ug/L 1 05/12/16 MH SW8260 Toluene ND 1.0 ug/L 1 05/12/16 MH SW8260 Total Xylenes ND 1.0 ug/L 1 05/12/16 MH SW8260 trans-1,2-Dichloroethene ND 1.0 ug/L 1 05/12/16 MH SW8260 trans-1,3-Dichloropropene ND 0.40 ug/L 1 05/12/16 MH SW8260 trans-1,4-dichloro-2-butene ND 5.0 ug/L 1 05/12/16 MH SW8260 Trichloroethene ND 1.0 ug/L 1 05/12/16 MH SW8260 Trichlorofluoromethane ND 1.0 ug/L 1 05/12/16 MH SW8260 Vinyl chloride ND 1.0 ug/L 1 05/12/16 MH SW8260 QA/QC Surrogates ND 1.0 ug/L 1 05/12/16 MH	Tetrachloroethene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
Toluene ND 1.0 ug/L 1 05/12/16 MH SW8260 Total Xylenes ND 1.0 ug/L 1 05/12/16 MH SW8260 trans-1,2-Dichloroethene ND 1.0 ug/L 1 05/12/16 MH SW8260 trans-1,2-Dichloroethene ND 0.40 ug/L 1 05/12/16 MH SW8260 trans-1,4-dichloro-2-butene ND 5.0 ug/L 1 05/12/16 MH SW8260 Trichloroethene ND 1.0 ug/L 1 05/12/16 MH SW8260 Trichloroethene ND 1.0 ug/L 1 05/12/16 MH SW8260 Trichlorofluoromethane ND 1.0 ug/L 1 05/12/16 MH SW8260 Vinyl chloride ND 1.0 ug/L 1 05/12/16 MH SW8260 QA/QC Surrogates	Tetrahydrofuran (THF)	ND	2.5	ug/L	1	05/12/16	MH	SW8260
Total Xylenes ND 1.0 ug/L 1 05/12/16 MH SW8260 trans-1,2-Dichloroethene ND 1.0 ug/L 1 05/12/16 MH SW8260 trans-1,3-Dichloropropene ND 0.40 ug/L 1 05/12/16 MH SW8260 trans-1,4-dichloro-2-butene ND 5.0 ug/L 1 05/12/16 MH SW8260 Trichloroethene ND 1.0 ug/L 1 05/12/16 MH SW8260 Trichloroethene ND 1.0 ug/L 1 05/12/16 MH SW8260 Trichlorofluoromethane ND 1.0 ug/L 1 05/12/16 MH SW8260 Trichlorotrifluoroethane ND 1.0 ug/L 1 05/12/16 MH SW8260 Vinyl chloride ND 1.0 ug/L 1 05/12/16 MH SW8260 QA/QC Surrogates . . ND 1.0 ug/L 1 05/12/16 MH 70 - 130 % % Dibromofluoromethane 91	Toluene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
trans-1,2-DichloroetheneND1.0ug/L105/12/16MHSW8260trans-1,3-DichloropropeneND0.40ug/L105/12/16MHSW8260trans-1,4-dichloro-2-buteneND5.0ug/L105/12/16MHSW8260TrichloroetheneND1.0ug/L105/12/16MHSW8260TrichlorofluoromethaneND1.0ug/L105/12/16MHSW8260TrichlorotrifluoroethaneND1.0ug/L105/12/16MHSW8260Vinyl chlorideND1.0ug/L105/12/16MHSW8260QA/QC SurrogatesND1.0ug/L105/12/16MHSW8260%1,2-dichlorobenzene95%105/12/16MH70 - 130 %% Dibromofluoromethane91%105/12/16MH70 - 130 %	Total Xylenes	ND	1.0	ug/L	1	05/12/16	MH	SW8260
trans-1,3-Dichloropropene ND 0.40 ug/L 1 05/12/16 MH SW8260 trans-1,4-dichloro-2-butene ND 5.0 ug/L 1 05/12/16 MH SW8260 Trichloroethene ND 1.0 ug/L 1 05/12/16 MH SW8260 Trichloroethene ND 1.0 ug/L 1 05/12/16 MH SW8260 Trichlorotrifluoromethane ND 1.0 ug/L 1 05/12/16 MH SW8260 Trichlorotrifluoroethane ND 1.0 ug/L 1 05/12/16 MH SW8260 Vinyl chloride ND 1.0 ug/L 1 05/12/16 MH SW8260 QA/QC Surrogates ND 1.0 ug/L 1 05/12/16 MH SW8260 % 1,2-dichlorobenzene-d4 99 % 1 05/12/16 MH 70 - 130 % % Bromofluorobenzene 95 % 1 05/12/16 MH 70 - 130 % % Dibromofluoromethane 91 % 1 05/12/16 </td <td>trans-1,2-Dichloroethene</td> <td>ND</td> <td>1.0</td> <td>ug/L</td> <td>1</td> <td>05/12/16</td> <td>MH</td> <td>SW8260</td>	trans-1,2-Dichloroethene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
trans-1,4-dichloro-2-butene ND 5.0 ug/L 1 05/12/16 MH SW8260 Trichloroethene ND 1.0 ug/L 1 05/12/16 MH SW8260 Trichlorofluoromethane ND 1.0 ug/L 1 05/12/16 MH SW8260 Trichlorotrifluoroethane ND 1.0 ug/L 1 05/12/16 MH SW8260 Vinyl chloride ND 1.0 ug/L 1 05/12/16 MH SW8260 QA/QC Surrogates ND 1.0 ug/L 1 05/12/16 MH SW8260 % 1,2-dichlorobenzene-d4 99 % 1 05/12/16 MH 70 - 130 % % Bromofluorobenzene 95 % 1 05/12/16 MH 70 - 130 % % Dibromofluoromethane 91 % 1 05/12/16 MH 70 - 130 %	trans-1,3-Dichloropropene	ND	0.40	ug/L	1	05/12/16	MH	SW8260
Trichloroethene ND 1.0 ug/L 1 05/12/16 MH SW8260 Trichlorofluoromethane ND 1.0 ug/L 1 05/12/16 MH SW8260 Trichlorotrifluoroethane ND 1.0 ug/L 1 05/12/16 MH SW8260 Vinyl chloride ND 1.0 ug/L 1 05/12/16 MH SW8260 QA/QC Surrogates ND 1.0 ug/L 1 05/12/16 MH SW8260 QA/QC Surrogates ND 1.0 ug/L 1 05/12/16 MH SW8260 % 1,2-dichlorobenzene-d4 99 % 1 05/12/16 MH 70 - 130 % % Bromofluorobenzene 95 % 1 05/12/16 MH 70 - 130 % % Dibromofluoromethane 91 % 1 05/12/16 MH 70 - 130 %	trans-1,4-dichloro-2-butene	ND	5.0	ug/L	1	05/12/16	MH	SW8260
Trichlorofluoromethane ND 1.0 ug/L 1 05/12/16 MH SW8260 Trichlorotrifluoroethane ND 1.0 ug/L 1 05/12/16 MH SW8260 Vinyl chloride ND 1.0 ug/L 1 05/12/16 MH SW8260 QA/QC Surrogates ND 1.0 ug/L 1 05/12/16 MH SW8260 % 1,2-dichlorobenzene-d4 99 % 1 05/12/16 MH 70 - 130 % % Bromofluorobenzene 95 % 1 05/12/16 MH 70 - 130 % % Dibromofluoromethane 91 % 1 05/12/16 MH 70 - 130 %	Trichloroethene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
Trichlorotrifluoroethane ND 1.0 ug/L 1 05/12/16 MH SW8260 Vinyl chloride ND 1.0 ug/L 1 05/12/16 MH SW8260 QA/QC Surrogates * * * * * * * % 1,2-dichlorobenzene-d4 99 % 1 05/12/16 MH 70 - 130 % * % Bromofluorobenzene 95 % 1 05/12/16 MH 70 - 130 % * % Dibromofluoromethane 91 % 1 05/12/16 MH 70 - 130 % *	Trichlorofluoromethane	ND	1.0	ug/L	1	05/12/16	MH	SW8260
Vinyl chloride ND 1.0 ug/L 1 05/12/16 MH SW8260 QA/QC Surrogates 99 % 1 05/12/16 MH 70 - 130 % % Bromofluorobenzene 95 % 1 05/12/16 MH 70 - 130 % % Dibromofluoromethane 91 % 1 05/12/16 MH 70 - 130 %	Trichlorotrifluoroethane	ND	1.0	ug/L	1	05/12/16	MH	SW8260
QA/QC Surrogates 99 % 1 05/12/16 MH 70 - 130 % % Bromofluorobenzene 95 % 1 05/12/16 MH 70 - 130 % % Dibromofluoromethane 91 % 1 05/12/16 MH 70 - 130 %	Vinvl chloride	ND	1.0	ug/L	1	05/12/16	MH	SW8260
% 1,2-dichlorobenzene-d4 99 % 1 05/12/16 MH 70 - 130 % % Bromofluorobenzene 95 % 1 05/12/16 MH 70 - 130 % % Dibromofluoromethane 91 % 1 05/12/16 MH 70 - 130 %	QA/QC Surrogates			5				
% Bromofluorobenzene 95 % 1 05/12/16 MH 70 - 130 % % Dibromofluoromethane 91 % 1 05/12/16 MH 70 - 130 %	% 1.2-dichlorobenzene-d4	99		%	1	05/12/16	МН	70 - 130 %
% Dibromofluoromethane 91 % 1 05/12/16 MH 70 - 130 %	% Bromofluorobenzene	95		%	1	05/12/16	МН	70 - 130 %
	% Dibromofluoromethane	91		%	1	05/12/16	МН	70 - 130 %

Project ID: FORMER MERIDEN HOSPITAL Client ID: 1176160512-01

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
% Toluene-d8	97		%	1	05/12/16	MH	70 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

TRIP BLANK INCLUDED.

Phyllis Shiller, Laboratory Director May 18, 2016 Reviewed and Released by: Maryam Taylor, Project Manager

Analysis Report

May 18, 2016

FOR: Attn: Stephanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample Informa	ation	Custody Inform	nation	Date		
Matrix:	WATER	Collected by:	DC	05/12/16		
Location Code:	F&O	Received by:	SW	05/12/16		
Rush Request:	Standard	Analyzed by:	see "By" below			
P.O.#:	20120232C40					

Laboratory Data

SDG ID: GBN30957 Phoenix ID: BN30958

Time

8:20 12:16

Project ID: FORMER MERIDEN HOSPITAL

Client ID: 1176160512-02

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	By	Reference
Silver	< 0.001	0.001	mg/L	1	05/14/16	LK	SW6010C/E200.7
Arsenic	< 0.004	0.004	mg/L	1	05/14/16	LK	SW6010C/E200.7
Barium	0.181	0.002	mg/L	1	05/14/16	LK	SW6010C/E200.7
Cadmium	< 0.001	0.001	mg/L	1	05/14/16	LK	SW6010C/E200.7
Chromium	< 0.001	0.001	mg/L	1	05/14/16	LK	SW6010C/E200.7
Mercury	< 0.0002	0.0002	mg/L	1	05/13/16	RS	SW7470/245.1
Lead	0.003	0.002	mg/L	1	05/14/16	LK	SW6010C/E200.7
Selenium	< 0.010	0.010	mg/L	1	05/14/16	LK	SW6010C/E200.7
Mercury Digestion	Completed				05/13/16	I/W	SW7470/245.1
PCB Extraction	Completed				05/12/16	LZ	SW3510C
Semi-Volatile Extraction	Completed				05/12/16	P/D	SW3520C
Total Metals Digestion	Completed				05/12/16	AG	
Polychlorinated Biphe	enyls						
PCB-1016	ND	0.50	ug/L	1	05/13/16	AW	SW8082A
PCB-1221	ND	0.50	ug/L	1	05/13/16	AW	SW8082A
PCB-1232	ND	0.50	ug/L	1	05/13/16	AW	SW8082A
PCB-1242	ND	0.50	ug/L	1	05/13/16	AW	SW8082A
PCB-1248	ND	0.50	ug/L	1	05/13/16	AW	SW8082A
PCB-1254	ND	0.50	ug/L	1	05/13/16	AW	SW8082A
PCB-1260	ND	0.50	ug/L	1	05/13/16	AW	SW8082A
PCB-1262	ND	0.50	ug/L	1	05/13/16	AW	SW8082A
PCB-1268	ND	0.50	ug/L	1	05/13/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	76		%	1	05/13/16	AW	30 - 150 %
% TCMX	87		%	1	05/13/16	AW	30 - 150 %

Project ID: FORMER MERIDEN HOSPITAL Client ID: 1176160512-02

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Bv	Reference
		-				,	
Volatiles							
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	1	05/12/16	MH	SW8260
1,1,1-Trichloroethane	ND	1.0	ug/L	1	05/12/16	MH	SW8260
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	1	05/12/16	MH	SW8260
1,1,2-Trichloroethane	ND	1.0	ug/L	1	05/12/16	MH	SW8260
1,1-Dichloroethane	ND	1.0	ug/L	1	05/12/16	MH	SW8260
1,1-Dichloroethene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
1,1-Dichloropropene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
1,2,3-Trichlorobenzene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
1,2,3-Trichloropropane	ND	1.0	ug/L	1	05/12/16	MH	SW8260
1,2,4-Trichlorobenzene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
1,2,4-Trimethylbenzene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
1,2-Dibromo-3-chloropropane	ND	1.0	ug/L	1	05/12/16	MH	SW8260
1,2-Dibromoethane	ND	1.0	ug/L	1	05/12/16	MH	SW8260
1,2-Dichlorobenzene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
1,2-Dichloroethane	ND	0.60	ug/L	1	05/12/16	MH	SW8260
1,2-Dichloropropane	ND	1.0	ug/L	1	05/12/16	MH	SW8260
1,3,5-Trimethylbenzene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
1,3-Dichlorobenzene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
1,3-Dichloropropane	ND	1.0	ug/L	1	05/12/16	MH	SW8260
1,4-Dichlorobenzene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
2,2-Dichloropropane	ND	1.0	ug/L	1	05/12/16	MH	SW8260
2-Chlorotoluene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
2-Hexanone	ND	5.0	ug/L	1	05/12/16	MH	SW8260
2-Isopropyltoluene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
4-Chlorotoluene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
4-Methyl-2-pentanone	ND	5.0	ug/L	1	05/12/16	MH	SW8260
Acetone	ND	25	ug/L	1	05/12/16	MH	SW8260
Acrylonitrile	ND	5.0	ug/L	1	05/12/16	MH	SW8260
Benzene	ND	0.70	ug/L	1	05/12/16	MH	SW8260
Bromobenzene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
Bromochloromethane	ND	1.0	ug/L	1	05/12/16	MH	SW8260
Bromodichloromethane	ND	0.50	ug/L	1	05/12/16	MH	SW8260
Bromoform	ND	1.0	ug/L	1	05/12/16	MH	SW8260
Bromomethane	ND	1.0	ug/L	1	05/12/16	MH	SW8260
Carbon Disulfide	ND	5.0	ug/L	1	05/12/16	MH	SW8260
Carbon tetrachloride	ND	1.0	ug/L	1	05/12/16	MH	SW8260
Chlorobenzene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
Chloroethane	ND	1.0	ug/L	1	05/12/16	MH	SW8260
Chloroform	ND	1.0	ug/L	1	05/12/16	MH	SW8260
Chloromethane	ND	1.0	ug/L	1	05/12/16	MH	SW8260
cis-1,2-Dichloroethene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
cis-1,3-Dichloropropene	ND	0.40	ug/L	1	05/12/16	MH	SW8260
Dibromochloromethane	ND	0.50	ug/L	1	05/12/16	МН	SW8260
Dibromomethane	ND	1.0	ug/L	1	05/12/16	МН	SW8260
Dichlorodifluoromethane	ND	1.0	ug/L	1	05/12/16	ΜΗ	SW8260
Ethylbenzene	ND	1.0	ug/L	1	05/12/16	ΜΗ	SW8260
Hexachlorobutadiene	ND	0.40	ug/L	1	05/12/16	МН	SW8260
Isopropylbenzene	ND	1.0	ug/L	1	05/12/16	MH	SW8260

Project ID: FORMER MERIDEN HOSPITAL Client ID: 1176160512-02

_		RL/				_	
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
m&p-Xylene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
Methyl ethyl ketone	ND	5.0	ug/L	1	05/12/16	MH	SW8260
Methyl t-butyl ether (MTBE)	ND	1.0	ug/L	1	05/12/16	MH	SW8260
Methylene chloride	ND	1.0	ug/L	1	05/12/16	MH	SW8260
Naphthalene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
n-Butylbenzene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
n-Propylbenzene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
o-Xylene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
p-Isopropyltoluene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
sec-Butylbenzene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
Styrene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
tert-Butylbenzene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
Tetrachloroethene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
Tetrahydrofuran (THF)	ND	2.5	ug/L	1	05/12/16	MH	SW8260
Toluene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
Total Xylenes	ND	1.0	ug/L	1	05/12/16	MH	SW8260
trans-1.2-Dichloroethene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
trans-1.3-Dichloropropene	ND	0.40	ug/L	1	05/12/16	MH	SW8260
trans-1.4-dichloro-2-butene	ND	5.0	ug/L	1	05/12/16	MH	SW8260
Trichloroethene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
Trichlorofluoromethane	ND	1.0	ug/L	1	05/12/16	MH	SW8260
Trichlorotrifluoroethane	ND	1.0	ua/L	1	05/12/16	МН	SW8260
Vinyl chloride	ND	1.0	ug/L	1	05/12/16	МН	SW8260
			- 5 -				
% 1 2-dichlorobenzene-d4	99		%	1	05/12/16	МН	70 - 130 %
% Bromofluorobenzene	98		%	1	05/12/16	MH	70 - 130 %
% Dibromofluoromethane	97		%	1	05/12/16	MH	70 - 130 %
% Toluene-d8	100		%	1	05/12/16	мн	70 - 130 %
			,.		00, 12, 10		
Semivolatiles by SIM							
2-Methylnaphthalene	ND	0.05	ug/L	1	05/13/16	DD	SW8270D (SIM)
Acenaphthene	ND	0.05	ug/L	1	05/13/16	DD	SW8270D (SIM)
Acenaphthylene	ND	0.05	ug/L	1	05/13/16	DD	SW8270D (SIM)
Anthracene	ND	0.05	ug/L	1	05/13/16	DD	SW8270D (SIM)
Benz(a)anthracene	ND	0.05	ug/L	1	05/13/16	DD	SW8270D (SIM)
Benzo(a)pyrene	ND	0.05	ug/L	1	05/13/16	DD	SW8270D (SIM)
Benzo(b)fluoranthene	ND	0.05	ug/L	1	05/13/16	DD	SW8270D (SIM)
Benzo(ghi)perylene	ND	0.05	ug/L	1	05/13/16	DD	SW8270D (SIM)
Benzo(k)fluoranthene	ND	0.05	ug/L	1	05/13/16	DD	SW8270D (SIM)
Chrysene	ND	0.05	ug/L	1	05/13/16	DD	SW8270D (SIM)
Dibenz(a,h)anthracene	ND	0.01	ug/L	1	05/13/16	DD	SW8270D (SIM)
Fluoranthene	ND	0.05	ug/L	1	05/13/16	DD	SW8270D (SIM)
Fluorene	ND	0.05	ug/L	1	05/13/16	DD	SW8270D (SIM)
Indeno(1,2,3-cd)pyrene	ND	0.05	ug/L	1	05/13/16	DD	SW8270D (SIM)
Naphthalene	ND	0.10	ug/L	1	05/13/16	DD	SW8270D (SIM)
Phenanthrene	ND	0.05	ug/L	1	05/13/16	DD	SW8270D (SIM)
Pyrene	ND	0.05	ua/L	1	05/13/16	DD	SW8270D (SIM)
QA/QC Surrogates			- 3 -			-	- ()
% 2-Fluorobinhenvl	71		%	1	05/13/16	DD	30 - 130 %
% Nitrobenzene-d5	84		%	1	05/13/16	DD	30 - 130 %
			,,,				
Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
-----------------	--------	------------	-------	----------	-----------	----	------------
% Terphenyl-d14	78		%	1	05/13/16	DD	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis, Shiller, Laboratory Director May 18, 2016 Reviewed and Released by: Maryam Taylor, Project Manager

Analysis Report

May 18, 2016

FOR: Attn: Stephanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Sample Informa	ation	Custody Inform	Custody Information				
Matrix:	WATER	Collected by:	DC	05/12/16	9:25		
Location Code:	F&O	Received by:	SW	05/12/16	12:16		
Rush Request:	Standard	Analyzed by:	see "By" below				
P.O.#:	20120232C40	l ek evetem	Data		CRN200		

Laboratory Data

SDG ID: GBN30957 Phoenix ID: BN30959

Project ID: FORMER MERIDEN HOSPITAL

Client ID: 1176160512-03

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Silver	< 0.001	0.001	mg/L	1	05/14/16	LK	SW6010C/E200.7
Arsenic	< 0.004	0.004	mg/L	1	05/14/16	LK	SW6010C/E200.7
Barium	0.208	0.002	mg/L	1	05/14/16	LK	SW6010C/E200.7
Cadmium	< 0.001	0.001	mg/L	1	05/14/16	LK	SW6010C/E200.7
Chromium	< 0.001	0.001	mg/L	1	05/14/16	LK	SW6010C/E200.7
Mercury	< 0.0002	0.0002	mg/L	1	05/13/16	RS	SW7470/245.1
Lead	< 0.002	0.002	mg/L	1	05/14/16	LK	SW6010C/E200.7
Selenium	< 0.010	0.010	mg/L	1	05/14/16	LK	SW6010C/E200.7
Mercury Digestion	Completed				05/13/16	I/W	SW7470/245.1
PCB Extraction	Completed				05/12/16	LZ	SW3510C
Semi-Volatile Extraction	Completed				05/12/16	P/D	SW3520C
Total Metals Digestion	Completed				05/12/16	AG	
Polychlorinated Biph	enyls						
PCB-1016	ND	0.50	ug/L	1	05/13/16	AW	SW8082A
PCB-1221	ND	0.50	ug/L	1	05/13/16	AW	SW8082A
PCB-1232	ND	0.50	ug/L	1	05/13/16	AW	SW8082A
PCB-1242	ND	0.50	ug/L	1	05/13/16	AW	SW8082A
PCB-1248	ND	0.50	ug/L	1	05/13/16	AW	SW8082A
PCB-1254	ND	0.50	ug/L	1	05/13/16	AW	SW8082A
PCB-1260	ND	0.50	ug/L	1	05/13/16	AW	SW8082A
PCB-1262	ND	0.50	ug/L	1	05/13/16	AW	SW8082A
PCB-1268	ND	0.50	ug/L	1	05/13/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	86		%	1	05/13/16	AW	30 - 150 %
% TCMX	88		%	1	05/13/16	AW	30 - 150 %

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Bv	Reference
		-				,	
Volatiles							
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L	1	05/12/16	MH	SW8260
1,1,1-Trichloroethane	ND	1.0	ug/L	1	05/12/16	MH	SW8260
1,1,2,2-Tetrachloroethane	ND	0.50	ug/L	1	05/12/16	MH	SW8260
1,1,2-Trichloroethane	ND	1.0	ug/L	1	05/12/16	MH	SW8260
1,1-Dichloroethane	ND	1.0	ug/L	1	05/12/16	MH	SW8260
1,1-Dichloroethene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
1,1-Dichloropropene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
1,2,3-Trichlorobenzene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
1,2,3-Trichloropropane	ND	1.0	ug/L	1	05/12/16	MH	SW8260
1,2,4-Trichlorobenzene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
1,2,4-Trimethylbenzene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
1,2-Dibromo-3-chloropropane	ND	1.0	ug/L	1	05/12/16	MH	SW8260
1,2-Dibromoethane	ND	1.0	ug/L	1	05/12/16	MH	SW8260
1,2-Dichlorobenzene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
1,2-Dichloroethane	ND	0.60	ug/L	1	05/12/16	MH	SW8260
1,2-Dichloropropane	ND	1.0	ug/L	1	05/12/16	MH	SW8260
1,3,5-Trimethylbenzene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
1,3-Dichlorobenzene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
1,3-Dichloropropane	ND	1.0	ug/L	1	05/12/16	MH	SW8260
1,4-Dichlorobenzene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
2,2-Dichloropropane	ND	1.0	ug/L	1	05/12/16	MH	SW8260
2-Chlorotoluene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
2-Hexanone	ND	5.0	ug/L	1	05/12/16	MH	SW8260
2-Isopropyltoluene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
4-Chlorotoluene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
4-Methyl-2-pentanone	ND	5.0	ug/L	1	05/12/16	MH	SW8260
Acetone	ND	25	ug/L	1	05/12/16	MH	SW8260
Acrylonitrile	ND	5.0	ug/L	1	05/12/16	MH	SW8260
Benzene	ND	0.70	ug/L	1	05/12/16	MH	SW8260
Bromobenzene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
Bromochloromethane	ND	1.0	ug/L	1	05/12/16	MH	SW8260
Bromodichloromethane	ND	0.50	ug/L	1	05/12/16	MH	SW8260
Bromoform	ND	1.0	ug/L	1	05/12/16	MH	SW8260
Bromomethane	ND	1.0	ug/L	1	05/12/16	MH	SW8260
Carbon Disulfide	ND	5.0	ug/L	1	05/12/16	MH	SW8260
Carbon tetrachloride	ND	1.0	ug/L	1	05/12/16	MH	SW8260
Chlorobenzene	ND	1.0	ug/L	1	05/12/16	ΜН	SW8260
Chloroethane	ND	1.0	ug/L	1	05/12/16	ΜН	SW8260
Chloroform	ND	1.0	ug/L	1	05/12/16	ΜН	SW8260
Chloromethane	ND	1.0	ug/L	1	05/12/16	ΜН	SW8260
cis-1.2-Dichloroethene	ND	1.0	ug/L	1	05/12/16	ΜΗ	SW8260
cis-1.3-Dichloropropene	ND	0.40	ug/L	1	05/12/16	МН	SW8260
Dibromochloromethane	ND	0.50	ug/L	1	05/12/16	МН	SW8260
Dibromomethane	ND	1.0	ug/L	1	05/12/16	МН	SW8260
Dichlorodifluoromethane	ND	1.0	ug/L	1	05/12/16	МН	SW8260
Ethylbenzene	ND	1.0	ug/L	1	05/12/16	МН	SW8260
Hexachlorobutadiene	ND	0.40	ua/L	1	05/12/16	мн	SW8260
Isopropylbenzene	ND	1.0	ug/L	1	05/12/16	MH	SW8260

Parameter	Result	RL/	Linite	Dilution	Date/Time	Bv	Reference
	ND		Units	Dilution		Dy	Ciwooco
m&p-Xylene		1.0	ug/L	1	05/12/16		SW8260
Method to have a star (MTDE)	ND	5.0	ug/L	1	05/12/16		SVV0200
Methylene ebleride	ND	1.0	ug/L	1	05/12/16		SVV8260
Methylene chloride	ND	1.0	ug/L	1	05/12/16		SVV8260
Naphthalene	ND	1.0	ug/L	1	05/12/16	MH	SVV8260
n-Butylbenzene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
n-Propylbenzene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
o-Xylene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
p-Isopropyltoluene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
sec-Butylbenzene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
Styrene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
tert-Butylbenzene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
Tetrachloroethene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
Tetrahydrofuran (THF)	ND	2.5	ug/L	1	05/12/16	MH	SW8260
Toluene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
Total Xylenes	ND	1.0	ug/L	1	05/12/16	MH	SW8260
trans-1,2-Dichloroethene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
trans-1,3-Dichloropropene	ND	0.40	ug/L	1	05/12/16	MH	SW8260
trans-1,4-dichloro-2-butene	ND	5.0	ug/L	1	05/12/16	MH	SW8260
Trichloroethene	ND	1.0	ug/L	1	05/12/16	MH	SW8260
Trichlorofluoromethane	ND	1.0	ug/L	1	05/12/16	MH	SW8260
Trichlorotrifluoroethane	ND	1.0	ug/L	1	05/12/16	MH	SW8260
Vinyl chloride	ND	1.0	ug/L	1	05/12/16	MH	SW8260
QA/QC Surrogates							
% 1,2-dichlorobenzene-d4	99		%	1	05/12/16	MH	70 - 130 %
% Bromofluorobenzene	97		%	1	05/12/16	MH	70 - 130 %
% Dibromofluoromethane	93		%	1	05/12/16	MH	70 - 130 %
% Toluene-d8	99		%	1	05/12/16	MH	70 - 130 %
Semivolatiles by SIM							
2-Methylnaphthalene	ND	0.05	ua/L	1	05/13/16	DD	SW8270D (SIM)
Acenaphthene	ND	0.05	ua/L	1	05/13/16	DD	SW8270D (SIM)
Acenaphthylene	ND	0.05	ua/L	1	05/13/16	DD	SW8270D (SIM)
Anthracene	ND	0.05	ua/L	1	05/13/16	DD	SW8270D (SIM)
Benz(a)anthracene	ND	0.05	ug/l	1	05/13/16		SW8270D (SIM)
Benzo(a)pyrene	ND	0.05	ug/l	1	05/13/16		SW8270D (SIM)
Benzo(b)fluoranthene	ND	0.05	ug/L	1	05/13/16	סס	SW8270D (SIM)
Benzo(gbi)nervlene	ND	0.05	ug/L	1	05/13/16	סס	SW8270D (SIM)
Benzo(k)fluoranthene	ND	0.05	ug/L	1	05/13/16	סס	SW8270D (SIM)
Chrysene	ND	0.05	ug/L	1	05/13/16	סס	SW8270D (SIM)
Dibonz(a b)anthracono	ND	0.00	ug/L	1	05/13/16	סס	SW/8270D (SIM)
	ND	0.01	ug/L	1	05/13/16	סס	SW/8270D (SIM)
Fluorance	ND	0.05	ug/L	1	05/13/16	סס	SW0270D (SIM)
		0.05	ug/L	1	05/13/16	םם	SW0270D (SIM)
Nankthalana		0.05	ug/∟	1	05/13/16		SW0270D (SINI)
Naphthalene		0.10	ug/L	1	05/13/10	עט	
		0.05	ug/L	T A	05/13/16	טט	SWOZIUD (SIM)
ryrene	ND	0.05	ug/L	1	05/13/16	טט	3VV82/UD (SIM)
QA/QC Surrogates			<u>.</u>	,	054646		00 100 %
% 2-Fluorobiphenyl	/1		%	1	05/13/16	DD	30 - 130 %
% Nitrobenzene-d5	83		%	1	05/13/16	DD	30 - 130 %

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
% Terphenyl-d14	84		%	1	05/13/16	DD	30 - 130 %

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis, Shiller, Laboratory Director May 18, 2016 Reviewed and Released by: Maryam Taylor, Project Manager

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

May 18, 2016

Silver

QA/QC Data

SDG I.D.: GBN30957

75 - 125

20

r

Parameter	Blank	Blk RL	Sample Result	Dup Result	Dup RPD	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 345441 (mg/L), C	2C Sam	ole No: E	3N30887	(BN309	58, BN3	30959)							
Mercury - Water Comment:	BRL	0.0002	<0.0002	<0.0002	NC	89.7			93.2			70 - 130	20
Additional Mercury criteria: LCS a	cceptanc	e range f	or waters	is 80-1209	% and fo	or soils is	s 70-1309	6.					
QA/QC Batch 345397 (mg/L), C	C Sam	ole No: E	3N30954	(BN309	58, BN3	30959)							
ICP Metals - Aqueous													
Arsenic	BRL	0.004	0.030	0.024	22.2	96.9			101			75 - 125	20
Barium	BRL	0.002	9.74	9.45	3.00	101			NC			75 - 125	20
Cadmium	BRL	0.001	0.074	0.072	2.70	108			80.2			75 - 125	20
Chromium	BRL	0.001	0.009	0.009	0	103			84.5			75 - 125	20
Lead	BRL	0.002	0.235	0.193	19.6	105			79.9			75 - 125	20
Selenium	BRL	0.010	<0.010	<0.010	NC	96.1			96.7			75 - 125	20

NC

95.6

101

r = This parameter is outside laboratory RPD specified recovery limits.

BRL

0.001

<0.001 <0.001

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

May 18, 2016

QA/QC Data

SDG I.D.: GBN30957

		DIK	105		1.05	MS	MSD	MS	% Poc	% חחם	
Parameter	Blank	RL	%	%	RPD	%	%	RPD	Limits	Limits	
QA/QC Batch 345259 (ug/L), Q	C Samp	le No: BN30700 (BN30958, BN3	80959)								
Polychlorinated Biphenyls	s - Wat	er									
PCB-1016	ND	0.050	64	78	19.7				40 - 140	20	
PCB-1221	ND	0.050							40 - 140	20	
PCB-1232	ND	0.050							40 - 140	20	
PCB-1242	ND	0.050							40 - 140	20	
PCB-1248	ND	0.050							40 - 140	20	
PCB-1254	ND	0.050							40 - 140	20	
PCB-1260	ND	0.050	80	87	8.4				40 - 140	20	
PCB-1262	ND	0.050							40 - 140	20	
PCB-1268	ND	0.050							40 - 140	20	
% DCBP (Surrogate Rec)	51	%	63	61	3.2				30 - 150	20	
% TCMX (Surrogate Rec) Comment:	52	%	55	61	10.3				30 - 150	20	
A LCS and LCS Duplicate were p	erformed	instead of a matrix spike and matrix	spike di	uplicate							
$\Delta = 0.000$ Batch 345362 (ug/l) Δ	C Samn	le No: BN30839 (BN30958 BN3		apiloutor							
Somivolatilos by SIM W	o Samp ator		10737)								
<u>Serrivolatiles by Silvi - W</u>		0.05		70	10.7				00 400		
	ND	0.05	64	/8	19.7				30 - 130	20	
Acenaphthelene		0.05	87	95	8.8				30 - 130	20	
Acenaphthylene	ND	0.04	83	91	9.2				30 - 130	20	
Anthracene	ND	0.02	106	105	0.9				30 - 130	20	
Benz(a)anthracene	ND	0.02	105	105	0.0				30 - 130	20	
Benzo(a)pyrene	ND	0.02	100	100	0.0				30 - 130	20	
Benzo(b)fluoranthene	ND	0.02	107	106	0.9				30 - 130	20	
Benzo(ghi)perylene	ND	0.02	108	104	3.8				30 - 130	20	
Benzo(k)fluoranthene	ND	0.02	110	113	2.7				30 - 130	20	
	ND	0.02	101	101	0.0				30 - 130	20	
	ND	0.01	11/	114	2.6				30 - 130	20	
Fluoranthene	ND	0.04	103	105	1.9				30 - 130	20	
Fluorene	ND	0.05	90	95	5.4				30 - 130	20	
Indeno(1,2,3-cd)pyrene	ND	0.02	114	111	2.7				30 - 130	20	
Naphthalene	ND	0.05	63	81	25.0				30 - 130	20	r
Phenanthrene	ND	0.05	97	96	1.0				30 - 130	20	
Pyrene	ND	0.02	108	109	0.9				30 - 130	20	
% 2-Fluorobiphenyl	/4	%	65	/9	19.4				30 - 130	20	
% Nitrobenzene-d5	86	%	58	/4	24.2				30 - 130	20	r
% rerpnenyi-ara	90	%	93	99	6.3				30 - 130	20	
Comment:											

Additional 8270 criteria:20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

QA/QC Data

Parameter	Blank	Blk RL		LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
OA/OC Batch 345490 (ug/L).	OC Sampl	e No: B	N30957 (BN30957, BN30	958. E	3N30959))					
Volatiles - Water	Lo camp	0.10.2		, , .		,					
		1.0		101	105	2.0				70 100	20
1, 1, 1, 2-1 etrachioroethane		1.0		101	105	3.9				70 - 130	30
1,1,2,2 Tetrapheresthere		1.0		98 104	101	3.0				70 - 130	30
1,1,2,2-1 etrachioroethane		0.50		104	103	1.0				70 - 130	30
1,1,2-Thchloroethane		1.0		99	100	1.0				70 - 130	30
1, 1-Dichloroethane		1.0		98	100	2.0				70 - 130	30
1,1-Dichloropropopo		1.0		99 101	101	2.0				70 - 130	30
1, 1-Dichlorophopzopo		1.0		07	105	3.9				70 - 130	20
1,2,3-Trichloropropapo		1.0		77 00	100	3.0				70 - 130	20
1.2.4 Trichlorobonzono		1.0		70 102	100	2.0				70 - 130	20
1.2.4 Trimothylhonzono		1.0		103	104	0.0				70 - 130	20
1 2 Dibromo 2 chloropropapo		1.0		100	100	2.0				70 - 130	20
1.2 Dibromosthano		1.0		102	100	2.0				70 - 130	30
1.2 Dichlorobonzono		1.0		00	102	1.0				70 - 130	30
1,2-Dichloroothano		1.0		99 100	100	1.0				70 - 130	30
1,2-Dichloropropaga		1.0		100	101	1.0				70 - 130	30
1,2-Dichiolopiopane		1.0		102	103	1.0				70 - 130	30
1,3,5- minethylbenzene		1.0		100	101	1.0				70 - 130	30
1,3-Dichloropropaga		1.0		100	101	1.0				70 - 130	30
1,3-Dichloroproparie		1.0		100	101	1.0				70 - 130	30
1,4-Dichloropenzene		1.0		100	100	0.0				70 - 130	30
2,2-Dichiolopioparie		1.0		103	105	1.9				70 - 130	30
		1.0 E O		07	103	1.0				70 - 130	30
		5.0		0/ 101	90	3.4				70 - 130	30
		1.0		101	103	2.0				70 - 130	30
4-Chlorololuene		1.0 E.O		97	100	3.0				70 - 130	30
4-Methyl-2-pentanone		5.0		93	95 70	2.1				70 - 130	30
Acelone		5.U		104	79	3.9				70 - 130	30
Acryloniume		5.0		104	99 102	4.9				70 - 130	30
Benzene		0.70		100	103	3.0				70 - 130	30
Bromobleremethene		1.0		101	102	1.0				70 - 130	30
Bromochioromethane		1.0		101	103	2.0				70 - 130	30
Bromotorm		1.0		103	100	1.9				70 - 130	30
Bromomothana		1.0		02	109	2.8				70 - 130	30
Carbon Diculfido		1.0		93 07	90	2.1				70 - 130	30
Carbon Disullue		1.0		97	99 101	2.0				70 - 130	30
Chlorobonzono		1.0		99	101	2.0				70 - 130	30
Chloroothana		1.0		99	04	3.0				70 - 130	30
Chloroform		1.0		90 00	90 00	0.0				70 - 130	20
Chloromothano		1.0		99	99	0.0				70 - 130	30
cis 1.2 Dichloroothono		1.0		90 07	71	1.1				70 - 130	30
cis 1.2 Dichloropropopo		0.40		97	90 101	1.0				70 - 130	30
Dibromochloromothano		0.40		77 104	101	2.0				70 - 130	30
Dibromomethano		1.0		004	100	1.7 1 0				70 130	30 20
Dichlorodifluoromothano		1.0		77 86	00 00	י.ט סיס				70 130	20
Ethylbonzono		1.U 1.0		101	00 104	∠.ა ე∩				70 130	30 20
Hevechlorobutadiono		1.U 0.40		107	104	∠.7 10				70 130	20
		0.40 1 0		107	109	1.7 2 0				70 130	30 20
m&n_Xylene		1.0		100	102	∠.∪ 3.0				70 130	30
Methyl ethyl ketone		т.U Б.O		100	04	J.U ∦ 1				70 - 130	30
Moury cury Nelone	ND	5.0		100	70	4.1				10-130	50

QA/QC Data

Parameter	Blank	Blk RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
Methyl t-butyl ether (MTBE)	ND	1.0	100	100	0.0				70 - 130	30	
Methylene chloride	ND	1.0	126	128	1.6				70 - 130	30	
Naphthalene	ND	1.0	103	105	1.9				70 - 130	30	
n-Butylbenzene	ND	1.0	102	104	1.9				70 - 130	30	
n-Propylbenzene	ND	1.0	99	100	1.0				70 - 130	30	
o-Xylene	ND	1.0	99	102	3.0				70 - 130	30	
p-Isopropyltoluene	ND	1.0	105	105	0.0				70 - 130	30	
sec-Butylbenzene	ND	1.0	104	106	1.9				70 - 130	30	
Styrene	ND	1.0	101	104	2.9				70 - 130	30	
tert-Butylbenzene	ND	1.0	101	102	1.0				70 - 130	30	
Tetrachloroethene	ND	1.0	99	105	5.9				70 - 130	30	
Tetrahydrofuran (THF)	ND	2.5	97	95	2.1				70 - 130	30	
Toluene	ND	1.0	100	100	0.0				70 - 130	30	
trans-1,2-Dichloroethene	ND	1.0	97	100	3.0				70 - 130	30	
trans-1,3-Dichloropropene	ND	0.40	101	102	1.0				70 - 130	30	
trans-1,4-dichloro-2-butene	ND	5.0	114	111	2.7				70 - 130	30	
Trichloroethene	ND	1.0	100	104	3.9				70 - 130	30	
Trichlorofluoromethane	ND	1.0	94	96	2.1				70 - 130	30	
Trichlorotrifluoroethane	ND	1.0	100	103	3.0				70 - 130	30	
Vinyl chloride	ND	1.0	90	92	2.2				70 - 130	30	
% 1,2-dichlorobenzene-d4	100	%	101	100	1.0				70 - 130	30	
% Bromofluorobenzene	98	%	100	101	1.0				70 - 130	30	
% Dibromofluoromethane	100	%	97	99	2.0				70 - 130	30	
% Toluene-d8	99	%	100	101	1.0				70 - 130	30	
Comment:											

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%.

r = This parameter is outside laboratory RPD specified recovery limits.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

hylis

Phyllis/Shiller, Laboratory Director May 18, 2016

Wednesday	/, May 18, 2016		Sample Criteria	Exceedences Report				Page 1 of 1
Criteria:	None		GBN	130957 - FO				
State:	СТ		CBI				RL	Analysis
SampNo	Acode	Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units

*** No Data to Display ***

Phoenix Laboratories does not assume responsibility for the data contained in this report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

Reasonable Confidence Protocol Laboratory Analysis QA/QC Certification Form

Laboratory Name: Phoenix Environmental Labs, Inc. Client: Fuss & O'Neill, Inc.															
Proje	ect Locat	t ion: FOR		DEN HOSPIT	TAL Project	Number:									
Labo	Laboratory Sample ID(s): BN30957, BN30958, BN30959														
Sam	Sampling Date(s): 5/12/2016														
RCP	RCP Methods Used:														
13	□ 1311/1312 ✔ 6010 □ 7000 □ 7196 ✔ 7470/7471 □ 8081 □ EPH □ TO15														
✔ 80	082	8151	✓ 8260	✔ 8270	ETPH	9010/9012	VPH								
1.	For each specified any criter method-s	analytical me QA/QC perfo ia falling outs pecific Reaso	ethod reference ormance criter side of accept onable Confid	ced in this labc ia followed, in able guidelines ence Protocol	pratory report pao cluding the requi s, as specified in documents?	ckage, were all rement to explain the CT DEP	✓ Yes	□ No							
1a.	Were the	method spec	cified preserva	ation and holdi	ing time requiren	nents met?	✓ Yes	🗌 No							
1b.	EPH and significan	VPH method t modificatior	ls only: Was ns (see sectio	the VPH or EF n 11.3 of respo	PH method condu ective RCP meth	ucted without ods)	□ Yes	🗌 No	✓ NA						
2.	Were all : described	samples rece I on the asso	eived by the la ciated Chain-	boratory in a c of-Custody do	condition consiste	ent with that	✓ Yes	🗌 No							
3.	Were sar	nples receive	ed at an appro	priate tempera	ature (< 6 Degree	es C)?	✓ Yes	🗌 No	□ NA						
4.	Were all Protocol o	QA/QC perfo documents ad	rmance criteri cheived? See	a specified in Section: SVO	the Reasonable ASIM Narration.	Confidence	□ Yes	✓ No							
5a.	Were rep	orting limits s	specified or re	ferenced on th	ne chain-of-custo	dy?	□ Yes	✓ No							
5b.	Were the	se reporting l	limits met?				□ Yes	□ No	✓ NA						
6.	For each results re presented	analytical me ported for all d in the Reas	ethod referend constituents i onable Confid	ced in this labo dentified in the dence Protocol	pratory report page e method-specifi I documents?	ckage, were c analyte lists	□ Yes	✓ No	□ NA						
7.	Are proje	ct-specific ma	atrix spikes ar	nd laboratory d	uplicates include	ed in the data set?	□ Yes	✓ No							

Note: For all questions to which the response was "No" (with the exception of question #5a, #7), additional information must be provided in an attached narrative. If the answer to question #1, #1A or 1B is "No", the data package does not meet the requirements for "Reasonable Confidence".

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete.

Date: Wednesday, May 18, 2016 Authorized Printed Name: Maryam Taylor Signature: Position: Project Manager

Nov 2007

RCP Certification Report

May 18, 2016

SDG I.D.: GBN30957

SDG Comments

Metals Analysis:

The client requested a shorter list of elements than the 6010 RCP list. Only the RCRA 8 Metals are reported as requested on the chain of custody.

8270 Semi-volatile Organics:

Only the PAH constituents are reported as requested on the chain-of-custody. The sample was extracted and analyzed via 8270 selective ion monitoring (SIM).

Mercury Narration

Were all QA/QC performance criteria specified in the analytical method achieved? Yes.

Instrument:

MERLIN 05/13/16 08:05

Rick Schweitzer, Chemist 05/13/16

BN30958, BN30959

The method preparation blank contains all of the acids and reagents as the samples; the instrument blanks do not.

The initial calibration met all criteria including a standard run at or below the reporting level.

All calibration verification standards (ICV, CCV) met criteria.

All calibration blank verification standards (ICB, CCB) met criteria.

The matrix spike sample is used to identify spectral interference for each batch of samples, if within 85-115%, no interference is observed and no further action is taken.

The following Initial Calibration Verification (ICV) compounds did not meet criteria: None.

The following Continuing Calibration Verification (CCV) compounds did not meet criteria: None.

QC (Batch Specific):

Batch 345441 (BN30887)

BN30958, BN30959

All LCS recoveries were within 70 - 130 with the following exceptions: None.

Additional Mercury criteria: LCS acceptance range for waters is 80-120% and for soils is 70-130%.

ICP Metals Narration

Were all QA/QC performance criteria specified in the analytical method achieved? Yes.

Instrument:

BLUE 05/13/16 17:39

Laura Kinnin, Chemist 05/13/16

BN30958, BN30959

The initial calibration met criteria.

The continuing calibration standards met criteria for all the elements reported. The linear range is defined daily by the calibration range.

The continuing calibration blanks were less than the reporting level for the elements reported.

The ICSA and ICSAB were analyzed at the beginning and end of the run and were within criteria. The linear range is defined daily by the calibration range.

The following Initial Calibration Verification (ICV) compounds did not meet criteria: None.

The following Continuing Calibration Verification (CCV) compounds did not meet criteria: CCV 05/14/16 00:46: Cadmium 111% (90-110)

The following ICP Interference Check (ICSAB) compounds did not meet criteria: None.

Certification Report

May 18, 2016

SDG I.D.: GBN30957

ICP Metals Narration

QC (Batch Specific):

Batch 345397 (BN30954)

BN30958, BN30959

All LCS recoveries were within 75 - 125 with the following exceptions: None.

PCB Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument:

AU-ECD24 05/13/16-1

Adam Werner, Chemist 05/13/16

BN30958, BN30959

The initial calibration (PC0504AI) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC0504BI) RSD for the compound list was less than 20% except for the following compounds: None. The continuing calibration %D for the compound list was less than 15% except for the following compounds:None.

QC (Batch Specific):

Batch 345259 (BN30700)

BN30958, BN30959

All LCS recoveries were within 40 - 140 with the following exceptions: None. All LCSD recoveries were within 40 - 140 with the following exceptions: None. All LCS/LCSD RPDs were less than 20% with the following exceptions: None. A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

SVOASIM Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? No.

QC Batch 345362 (Samples: BN30958, BN30959): -----

The LCS/LCSD RPD exceeds the method criteria for one or more analytes, but these analytes were not reported in the sample(s) so no variability is suspected. (Naphthalene)

The LCS/LCSD RPD exceeds the method criteria for one or more surrogates. Both recoveries are within limits. No significant bias is suspected. (% Nitrobenzene-d5)

Instrument:

CHEM07 05/13/16-1

Damien Drobinski, Chemist 05/13/16

BN30958, BN30959

Initial Calibration Verification (CHEM07/SIM_0316):

96% of target compounds met criteria.

The following compounds had %RSDs >20%: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM07/0513_02-SIM_0316):

RCP Certification Report

May 18, 2016

SDG I.D.: GBN30957

SVOASIM Narration

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None. 100% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: None.

The following compounds did not meet minimum response factors: None.

QC (Batch Specific):

Batch 345362 (BN30839)

BN30958, BN30959

All LCS recoveries were within 30 - 130 with the following exceptions: None.

All LCSD recoveries were within 30 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 20% with the following exceptions: % Nitrobenzene-d5(24.2%), Naphthalene(25.0%) Additional 8270 criteria:20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

VOA Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument:

CHEM17 05/12/16-1

Michael Hahn, Chemist 05/12/16

BN30957, BN30958, BN30959

Initial Calibration Verification (CHEM17/VT-S0510):

99% of target compounds met criteria.

The following compounds had %RSDs >20%: Acetone 22% (20%)

The following compounds did not meet recommended response factors: 1,2-Dibromo-3-chloropropane 0.038 (0.05)

The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM17/0512S02-VT-S0510):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

100% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: 1,2-Dibromo-3-chloropropane 0.039 (0.05)

The following compounds did not meet minimum response factors: None.

QC (Batch Specific):

Batch 345490 (BN30957)

BN30957, BN30958, BN30959

All LCS recoveries were within 70 - 130 with the following exceptions: None.

All LCSD recoveries were within 70 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%.

NY # 11301

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

May 18, 2016

SDG I.D.: GBN30957

Temperature Narration

The samples in this delivery group were received at 5° C. (Note acceptance criteria is above freezing up to 6° C)

Tuesday, May 31, 2016

Attn: Ms. Stephanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

Project ID: FORMER MERIDEN HOSPITAL Sample ID#s: BN38453 - BN38454

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

X.le

Phyllis/Shiller Laboratory Director

NELAC - #NY11301 CT Lab Registration #PH-0618 MA Lab Registration #MA-CT-007 ME Lab Registration #CT-007 NH Lab Registration #213693-A,B NJ Lab Registration #CT-003 NY Lab Registration #11301 PA Lab Registration #68-03530 RI Lab Registration #63 VT Lab Registration #VT11301

Analysis Report

FOR: Attn: Ms. Stephanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

May 31, 2016

Sample Informa	ation	Custody Inform	nation	Date	<u>Time</u>
Matrix:	OIL	Collected by:	DC	05/17/16	12:20
Location Code:	F&O	Received by:	В	05/24/16	16:11
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	20120232.C40	l ekenetem	Data		CRN294

Laboratory Data

SDG ID: GBN38453 Phoenix ID: BN38453

Project ID: FORMER MERIDEN HOSPITAL

Client ID: 1176160517-01

		RL/					
Parameter	Result	PQL	Units	Dilution	Date/Time	Ву	Reference
Waste Dilution PCB	Completed				05/27/16	J]\]]	SW3580A
Polychlorinated Biphe	enyls						
PCB-1016	ND	0.99	mg/kg	2	05/31/16	AW	SW8082A
PCB-1221	ND	0.99	mg/kg	2	05/31/16	AW	SW8082A
PCB-1232	ND	0.99	mg/kg	2	05/31/16	AW	SW8082A
PCB-1242	ND	0.99	mg/kg	2	05/31/16	AW	SW8082A
PCB-1248	ND	0.99	mg/kg	2	05/31/16	AW	SW8082A
PCB-1254	ND	0.99	mg/kg	2	05/31/16	AW	SW8082A
PCB-1260	ND	0.99	mg/kg	2	05/31/16	AW	SW8082A
PCB-1262	ND	0.99	mg/kg	2	05/31/16	AW	SW8082A
PCB-1268	ND	0.99	mg/kg	2	05/31/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	78		%	2	05/31/16	AW	30 - 150 %
% TCMX	68		%	2	05/31/16	AW	30 - 150 %

Project ID: FORMER MERIDEN HOSPITAL Phoenix I.D.: BN38453 Client ID: 1176160517-01 RL/ Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director May 31, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Analysis Report

FOR: Attn: Ms. Stephanie Wierszchalek Fuss & O'Neill, Inc. 146 Hartford Road Manchester, CT 06040

May 31, 2016

Sample Informa	ation	Custody Inform	nation	Date	<u>Time</u>
Matrix:	OIL	Collected by:	DC	05/17/16	12:30
Location Code:	F&O	Received by:	В	05/24/16	16:11
Rush Request:	Standard	Analyzed by:	see "By" below		
P.O.#:	20120232.C40	l ekenetem	Data		

Laboratory Data

DI /

SDG ID: GBN38453 Phoenix ID: BN38454

FORMER MERIDEN HOSPITAL Project ID:

Client ID:

117	61	605 ⁻	17-	02	

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	Ву	Reference
Waste Dilution PCB	Completed				05/27/16	J]\]]	SW3580A
Polychlorinated Bip	<u>ohenyls</u>						
PCB-1016	ND	0.99	mg/kg	2	05/31/16	AW	SW8082A
PCB-1221	ND	0.99	mg/kg	2	05/31/16	AW	SW8082A
PCB-1232	ND	0.99	mg/kg	2	05/31/16	AW	SW8082A
PCB-1242	ND	0.99	mg/kg	2	05/31/16	AW	SW8082A
PCB-1248	ND	0.99	mg/kg	2	05/31/16	AW	SW8082A
PCB-1254	ND	0.99	mg/kg	2	05/31/16	AW	SW8082A
PCB-1260	ND	0.99	mg/kg	2	05/31/16	AW	SW8082A
PCB-1262	ND	0.99	mg/kg	2	05/31/16	AW	SW8082A
PCB-1268	ND	0.99	mg/kg	2	05/31/16	AW	SW8082A
QA/QC Surrogates							
% DCBP	79		%	2	05/31/16	AW	30 - 150 %
% TCMX	76		%	2	05/31/16	AW	30 - 150 %

Project ID: FORMER MERIDEN HOSPITAL Phoenix I.D.: BN38454 Client ID: 1176160517-02 RL/ Parameter Result PQL Units Dilution Date/Time By Reference

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceeded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. This report must not be reproduced except in full as defined by the attached chain of custody.

Phyllis Shiller, Laboratory Director May 31, 2016 Reviewed and Released by: Ethan Lee, Project Manager

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

May 31, 2016

QA/QC Data

SDG I.D.: GBN38453

Parameter	Blank	Blk RL			LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits	
QA/QC Batch 346090 (mg/	kg), QC Sam	ple No: B	N35124 2X ((BN38453,	BN384	454)							
Polychlorinated Biphe	nyls - Oil												
PCB-1016	ND	2.0									40 - 140	30	
PCB-1221	ND	2.0									40 - 140	30	
PCB-1232	ND	2.0									40 - 140	30	
PCB-1242	ND	2.0									40 - 140	30	
PCB-1248	ND	2.0			85	80	6.1				40 - 140	30	
PCB-1254	ND	2.0									40 - 140	30	
PCB-1260	ND	2.0									40 - 140	30	
PCB-1262	ND	2.0									40 - 140	30	
PCB-1268	ND	2.0									40 - 140	30	
%DCBP (Surrogate Rec)	80	%			94	88	6.6				30 - 150	30	
%TCMX (Surrogate Rec) Comment:	60	%			66	63	4.7				30 - 150	30	

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis/Shiller, Laboratory Director May 31, 2016

Tuesday, May 31	2016	Sample Criteria Exce	eedences Report				Page 1 of 1
Criteria: None		GBN38453					
State: CT		GBN30433				RI	Analysis
SampNo Ac	ode Phoenix Analyte	Criteria	Result	RL	Criteria	Criteria	Units
	•						

*** No Data to Display ***

Phoenix Laboratories does not assume responsibility for the data contained in this report. It is provided as an additional tool to identify requested criteria exceedences. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

Reasonable Confidence Protocol Laboratory Analysis QA/QC Certification Form

Labo	oratory Name: Phoenix Environmental Labs, Inc. Client: Fuss	& O'Neill, Inc.
Proje	ect Location: FORMER MERIDEN HOSPITAL Project Number:	
Labo	ratory Sample ID(s): BN38453, BN38454	
Sam	pling Date(s): 5/17/2016	
RCP	Methods Used:	
13	311/1312 🗌 6010 🗌 7000 🗌 7196 🗌 7470/7471 🗌 8081	□ EPH □ TO15
✔ 80	82 8151 8260 8270 ETPH 9010/9012	VPH
1.	For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria falling outside of acceptable guidelines, as specified in the CT DEP method-specific Reasonable Confidence Protocol documents?	✔ Yes □ No
1a.	Were the method specified preservation and holding time requirements met?	✓ Yes □ No
1b.	EPH and VPH methods only: Was the VPH or EPH method conducted without significant modifications (see section 11.3 of respective RCP methods)	🗆 Yes 🗌 No 🗹 NA
2.	Were all samples received by the laboratory in a condition consistent with that described on the associated Chain-of-Custody document(s)?	✓ Yes □ No
3.	Were samples received at an appropriate temperature (< 6 Degrees C)?	✓ Yes □ No □ NA
4.	Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved?	☑ Yes □ No
5a.	Were reporting limits specified or referenced on the chain-of-custody?	✓ Yes □ No
5b.	Were these reporting limits met?	✓ Yes □ No □ NA
6.	For each analytical method referenced in this laboratory report package, were results reported for all constituents identified in the method-specific analyte lists presented in the Reasonable Confidence Protocol documents?	☑ Yes □ No □ NA
7.	Are project-specific matrix spikes and laboratory duplicates included in the data set?	□Yes ☑No □NA

Note: For all questions to which the response was "No" (with the exception of question #5a, #7), additional information must be provided in an attached narrative. If the answer to question #1, #1A or 1B is "No", the data package does not meet the requirements for "Reasonable Confidence".

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete.

Authorized Signature:

Ethan See

Date: Tuesday, May 31, 2016

Printed Name: Ethan Lee

Position: Project Manager

Nov 2007

RCP Certification Report

May 31, 2016

SDG I.D.: GBN38453

PCB Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument:

AU-ECD3 05/31/16-1

Adam Werner, Chemist 05/31/16

BN38453, BN38454

The initial calibration (PC0506AI) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC0506BI) RSD for the compound list was less than 20% except for the following compounds: None. The continuing calibration %D for the compound list was less than 15% except for the following compounds:None.

QC (Batch Specific):

Batch 346090 (BN35124)

BN38453, BN38454

All LCS recoveries were within 40 - 140 with the following exceptions: None.

All LCSD recoveries were within 40 - 140 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

Temperature Narration

The samples were received at 4C with cooling initiated. (Note acceptance criteria is above freezing up to 6° C)

FUSS & O'NEILL (860) 646-2469 • www.FandO.com	A46 Hartford Road, Manchester, CT 06040 26 Quarry Road, Trumbull, CT 06611 1419 Richland Street, Columbia, SC 29201	 78 Interstate Drive, West Springfield, MA 01089 17 Iron Horse Way, Suite 204, Providence, RI 02908 80 Washington Street, Suite 301, Poughkeepsie, NY 	dec 1
CHAIN-OF-	CUSTODY RECOR	D 34413	sound □ Other (days) ys) *Surcharge Applies
PROJECT NAME	PROJECT LOCATION Hospital Mendu	PROJECT NUMBER	LABORATORY
REPORT TO: Stefanic	w erszchelen	Analysis Analysis	Containers
P.O. No.:			2010
Sampler's Signature:	C Date: 5/12/10	6 Contraction (1000)	100000 10 10 10 10 10 10 10 10 10 10 10
bource Codes: AW=Monitoring Well PW=Potable Water W=Surface Water K=Other P = Product	T=Treatment Facility S=Soil B=Sedime W=Waste A=Air C=Concrete	ent let a le	250 UN C 250
Itern Transfer Check Sample Nu No. 1 2 3 4	umber Code Sampled San	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	25. 20. 00 02. 25. 20. 00 02. 25. 25. 20. 02. 25. 25. 25. 25. 25. 25. 20. 02. 25. 25. 25. 25. 25. 25. 25. 25. 25. 25.
V/1 1176160517	-01 1 Shill 12		38453
	-02 6 7 IS	1 	hsh82
Iransfer Number	Accepted By	Date Time Charge Exceptions: □ CT Tax Exempt □ QA/QC □ Other	
2 Je O Preder	14 Ohidre 5	/11/1・133 0 Reporting and Detection Limit Requirements: ArCP Deliverables □1 57日4月の8:15	MCP CAM Cert.
3 - Bautinger	(1~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5/24/11 08:14 Additional Comments: 5/20/16:11 011 Product PCB PL: 21=	= 1ms/kg

Appendix D

Summary of PCB Clean-up Regulatory Mandates

The clean-up objectives for the PCB-impacted soil and building materials identified at the Site are subject to the regulatory mandates of the USEPA and DEEP, as described below. The regulations that govern the investigation and remediation of PCB release areas at the Site are the "Megarule" from Subpart D of TSCA, specifically 40 CFR §761.61, and DEEP's RSRs (Regulations of Connecticut State Agencies Sections 22a-113k-(1-3)). Specific aspects of these regulatory backgrounds are summarized in the following subsections.

United States EPA

The Megarule is applicable to "any person storing or disposing of PCB Waste" (40 CFR § 761). On June 29, 1998, waste materials including remediation derived waste containing PCBs as a result of a spill, release, or unauthorized disposal ("PCB remediation waste") became regulated for cleanup and disposal pursuant to the Megarule if any of the following criteria apply:

- 1. The waste was disposed prior to April 18, 1978, and is currently at concentrations \geq 50 parts per million (ppm), regardless of the concentration of the original spill;
- 2. The waste is currently at any volume or concentration where the original source was \geq 500 ppm PCBs beginning on April 18, 1978, or \geq 50 ppm PCBs beginning on July 2 1979; or
- 3. The waste is currently at any concentration and was spilled or released from a source not authorized for use under 40 CFR 761.

PCB remediation waste meeting the first criteria is presumed not to present an unreasonable risk; however, if the owner or operator chooses to cleanup voluntarily, disposal of the waste must comply with §761.61. PCB remediation waste meeting the second criteria must be remediated in accordance with §761.61 or, if the release occurred after May 4, 1987, with the PCB Spill Cleanup Policy (Subpart G of TSCA). However, the PCB Spill Cleanup Policy was intended to address fresh releases of PCBs and specifically excluded older spills because older spills may evolve into more pervasive contamination and are generally more difficult to clean up. The burden for proving the date that the release occurred and subsequently the applicability of either the Megarule or PCB Spill Cleanup Policy is on the owner or operator of the site.

The self-implementing procedures in 40 CFR §761.61(a) establish cleanup goals for "bulk PCB remediation waste" which includes, but is not limited to non-liquid PCB remediation wastes such as soil, sediment, dredged materials, muds, PCB sewage sludge, and industrial sludge. The self-implementing clean-up goals are based on whether a site is considered a high occupancy or low occupancy area:

 High occupancy areas are defined as "any area where PCB remediation waste has been disposed of on-site and where occupancy for any individual not wearing dermal and respiratory protection for a calendar year is: 840 hours or more (an average of 16.8 hours or more per week) for non-porous surfaces and 335 hours or more (an average of 6.7 hours or more per week) for bulk PCB remediation waste"

The self-implementing procedures for clean-up that are outlined in §761.61 are for "general, moderatelysized sites where there should be low residual environmental impact from remedial activities". The selfimplementing procedures may be less practical for larger or environmentally diverse sites. For these other sites, the self-implementing procedure still applies, but an EPA Regional Administrator may authorize more practical sampling, clean-up, or disposal procedures through "risk based disposal approval" through §761.61(c). Risk based disposal approval provides a mechanism for the USEPA to approve sampling programs that deviate from standard grid-based programs with limits to maximum spacing between grid points and application of remedial technologies beyond simple excavation and offsite disposal of impacted materials. The site is considered an environmentally diverse site, therefore paragraph (c) of §761.61, which requires parties wishing to sample, cleanup, or dispose of PCB remediation waste to apply in writing to the Regional Administrator for the appropriate region, applies.

For high occupancy areas, the cleanup level for bulk PCB remediation waste is ≤ 1 ppm, without further restrictions; or ≤ 10 ppm, with the installation of a cap that complies with the requirements of 40 CFR §761.61(a)(7) and (8). Pursuant to 40 CFR §761.61(a)(8), deed restrictions must be filed to use a cap in a high occupancy area. For low occupancy areas, the cleanup level for bulk PCB remediation waste is ≤ 25 ppm unless otherwise specified in 40 CFR §761.61(a)(4)(i)(B). A deed restriction must be filed for PCB clean-ups to the low occupancy standard in accordance with pursuant to 40 CFR §761.61(a)(8).

Cleanup activities that are conducted in accordance with the self-implementing procedures of §761.61(a) require notification to the USEPA and the DEEP at least 30 days in advance of proceeding with such clean-up activities.

State of Connecticut

Soil polluted with PCBs must be remediated to comply with the RSRs as well as 40 CFR §761.61. The RSRs regulate soil remediation by substance and release area. Release areas are defined as the area of impacted soil exceeding the analytical reporting limit (RL) for a particular substance, or site-specific background concentration if the substance is naturally occurring. The RSR Standards for Soil Remediation (RCSA Section 22a-133k-2) require impacted soil at a release area to be remediated to meet the Direct Exposure Criteria (DEC) to protect against the effects of human ingestion of contaminants. The baseline numeric DEC generally apply to soils within a depth of 15 feet below grade. However, the current baseline DEC applies to PCB's that are present at depths greater than 15 feet below grade.

PCB concentrations in soil at a release area are required to meet the Residential Direct Exposure Criterion (RDEC) of 1 mg/kg unless the release area is located on a parcel that is either an "outdoor electrical substation" or an "other restricted access location," as defined in federal regulations, specifically 40 CFR 761.123, and an environmental land use restriction (ELUR) is in effect with respect to such parcel. Other restricted access locations means areas other than electrical substations that are at

least 0.1 km (~330 feet) from a residential/commercial area and limited by man-made barriers (e.g. fences and walls) to substantially limited by naturally occurring barriers such as mountains, cliffs or rough terrain. For release areas that meet these conditions, total PCBs in soil may be remediated to the Industrial/Commercial Direct Exposure Criteria (I/C DEC) of 10 mg/kg as detected by mass analysis.

Soil must also meet the Pollutant Mobility Criteria (PMC) of the RSRs, which are intended to prevent impacts to groundwater through leaching of contaminants from impacted soil. The applicable PMC for a site are dependent on the groundwater classification. In the case of the site, the current groundwater classification is GA. The PMC for PCBs for areas where the groundwater is classified GA is currently 0.5 ug/L as detected by either a Toxicity Characteristic Leaching Procedure (TCLP) analysis or Synthetic Precipitate Leaching Procedure (SPLP) analysis. The GB PMC apply to soil above the seasonal high water table. PCBs detected at mass concentrations of 1 mg/kg or less are assumed to meet the GA PMC and the TCLP or SPLP analysis are not required to demonstrate compliance.